Minimal quasivarieties of semilattices with a group of automorphisms

Miklós Maróti, Ildikó Nagy

University of Szeged

The variety of F-semilattices

Nashville

The quasivariety of F-semilattices

Tournaments

1996: \textbf{F-SEMILATTICES}

\begin{itemize}
 \item \textbf{Definition} \ F\text{-semilattice is an algebra } S = \langle S; \land, F \rangle \text{ where}
 \begin{itemize}
 \item $\langle S; \land \rangle$ is a semilattice,
 \item $F = \langle F; \cdot, -1, \text{id} \rangle$ is a group,
 \item F acts on $\langle S; \land \rangle$ as automorphisms.
 \end{itemize}

 For a fixed group F the class of F-semilattices is a variety.
\end{itemize}

\begin{itemize}
 \item Kearnes, Szendrei (97): Self-rectangulating varieties of type 5.
 \item Burris, Valeriote (1983): Expanding varieties by monoids of endomorphisms.
 \item Ježek (1991): Subdirectly irreducible \mathbb{Z}-semilattices.
 \item Ježek (1982): Simple \mathbb{Z}^2-semilattices.
\end{itemize}
Definition

\(F \)-semilattice is an algebra \(S = \langle S; \land, F \rangle \) where

- \(\langle S; \land \rangle \) is a semilattice,
- \(F = \langle F; \cdot, \cdot^{-1}, \text{id} \rangle \) is a group,
- \(F \) acts on \(\langle S; \land \rangle \) as automorphisms.

For a fixed group \(F \) the class of \(F \)-semilattices is a variety.

1996: **Canonical Embedding**

Definition

\[\mathcal{P}(F) = \langle \mathcal{P}(F); \cap, F \rangle \text{ where } f(A) = A \cdot f^{-1} \text{ for all } A \subseteq F. \]

For \(s \in S \) the map \(\varphi_s : S \to \mathcal{P}(F) \), \(\varphi_s(x) = \{ f \in F \mid f(x) \geq s \} \) is a homomorphism that separate the points of \(S \).

Lemma

Every subdirectly irreducible \(F \)-semilattice \(S \) is isomorphic to a subalgebra \(U \leq \mathcal{P}(F) \) where

- \(M = \bigcap \{ A \in U \mid \text{id} \in A \} \in U \),
- \(M \) is a submonoid of \(F \),
- \(M \cdot A = A \) for all \(A \in U \).

If \(S \) is finite, then \(M \) is a subgroup and \(U = \{ \emptyset \} \cup \{ Mf \mid f \in F \} \) is a flat semilattice.
1996: **Canonical Embedding**

Definition

\[P(F) = \langle P(F); \cap, F \rangle \] where \(f(A) = A \cdot f^{-1} \) for all \(A \subseteq F \).

For \(s \in S \) the map \(\varphi_s : S \to P(F) \), \(\varphi_s(x) = \{ f \in F \mid f(x) \geq s \} \) is a homomorphism that separate the points of \(S \).

Lemma

Every subdirectly irreducible F-semilattice \(S \) is isomorphic to a subalgebra \(U \leq P(F) \) where

- \(M = \bigcap \{ A \in U \mid \text{id} \in A \} \in U \),
- \(M \) is a submonoid of \(F \),
- \(M \cdot A = A \) for all \(A \in U \).

If \(S \) is finite, then \(M \) is a subgroup and \(U = \{ \emptyset \} \cup \{ Mf \mid f \in F \} \) is a flat semilattice.
We assume that F is commutative (open for general groups).

Lemma (Maróti)

If a simple F-semilattice has a least element, then it is isomorphic to

$$S_M = \{\emptyset\} \cup \{ Mf \mid f \in F \}$$

*for some subgroup $M \leq F$.***

Lemma (Maróti)

If a simple F-semilattice does not have a least element, then it can be embedded into

$$R_\beta = \langle \mathbb{R}; \min, F \rangle$$

*where $\beta : F \to \langle \mathbb{R}; + \rangle$ is a homomorphism and $f(a) = a - \beta(f)$.***
1996: Simple F-semilattices

Definition

\[\beta : F \to \langle \mathbb{R}; + \rangle \text{ is dense if} \]

\[(\forall \varepsilon > 0)(\exists f \in F)(0 < \beta(f) < \varepsilon). \]

Theorem

If F is commutative, then the simple F-semilattices are precisely:
- \(S_M \) where \(M \) is any subgroup of \(F \),
- \(Z_\alpha \), where \(\alpha : F \to \langle \mathbb{Z}; + \rangle \) is a surjective homomorphism,
- \(R_\beta \), where \(\beta : F \to \langle \mathbb{R}; + \rangle \) is a dense homomorphism.

These algebras are pairwise nonisomorphic.
The variety of F-semilattices

The quasivariety of F-semilattices

Nashville

Tournaments
The variety of F-semilattices

Nashville

The quasivariety of F-semilattices

Tournaments
1997–2002: **Tournaments**

Definition

A *tournament* is a conservative commutative groupoid.

Definition

A **tournament** is a conservative commutative groupoid.

The variety of F-semilattices

The quasivariety of F-semilattices

Tournaments

1997-2002: **TOURNAMENTS**

Definition

A tournament is a conservative commutative groupoid.

The variety of \mathbf{F}-semilattices

Nashville

The quasivariety of \mathbf{F}-semilattices

Tournaments
2001: **Entropic groupoids**

Definition

Medial identity: \((xy)(zu) = (xz)(yu)\), **entropic** identity: you can exchange variables at the same \((l, r)\) position.

Theorem (Ježek, Maróti)

- Decidable of a finite groupoid whether it satisfies all entropic identities.
- Undecidable of a finite partial groupoid whether it satisfies all entropic identities.
The variety of F-semilattices

Nashville

The quasivariety of F-semilattices

Tournaments
The variety of F-semilattices

The quasivariety of F-semilattices

Tournaments
The variety of \mathbf{F}-semilattices

Nashville

The quasivariety of \mathbf{F}-semilattices

Tournaments

2007: \mathbb{Z}-SEMILATTICES

$\mathbf{F} = \mathbb{Z}$, so $\mathbf{F} = \text{Sg}(\{f\})$ for some $f \in \mathbf{F}$.

Definition

- $\mathbf{A}_k = \{\emptyset\} \cup \{0, \ldots, k - 1\}$ flat semilattice, $f(\emptyset) = \emptyset$ and $f(i) = i + 1 \mod k$
- $\mathbf{A}_\infty = \{\emptyset\} \cup \mathbb{Z}$
- $\mathbf{B}_1^+ = \langle \mathbb{Z}, \min, f \rangle$, $f(i) = i + 1$
- $\mathbf{B}_1^- = \langle \mathbb{Z}, \max, f \rangle$, $f(i) = i + 1$
- $\mathbf{C}_1 = \mathbf{B}_1^+ \times \mathbf{B}_1^-$
- $\mathbf{B}_k^+, \mathbf{B}_k^-, \mathbf{C}_k$ spiral construction:

$$f(\langle x, i \rangle) = \begin{cases}
\langle x, i + 1 \rangle & \text{if } i < k - 1, \\
\langle x + 1, 0 \rangle & \text{if } i = k - 1.
\end{cases}$$
2007: Minimal Quasivarieties

Theorem (Dziobiak, Ježek, Maróti)

The minimal quasivarieties of \(\mathbb{Z} \)-semilattices are precisely the quasivarieties generated by \(A_\infty, A_k, B_k^+, B_k^-, C_k \) for all \(k \geq 1 \).

These quasivarieties are pairwise distinct.

Lemma

The unary terms are of the form \(t(x) = \bigwedge_{h \in H} h(x) \) for some \(H \subseteq \mathbb{Z} \), so they are endomorphisms.

Lemma

Let \(Q \) be a minimal quasivariety, and \(A \in Q \) be a nontrivial algebra generated by \(a \in A \).

- If \(0 \in A \) and \(t(a) = 0 \), then \(Q \models t(x) \approx 0 \).
- If \(t(a) = s(a) \), then \(Q \models t(x) \approx s(x) \).
Theorem (Dziobiak, Ježek, Maróti)

The minimal quasivarieties of \mathbb{Z}-semilattices are precisely the quasivarieties generated by $A_\infty, A_k, B_k^+, B_k^-, C_k$ for all $k \geq 1$. These quasivarieties are pairwise distinct.

Lemma

The unary terms are of the form $t(x) = \bigwedge_{h \in H} h(x)$ for some $H \subseteq \mathbb{Z}$, so they are endomorphisms.

Lemma

Let Q be a minimal quasivariety, and $A \in Q$ be a nontrivial algebra generated by $a \in A$.

- If $0 \in A$ and $t(a) = 0$, then $Q \models t(x) \approx 0$.
- If $t(a) = s(a)$, then $Q \models t(x) \approx s(x)$.
2007: Minimal varieties

Lemma

Let Q be a minimal quasivariety of \mathbb{Z}-semilattices and S be the one-generated free algebra. If $|S| = 1$, then $Q = Q(A_1)$. If $|S| > 1$, then S is isomorphic to A_{∞}, $A_k (k \geq 2)$, B_k^+, B_k^- or C_k.

Theorem (Dziobiak, Ježek, Maróti)

The minimal varieties of \mathbb{Z}-semilattices are precisely the quasivarieties generated by A_{∞} and $A_k (k \geq 1)$.

Remark

There are 2^{\aleph_0} many subvarieties of the variety of \mathbb{Z}-semilattices.
Again, we have to assume that F is commutative.

Lemma

Suppose, that A is generated by $a \in A$, $Q = Q(A)$, and $B \in Q$ is generated by $b \in B$. Then

$$
\varphi : A \rightarrow B, \quad r(a) \mapsto r(b)
$$

is a surjective homomorphism.

Theorem (I. Nagy)

Suppose that A is one-generated and $Q = Q(A)$. Then Q is minimal if and only if every subalgebra of A generated by a non-zero element is isomorphic to A.
The variety of F-semilattices

Nashville

The quasivariety of F-semilattices

Tournaments

2009: **Minimal Quasivarieties of F-Semilattices**

Theorem (I. Nagy)

*If F is finite, then the minimal quasivarieties of F-semilattices are the quasivarieties generated by A_H where H is a subgroup of F.***

Theorem (I. Nagy)

It is enough to describe all minimal quasivarieties that have no zero element. (Removal of the spiral, construction in both direction.)

Example

$D_\alpha = \langle \{ (k + l\alpha, m + n\alpha) \in \mathbb{R}^2 \mid k + l\alpha \leq m + n\alpha \}; \langle \text{min}, \text{max} \rangle, \mathbb{Z}^2 \rangle$ generates a minimal quasivariety for all irrational number α.
Theorem (I. Nagy)

If F is finite, then the minimal quasivarieties of F-semilattices are the quasivarieties generated by A_H where H is a subgroup of F.

Theorem (I. Nagy)

It is enough to describe all minimal quasivarieties that have no zero element. (Removal of the spiral, construction in both direction.)

Example

$D_{\alpha} = \langle \{ (k + l\alpha, m + n\alpha) \in \mathbb{R}^2 \mid k + l\alpha \leq m + n\alpha \}; \langle \text{min}, \text{max} \rangle, \mathbb{Z}^2 \rangle$ generates a minimal quasivariety for all irrational number α.
2009: Minimal quasivarieties of F-semilattices

Theorem (I. Nagy)

If F is finite, then the minimal quasivarieties of F-semilattices are the quasivarieties generated by A_H where H is a subgroup of F.

Theorem (I. Nagy)

It is enough to describe all minimal quasivarieties that have no zero element. (Removal of the spiral, construction in both direction.)

Example

$D_\alpha = \langle \{ \langle k + l\alpha, m + n\alpha \rangle \in \mathbb{R}^2 \mid k + l\alpha \leq m + n\alpha \} ; \langle \text{min}, \text{max} \rangle, \mathbb{Z}^2 \rangle$ generates a minimal quasivariety for all irrational number α.
The variety of F-semilattices

The quasivariety of F-semilattices

Tournaments
2007: Bi-tournaments

Definition
Every tournament \(\langle T; \land \rangle \) can be turned into a bi-tournament as
\[
x \land y = x \iff x \lor y = y.
\]

Open problem
Is the variety generated by bi-tournaments is finitely axiomatizable?

Candidate of 12 equations, one of which is
\[
g(f(g(x, y), f(f(x, y), z), g(x, y))), f(f(x, z), g(x, y))) = g(f(x, f(f(x, y), z), g(x, y))), f(f(x, z), g(x, y))).
\]
The variety of \(F \)-semilattices

Nashville

The quasivariety of \(F \)-semilattices

Tournaments
Thank you!