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Abstract. In this paper we prove that if a finite reflexive digraph admits

Gumm operations, then it also admits a near unanimity operation. This is
a generalization of similar results obtained earlier for posets and symmetric

reflexive digraphs by the second author and his collaborators. In the special
case of reflexive digraphs our new result confirms a conjecture of Valeriote

that states that any finite relational structure of finite signature that admits

Gumm operations also admits an edge operation. We also prove that every
finite reflexive digraph that admits a near unanimity operation admits totally

symmetric idempotent operations of all arities. Finally, the aforementioned

results yield a polynomial-time algorithm to decide whether a finite reflexive
digraph admits a near unanimity operation.

1. Introduction

In order to discuss the problem we investigate we need to define some basic
notions. Most of the definitions we use throughout the paper are quite standard in
model theory and universal algebra and are covered in the texts [8] and [17]. An
m-ary relation on a set A is a subset of Am. An n-ary operation f on a set A is a
map from An to A. Under a unary, binary or ternary relation (operation) we mean
a 1-ary, 2-ary or 3-ary relation (operation), respectively.

A signature L is a set of symbols, each of which has a certain arity that is a
non-negative integer. A relational structure of signature L is a non-empty set with
a set of relations that are assigned to the elements of L such that each symbol
and the relation assigned to it have the same arity. An algebra of signature L is
a non-empty set with a set of operations that are assigned to the elements of L
such that each symbol and the operation assigned to it have the same arity. If A
is a relational structure (algebra) of signature L and r is a symbol of L, then rA
denotes the relation (operation) that is assigned to r.

Given two relational structures A and B of signature L, a map f from the
underlying set of A to the underlying set of B is a homomorphism if for any
symbol r ∈ L whose arity is m and for any m-tuple (a1, . . . , am) ∈ rA we have
(f(a1), . . . , f(am)) ∈ rB . The n-th power An of a relational structure A of signa-
ture L is a relational structure of signature L such that the underlying set of An is
the nth Cartesian power of the underlying set of A and for each symbol r ∈ L of ar-
ity m the relation rAn consists of the m-tuples ((a1,1 . . . , an,1), . . . , (a1,m . . . , an,m))
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2 M. MARÓTI AND L. ZÁDORI

of the Cartesian power, where (a1,1 . . . , a1,m), . . . , (an,1 . . . , an,m) ∈ rA. An n-ary
polymorphism of a relational structure A is a homomorphism An to A. Clearly,
every polymorphism of A is an operation on the underlying set of A. A relational
structure A admits an operation f if f is a polymorphism of A. A unary polymor-
phism is an endomorphism. A bijective endomorphism is an automorphism.

A digraph is a relational structure whose only relation is binary. In graph theory
in this situation the underlying set of the structure is called the vertex set of the
digraph and the relation is called the adjacency relation or the set of edges. Notice
that by the above definition a homomorphism between two digraphs just means
an edge-preserving map as usual in graph theory. A digraph is reflexive, irreflex-
ive, transitive, symmetric, or antisymmetric if its adjacency relation has the same
property. A poset is a reflexive, transitive and antisymmetric digraph.

Let now L be a signature of algebras. By using any finite set {x1, . . . , xn} of
variables and the symbols of L we define the L-terms recursively as follows: each
of x1, . . . , xn is an L-term; and if f is a k-ary symbol of L and t1, . . . , tk are L-
terms, then f(t1, . . . , tk) is an L-term. In an algebra A of signature L the L-terms
interpret as n-ary operations naturally: xi interprets as the n-ary ith projection
operation on the underlying set of the algebra for 1 ≤ i ≤ n; f(t1, . . . , tk) interprets
as the composition of fA and the n-ary operations that are the interpretations of
the terms t1, . . . , tk in A. The operations obtained in this way are the n-ary term
operations of the algebra. Now it makes sense to talk about whether an identity
determined by two L-terms is satisfied by an algebra of signature L; if the term
operations that correspond to the two terms are equal we say that the identity is
satisfied by the algebra. Any class of algebras of signature L satisfying a set of
identities of signature L is called a variety.

Near unanimity, congruence distributivity, and congruence modularity of vari-
eties are well known properties for algebraists, see [17]. All of these properties can
be characterized by an infinite sequence of finite sets of identities, called ”Maltsev
conditions”; for definition see [7]. The terms occurring in these Maltsev conditions
are called a near unanimity term, Jónsson terms, and Gumm terms, respectively.
The study of relational structures admitting the interpretations of these terms is of
interest not just for a better understanding of algebraic structures, but for applica-
tions in the field of ”constraint satisfaction problems”, see [1],[2], [5], and [9].

We define the interpretations of the special terms listed in the preceding para-
graph. An n-ary operation f is a near unanimity operation if n ≥ 3 and f satisfies
the identities

f(y, x, . . . , x) = f(x, y, x, . . . ) = · · · = f(x, . . . , x, y) = x

in two variables x and y. A majority operation is a ternary near unanimity opera-
tion.

The ternary operations d0, . . . , dn are Jónsson operations if they satisfy the iden-
tities

x = d0(x, y, z),

di(x, y, x) = x for all i,

di(x, y, y) = di+1(x, y, y) for even i,

di(x, x, y) = di+1(x, x, y) for odd i, and

dn(x, y, z) = z.
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The ternary operations d0, . . . , dn, and p are Gumm operations if they satisfy the
identities

x = d0(x, y, z),

di(x, y, x) = x for all i,

di(x, y, y) = di+1(x, y, y) for even i,

di(x, x, y) = di+1(x, x, y) for odd i,

dn(x, y, y) = p(x, y, y), and

p(x, x, y) = y.

Without making it precise we mention that both sets of identities in the preceding
two definitions encode certain connectivity properties in the set of ternary opera-
tions. It is well known and easy to prove that structures with a near unanimity
polymorphism admit Jónsson operations, and structures with Jónsson polymor-
phisms obviously admit Gumm operations. It is also well known that in the class
of all finite relational structures the converses of these implications fail to hold.
It is natural to ask that for what kind of relational structures some of the three
conditions coincide.

In a 1990 paper [16] Ralph McKenzie formulated the question of whether every
finite poset that admits Jónsson operations also admits a near unanimity opera-
tion. The second author in his PhD thesis gave a positive answer to this question
in the case of bounded posets and published the result in [19]. Larose and the
second author extended this result in [14] by proving that if a finite poset admits
Gumm operations, then it admits a near unanimity operation. Kun and Szabó
gave a polynomial-time algorithm for testing whether a finite poset admits a near
unanimity operation [11] and a polynomial-time algorithm for constructing Jónsson
operations, provided the poset admits them [12]. In [13] Larose, Loten, and the
second author proved that if a finite symmetric reflexive digraph admits Gumm op-
erations, then it also admits a near unanimity operation and that these properties
are decidable in polynomial time. On the basis of all of the results mentioned in
this paragraph a general conjecture emerged: if a finite relational structure of finite
signature admits Jónsson operations, then it admits a near unanimity operation.
Recently in [1] Barto settled this conjecture in its full generality by using techniques
he developed for studying the constraint satisfaction problem.

An n-ary operation f is an edge operation if n ≥ 3 and f satisfies the identities

f(y, y, x, x, . . . , x) = f(x, y, y, x, . . . , x) = x

and

f(x, x, x, y, x, . . . , x) = f(x, x, x, x, y, x, . . . , x) = · · · = f(x, x, x, . . . , x, y) = x

in two variables x and y. A Maltsev operation is a ternary edge operation f ,
that is, f satisfies the identities f(y, y, x) = f(x, y, y) = x. An operation f is
idempotent if it satisfies the identity f(x, . . . , x) = x. All of the special operations
we defined so far, such as the near unanimity, Jónsson, Gumm or edge operations
are idempotent operations. Notice that adding three fictitious variables to a near
unanimity operation at the beginning yields an edge operation. So if a relational
structure admits a near unanimity operation, then it admits an edge operation. It
is not hard to prove that if a relational structure admits an edge operation, then it
admits Gumm operations. The converses of these implications over the class of all
finite structures are well known to be false.
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Nevertheless, a conjecture attributed to Valeriote states that if a finite relational
structure of finite signature admits Gumm operations, then it admits an edge op-
eration. The importance of the conjecture for the theory of constraint satisfaction
problems is rooted in the following facts. For the finite relational structures of
finite signature that admit an edge operation the constraint satisfaction problem
is polynomial-time decidable by a generic algorithm, see [9]. For the finite rela-
tional structures of finite signature that admit Gumm operations no such a generic
polynomial-time algorithm is known. If the conjecture was true, it would yield
a generic polynomial-time algorithm for the constraint satisfaction problem over
the broad class of structures that admit Gumm operations, a result that seems
unreachable by direct methods at present.

In [15] Markovic and McKenzie proved that if a finite relational structure admits
Jónsson operations and an edge operation, then it admits a near unanimity opera-
tion. Hence a positive answer to Valeriote’s conjecture would yield a generalization
of Barto’s result. The main results in [13] and [14] also confirm the conjecture in
the special cases of symmetric reflexive digraphs and posets. A further supporting
evidence is a recent result of Kazda [10] that asserts that if a finite digraph admits
a Maltsev operation, then it admits a majority operation.

In Section 2 we prove the main result of the paper: if a finite reflexive digraph
admits Gumm operations, then it admits a near unanimity operation. This result
also gives further support for Valeriote’s conjecture, and extends the results of the
second author and his collaborators mentioned above. In Section 3 we prove that
every finite reflexive digraph that admits a near unanimity operation also admits
totally symmetric idempotent operations of all arities. In Section 4, by the use of
the results obtained in the earlier sections, we present a polynomial-time algorithm
that decides whether a finite reflexive digraph admits a near unanimity operation
or, equivalently, admits Jónsson or Gumm operations.

2. CM implies NU for reflexive digraphs

Our goal is to prove that if a finite reflexive digraph admits Gumm operations,
then it admits a near unanimity operation. Actually, by Barto’s result mentioned
in the introduction we only have to prove that if a finite reflexive digraph admits
Gumm operations, then it admits Jónsson operations. This is what we shall do in
this section.

Let G be a digraph, and let a and b be two vertices of G. We write a → b to
mean that (a, b) is an edge in G. Similarly, a ← b means that (b, a) is an edge in
G, and a ↔ b means that both (a, b) and (b, a) are edges of G. The nth power
of a digraph is a special case of the nth power of a relational structure. So for
a digraph G and a positive integer n, Gn is the digraph whose vertex set is the
n-th Cartesian power of the vertex set of G and whose adjacency relation is defined
by (a1, . . . , an) → (b1, . . . , bn) if and only if ai → bi for 1 ≤ i ≤ n. We define
another type of power of a digraph, where the exponent itself also is a digraph. Let
G and H be two digraphs. In the introduction we noted that a homomorphism
from H to G is just an edge-preserving map from H to G. Let GH denote the
digraph whose vertex set is the set of all homomorphisms from H to G and whose
adjacency relation is defined as follows: f → g if and only if whenever a→ b in H
also f(a)→ g(b) in G.
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The following statement on composition of homomorphisms is a trivial but very
useful tool for building new edges from existing ones in powers of digraphs. We
frequently apply it in the later proofs with no explicit mention.

Lemma 2.1. Let F,G, and H be finite digraphs. Let fi and gi be vertices in GF

for 1 ≤ i ≤ n, and let f and g be vertices in HGn

. If fi → gi in GF for 1 ≤ i ≤ n
and f → g in HGn

, then f(f1, . . . , fn)→ g(g1, . . . , gn) in HF . �

A unary operation r is a retraction if r2 = r. The image of a retraction is a
retract. We mainly use the following lemma in induction proofs on the size of a
digraph.

Lemma 2.2. For a finite digraph G if idG → f in GG, where f is different from
idG, then there is a non-surjective retraction r in GG such that idG → r in GG. If,
in addition, f → idG also holds, then r can be chosen such that idG ↔ r.

Proof. First suppose that f is non-surjective. If idG → f in GG, then for any n,
idG → fn in GG. We choose n such that (fn)2 = fn. Let r = fn. Clearly, r is a
non-surjective retraction in GG, and idG → r in GG. Moreover, if idG ↔ f , then
idG ↔ r in GG.

Suppose now that f is surjective and idG → f in GG. Let B1, . . . , Bk be a list
of the orbits of f , and let bi ∈ Bi for 1 ≤ i ≤ k. We define a unary operation r on
the vertex set of G by setting r(b) = bi for every b ∈ Bi and 1 ≤ i ≤ k. Clearly,
r2 = r and r is non-surjective. We prove that the map r is an endomorphism of G
and idG ↔ r in GG. First, by using that f−1 is a finite power of f and idG → f in
GG we get that idG → f−1 in G. Then by f → f and idG → f−1 it follows that
f → idG in GG. Now, idG → f implies that idG → fn in GG for all n, and f → idG

implies that fn → idG in GG for all n. Thus, fm → fn in GG for all m and n.
Therefore, if f has an edge from an orbit A of f to an orbit B of f , then every pair
in A× B must be an edge of G. Thus r is an endomorphism and idG ↔ r in GG,
which concludes the proof. �

A path in a digraph is a list of vertices a0, . . . , an such that ai → ai−1 or ai−1 → ai
for 1 ≤ i ≤ n. A path a0, . . . , an is a directed path if ai−1 → ai for 1 ≤ i ≤ n.
A (directed) path from a vertex a to a vertex b is a (directed) path of the form
a0, . . . , an, where a0 = a and an = b. A digraph G is connected if for any vertices
a and b of G there is a path from a to b. A digraph G is strongly connected if
for any vertices a and b of G there is a directed path from a to b. The connected
and strong components of a digraph are meant in the usual graph-theoretic sense.
We require a stronger connectivity notion for digraphs. A path whose consecutive
vertices are connected by edges in both directions is a symmetric path. A digraph G
is extremely connected if for any any vertices a and b of G there is a symmetric path
from a to b. Now we define an equivalence relation on the vertices of a digraph G:
two vertices are equivalent if and only if they are connected by a symmetric path
allowing the empty path. The blocks of this equivalence relation are the extreme
components of G.

Let G be a relational structure, and let H be the digraph whose vertex set is
the set of ternary polymorphisms of G and whose adjacency relation is defined by
f → g if and only if f(x, y, y) = g(x, y, y) or f(x, x, y) = g(x, x, y). Let H0 be the
subgraph of H spanned by the vertices f with f(x, y, x) = x. We note that the
existence of Jónsson polymorphisms of G is equivalent to the property that the first
and third projections are connected by a path within H0. The existence of Gumm
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polymorphisms of G is equivalent to the property that there is a path from the first
projection to the third projection in H such that all vertices but possibly the vertex
p before the last vertex of the path are in H0 and, in addition, p(x, x, y) = y. From
now on we concentrate on reflexive digraphs.

Lemma 2.3. Let G be a finite reflexive digraph. If GG is either connected, or
strongly connected, or extremely connected, then for all finite digraphs H the digraph
GH has the same property.

Proof. We prove the claim for the connected case; the proofs for the strongly con-
nected and extremely connected cases are similar. Since GG is connected and, by
reflexivity, contains the constant maps, idG is connected to some constant map by
a path in GG. Composing this path with any vertex f in GH yields a path from f
to a constant map in GH . The resulting constant map is the same for all vertices
f in GH . Thus, GH is connected. �

We require the following lemma on certain identities satisfied by finite reflexive
digraphs. The lemma and its proof are closely related to Lemma 4.1 and its proof
in [14].

Lemma 2.4. If G is a finite connected, strongly connected, or extremely connected
reflexive digraph such that {idG} is a connected, strongly connected, or extremely
connected component of GG, respectively, then the following hold.

(1) If G admits a ternary operation d that satisfies the identity d(x, y, y) = x
on G, then d is the first projection on G.

(2) If for any proper retract R of G the digraph RR has the same connectivity
property that is considered for G and G admits a ternary operation d that
satisfies the identities d(x, y, x) = x and d(x, x, y) = x on G, then d is the
first projection on G.

Proof. We prove the two claims in the strongly connected case. The proofs of the
connected and extremely connected cases are similar.

For any vertices a and b of G we define the unary operation da,b by da,b(x) =
d(x, a, b) for any vertex x in G. Notice that, because of the reflexivity of G, da,b is
an endomorphism of G for any vertices a and b of G. We start with the proof of
the first claim of the lemma. Since G is reflexive and strongly connected, so is G2.
Since G2 is strongly connected, for any vertices a and b of G there is a directed
path from (a, a) to (a, b) in G2, and hence there is a directed path from da,a = idG

to da,b in GG. Similarly, as G2 is strongly connected, for any vertices a and b of G
there is directed path from da,b to idG. Since {idG} is a strong component of GG,
all vertices lying on these paths are equal to idG. This yields d(x, a, b) = x for any
vertices x, a, and b of G, that is, d is the first projection on G.

Now we prove the second claim of the lemma. Let r be a non-surjective retraction
in GG. Such an r exists, since GG contains the constant maps and G has at least two
elements. We choose r such that its range R is maximal with respect to containment
in G. Let a be a vertex in G \R.

Let g(x) = d(x, r(x), a). Clearly, g is in GG, and fixes the elements in R∪{a} by
the identities in the claim. An appropriate power of g is a retraction in GG. Since
this power has larger range than r, it must equal idG. So g is an automorphism of
G.
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Since RR is strongly connected, there is a directed path in GG from r to a
constant map b. This yields a directed path from g to db,a in GG. Since G2 is
strongly connected, for any vertices c and d in G there is a directed path from (b, a)
to (c, d) in G2, and hence there is a directed path from db,a to dc,d in GG. So for
any vertices c and d in G there is a directed path from g to dc,d. Similarly, as G is
strongly connected, there is a directed path from dc,d to g, as well.

The facts that {idG} is a strong component of GG and g is an automorphism
in G yield that {g} must also be a strong component of GG. Since for all vertices
c and d in G the endomorphisms g and dc,d are in the same strong component of
GG, g(x) = d(x, c, d) for all vertices x, c, and d in G. Therefore, for any vertex c in
G we have g(c) = d(c, c, c) = c, and so g = idG and d is the first projection. �

We would like to derive some interesting facts concerning the various connectivity
conditions of finite reflexive digraphs that admit Gumm operations. The proof of
the following theorem is closely related to the proofs of Lemma 4.1 and Theorem
4.2 in [14] for finite posets.

Theorem 2.5. Let G be a finite reflexive digraph that admits Gumm operations.
If G is either connected, or strongly connected, or extremely connected, then GG

has the same property.

Proof. First, we prove the claim in the strongly connected case. Suppose to the
contrary that the claim is not true for strongly connected digraphs, and let G be
a counterexample of the smallest cardinality. Clearly, G has at least two elements.
Since every proper retract of G admits Gumm operations, for every proper retract
R of G the digraph RR is strongly connected. Next, we prove that in GG the vertex
idG does not have both incoming and outgoing non-loop edges.

Let us suppose to the contrary that idG has both incoming and outgoing non-
loop edges in GG. Then by Lemma 2.2 there are non-surjective retractions r and
s such that (r, idG) and (idG, s) are edges of GG. Since the image of s is a proper
retract of G, there is a directed path from s to a constant map of GG. So there is a
directed path from idG to a constant map. Similarly, by using r, there is a directed
path from a constant map to idG.

For any vertex f in GG, by composing f with each of these directed paths, we
get a directed path from f to a constant map and a directed path from a constant
map to f . Since G is strongly connected, any two constant maps are connected via
a directed path in both directions. Thus, for any vertices f and g in GG there is
a directed path from f to g in GG. This means that GG is strongly connected, a
contradiction. From what we just proved so far it follows that {idG} is a strong
component of GG.

Now we finish the proof of the theorem in the strongly connected case. Let
d0, . . . , dn, and p be Gumm operations admitted by G. Thus, these operations
satisfy all of the following identities on G:
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x = d0(x, y, z),

di(x, y, x) = x for all i,

di(x, y, y) = di+1(x, y, y) for even i,

di(x, x, y) = di+1(x, x, y) for odd i,

dn(x, y, y) = p(x, y, y), and

p(x, x, y) = y.

We now apply the two claims of the preceding lemma to G. By the third line
of Gumm identities we have x = d1(x, y, y), so d1 is the first projection. Then the
second and fourth lines of Gumm identities yield d2(x, y, x) = x = d2(x, x, y), so
d2 is also the first projection. Continuing in this fashion we obtain p(x, y, z) = x.
However, p(x, x, y) = y by the last line of Gumm identities, which contradicts the
fact that G has at least two elements. This concludes the proof of the theorem in
the strongly connected case.

The proof in the connected case is very similar to the proof of the strongly
connected case. We set a connected reflexive digraph G to be a counterexample of
the smallest cardinality. A similar argument as in the first part of the proof of the
strongly connected case shows that {idG} is a one element connected component of
GG. Then the rest of the above proof goes through word by word leaving out the
words ’directed’, ’strong’, and ’strongly’ from the text.

In the extremely connected case the proof is an analogue of the proofs of the
connected and strongly connected cases. �

We remark without going into details that, by the use of Lemma 2.4, along the
lines of the preceding proof, Theorem 2.5 extends to finite reflexive digraphs that
admit Hobby-McKenzie operations for omitting types 1 and 5. The definition of
these operations is given in the statement of Theorem 9.8 in [7].

Theorem 2.6. Let G be a finite reflexive digraph that admits Hobby-McKenzie op-
erations for omitting types 1 and 5. If G is either connected, or strongly connected,
or extremely connected, then GG has the same property. �

We are able to draw stronger consequences of connectivity of reflexive digraphs
that admit Gumm operations in the following theorem whose proof is closely related
to the proof of part (3) implies (4) of Theorem 4.3 in [14]. Let I2(G) denote the

digraph spanned by the idempotent operations in GG2

.

Theorem 2.7. Let G be a finite reflexive digraph that admits Gumm operations.
If G is either connected, or strongly connected, or extremely connected, then I2(G)
has the same property.

Proof. Let d0, . . . , dn, and p be Gumm polymorphisms of G. So they satisfy the
identities displayed in the preceding proof. We prove the claim in the strongly
connected case. The proofs of the connected and extremely connected cases are
similar, except that we replace directed paths by paths in the connected case, and
by symmetric paths in the extremely connected case.

So let us assume that G is strongly connected. Let f and g be two polymorphisms

in I2(G). By Theorem 2.5 and Lemma 2.3, GG2

is strongly connected. Let C ⊆
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I2(G) be the strong component of f in I2(G). Since G is reflexive, every vertex

h ∈ C is connected to g in GG2

via a path of the form

h = h0 → h1 ← h2 → h3 ← . . . hk = g.

Choose such a path of minimum length. Next, we prove that k ≤ 1, and thus h→ g

in GG2

.

Notice that for any vertex of t in GG2

and any i ∈ {1, . . . , n}, by the second
line of Gumm identities, di(h, t, g) is in I2(G). So if the operations t1, . . . , tl form a

directed path in GG2

, then the operations di(h, t1, g), . . . , di(h, tl, g) form a directed

path in I2(G). Hence, as GG2

is strongly connected, di(h, h, g) and di(h, g, g) are
in the same strong component of I2(G) for all i. Therefore, by using the Gumm
identities, the polymorphisms h = d0(h, g, g) and dn(h, g, g) = p(h, g, g) are in the
same strong component of I2(G), namely, in C.

Put m = bk+1
2 c, and if k is odd, then put hk+1 = g, as well. Thus we have a

path of even length connecting h0 = h and h2m = g. Now consider the path

p(h, g, g) = p(h0, h2m, g)→ p(h1, h2m−1, g)← p(h2, h2m−2, g)→ . . . p(hm, hm, g) = g.

By the minimality of k we must have m ≥ k, and consequently k ≤ 1, that is, there
exists an edge from h to g.

Since there is a directed path from f to h in C and h → g, we have a directed
path from f to g in I2(G). Notice that, by switching the roles of f and g, we
also have a directed path from g to f in I2(G). This concludes the proof of the
theorem. �

Let G and H be digraphs. A digraph K spanned by some elements of GH is
an idempotent G-subalgebra if the vertex set of K is closed under the idempotent
polymorphisms of G. In detail, this means that for every idempotent polymorphism
f : Gn → G and vertices f1, . . . , fn in K the homomorphism g defined by g(x) =
f(f1(x), . . . , fn(x)) for any vertex x of H also is a vertex of K.

Corollary 2.8. Let G be a finite reflexive digraph that admits Gumm operations.
If G is either connected, or strongly connected, or extremely connected, then every
idempotent G-subalgebra has the same property.

Proof. Let K be an idempotent G-subalgebra in GH , and let f and g be any
vertices of K. Assume that G is connected. Then there is a path connecting the
two projections in I2(G) by the preceding theorem. Plugging (f, g) in the binary
idempotent operations of this path yields a path from f to g in K. The proof for
the strongly connected and extremely connected cases are similar. �

Strongly connected digraphs that admit Gumm operations have a stronger con-
nectivity property.

Theorem 2.9. If a finite strongly connected reflexive digraph G admits Gumm
operations, then G is extremely connected.

Proof. We first prove that GG is extremely connected. In order to do this we
show that there is a non-surjective retraction s connected to idG by edges in both
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directions. We choose a non-identity element r in GG such that there is an edge
from idG to r. Such an r exists by Theorem 2.5. Let

A = {f : f is a vertex of GG and idG → f}.
It is easy to see that A is an idempotent G-subalgebra in GG. Therefore, by the
preceding corollary A is strongly connected. Hence there is a directed path from r
to idG in A, so there is an edge from a non-identity element f of A to idG. Hence
by Lemma 2.2 there is a non-surjective retraction s such that idG ↔ s.

Now, we apply an induction on the size of G. Let S = s(G). The size of S
is less than the size of G, and S inherits the properties being strongly connected
and admitting Gumm operations from G. So by the induction hypothesis, idS is
connected to a constant map via a symmetric path in SS . Composing this path
with s we get a symmetric path from s to a constant map in GG. By using idG ↔ s
we get a symmetric path from idG to a constant map. This implies that GG is
extremely connected.

Let a be a fixed vertex of G. Since G is reflexive, the map f 7→ f(a) is a
surjective homomorphism from GG to G. As GG is extremely connected, so is its
homomorphic image G. �

Let G be an arbitrary digraph. Let

Neq(f, g) = {a : a is a vertex of G and f(a) 6= g(a)}.
An edge (f, g) in GG is a non-refinable edge if there is no proper nonempty subset
A of Neq(f, g) such that changing the value of g to f on A yields a map in GG. An
edge (a, b) is a critical edge of G with respect to an edge (f, g) of GG if (g(a), f(b))
is not an edge in G. Notice that if (a, b) is a critical edge with respect to (f, g), then
a and b are in Neq(f, g). In the following lemma we characterize the non-refinable
edges of GG via critical edges. This is the last ingredient we need in order to prove
our main theorem.

Lemma 2.10. Let G be a finite digraph. An edge (f, g) in GG is non-refinable if
and only if Neq(f, g) is strongly connected via critical edges with respect to (f, g) or
is one element.

Proof. Let N be the digraph whose vertex set is Neq(f, g) and whose edge set is the
set of critical edges. First, suppose that N is not strongly connected and is not one
element. Then let A be a strong component of N , such that there are no critical
edges from N \ A to A. Now, by changing the value of g to f on A we obtain a
map in GG.

Conversely, suppose that N is strongly connected. For any proper nonempty
subset A of Neq(f, g) by changing the value of g to f on A we get map that is not
in GG. Indeed, by strong connectivity, there is a critical edge going into A that
prevents the new map from being in GG. �

We note that in the poset and symmetric reflexive digraph cases Neq(f, g) is a
one element set for every non-refinable edge (f, g), for different reasons, though. In
the poset case every strongly connected component of the poset is one element, and
in the symmetric reflexive digraph case there do not exist critical edges at all. It is
easy to come up with a reflexive digraph G that admits a majority operation, such
that GG has a non-refinable edge (f, g) and Neq(f, g) has at least two elements.
Let G be the reflexive digraph on the vertex set {0, 1, 2} whose adjacency relation
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is obtained from the full relation by removing the edges (0, 1) and (0, 2). Let 0
denote the constant 0 map. Then G admits a majority operation, the edge (idG,0)
is a non-refinable edge in GG, and Neq(idG,0) = {1, 2}.

Now we have all tools to prove our main theorem for reflexive digraphs. We
obtained similar theorems for posets in [14] and for symmetric reflexive digraphs
in [13]. In [12] Kun and Szabó gave a method to construct Jónsson terms for
finite posets. Our proof incorporates some ideas from their paper. In the proof we
also use Barto’s result in [1] that states that if a finite relational structure admits
Jónsson operations, then it admits a near unanimity operation.

Theorem 2.11. For a finite reflexive digraph G the following are equivalent.

(1) G admits a near unanimity operation.
(2) G admits Jónsson operations.
(3) G admits Gumm operations.
(4) For every connected component B of G the maps idB2 and r : (x, y) 7→ (y, y)

are connected by a path in B2B
2

whose vertices fix the diagonal elements
in B2, and for every strong component C of G the maps idC2 and r are

connected by a symmetric path in a similar manner in C2C
2

.
(5) For every connected component B and strong component C of G the digraph

I2(B) is connected and the digraph I2(C) is extremely connected.
(6) For every connected component B and strong component C of G the idem-

potent B-subalgebras are connected and the idempotent C-subalgebras are
extremely connected.

Proof. Clearly, (1) ⇒ (2). Moreover, (2) ⇒ (1) is immediate from Barto’s result in
[1]. By the proof of Corollary 2.8, (5) ⇒ (6). Conversely, (6) ⇒ (5), since I2(B) is
an idempotent B-subalgebra and I2(C) is an idempotent C-subalgebra.

To see that (4) ⇒ (5) we take a path (p0, q0), . . . , (pm, qm) from idB2 to r in

B2B
2

such that for any x ∈ B and 1 ≤ i ≤ m, (pi(x, x), qi(x, x)) = (x, x). Then
the pi are idempotent, p0 is the first projection, and pm is the second projection.
So p0, . . . , pm is a path connecting the two projections in I2(B), and hence I2(B) is
connected. A similar argument works for the strong component part of the claim.
We prove that (5) ⇒ (4) also holds. If I2(B) is connected, then there is path
p0, . . . , pm that connects the two projections in I2(B). So p0 is the first projection,
pm is the second projection, and pi is idempotent for 1 ≤ i ≤ m. Then the path

(p0, pm), (p1, pm), . . . , (pm, pm) connects idB2 and r in B2B
2

, and its vertices fix the
diagonal elements in B2. A similar argument works for the strong component part
of the claim.

So far we have proved the equivalence of items (1) and (2) and the equivalence
of items (4), (5), and (6). It is obvious that (2) ⇒ (3), and by Corollary 2.8 we
have that (3) ⇒ (6). Thus, to finish the proof it suffices to prove that (6) ⇒ (2).

Since (1) is equivalent to (2) and a finite digraph admits a near unanimity op-
eration if and only if each of its connected components does, it suffices to prove
that (6) ⇒ (2) for the connected components of the digraph. So we assume that G
is a finite connected reflexive digraph that satisfies the conditions given in (6) and
prove that G admits Jónsson operations.
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There is a fine point about the powers of reflexive digraphs that we use in the
next paragraph and later in the proof. For a reflexive digraph F , a digraph H and
a positive integer n the digraphs (Fn)H and FnH , where nH denotes the digraph
formed by n disjoint copies of H, are naturally isomorphic. Hence we may identify
every idempotent Fn-subalgebra with an idempotent F -subalgebra.

Let

I = {f ∈ G3G
3

: f(a, b, a) = (a, b, a) for any vertices a and b in G}.
We define a map s in I by s(a, b, c) = (c, b, c) for all vertices a, b, and c in G. Since

I is an idempotent G3-subalgebra in G3G
3

, it is also an idempotent G-subalgebra.
So I is connected. Let P be a path of endomorphisms of G3 from idG3 to s in I.
We may assume that in P the consecutive vertices are connected by non-refinable

edges of G3G
3

.

Let (f, g) be an edge of P such that Neq(f, g) contains the elements (a, a, b) and
(c, d, d) for some vertices a, b, c, and d in G. By the preceding lemma there is a
strong component of G3 that contains Neq(f, g). Since every strong component of
G3 is a product of strong components of G, there exist strong components C,C ′

and C ′′ of G such that Neq(f, g) ⊆ C×C ′×C ′′. Since (a, a, b), (c, d, d) ∈ Neq(f, g),
hence (a, a, b), (c, d, d) ∈ C ×C ′×C ′′, and so C = C ′ = C ′′. Thus, Neq(f, g) ⊆ C3

for some strong component of C of G.

Since f and g map strong components into strong components and both maps
are in I, f(C3) ⊆ C3 and g(C3) ⊆ C3. Let

J = {h ∈ C3C
3

: h = t|C3 and t|G3\C3 = f |G3\C3 for some vertex t in G3G
3

}.

Clearly, f |C3 and g|C3 are in J , and J is an idempotent C3-subalgebra in C3C
3

.
So J is an idempotent C-subalgebra. Since C is a strong component of G, J is
extremely connected. Hence f |C3 and g|C3 are connected by a symmetric path in
J , and so f and g are connected by a symmetric path in I.

Now, by inserting symmetric paths between consecutive vertices of P if necessary,
we get a new path connecting idG3 and s in I such that for any two consecutive
vertices f and g of this path either Neq(f, g) contains no element the form (a, a, b),
or Neq(f, g) contains no element of the form (c, d, d), or f ↔ g in I. In the latter
case let A be the set of all elements of the form (a, a, b) from Neq(f, g), and let h
be the map obtained by changing g to f on A. Since there are no critical edges
with respect to (f, g), we have that h is in I. Clearly, f → h → g is a path in
I. This yields that idG3 and s are connected by a path Q such that for any two
consecutive vertices f and g ofQ either Neq(f, g) has no element of the form (a, a, b),
or Neq(f, g) has no element of the form (c, d, d). Then the first components of the
3-tuples of Q are polymorphisms that, with possible duplications, are witnessing
the Jónsson identities on G. �

3. NU implies TSI of all arities for reflexive digraphs

An n-ary operation f is a cyclic operation if it satisfies the identity

f(x1, x2, . . . , xn) = f(x2, . . . , xn, x1),

and f is a totally symmetric operation if

f(x1, . . . , xn) = f(y1, . . . , yn)
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whenever {x1, . . . , xn} = {y1, . . . , yn} viewed as sets rather than multisets. In this
section we shall prove that every finite reflexive digraph with a near unanimity
operation admits a totally symmetric idempotent operation for every arity.

We define dismantlability for a digraph G. An endomorphism r of G is a one
point elementary retraction of G if r fixes all but one element of G and either
idG → r or r → idG. A digraph G is dismantlable if there is a list G0, . . . , Gn of
digraphs such that G0 = G, Gn is a singleton and for each 1 ≤ i ≤ n the digraph
Gi is the image of Gi−1 under some one point elementary retraction of Gi−1.

It is well known that near unanimity implies dismantlability for finite connected
posets [14] and finite connected reflexive symmetric digraphs [13].

A directed cycle is a closed directed path. A reflexive digraph is acyclic if all of
its directed cycles have a single vertex. Clearly, every poset is an acyclic reflexive
digraph. In the following lemma we extend the above mentioned result from finite
connected posets to finite connected acyclic reflexive digraphs.

Lemma 3.1. Every finite connected acyclic reflexive digraph that admits a near
unanimity operation is dismantlable.

Proof. Let G be a finite connected acyclic reflexive digraph that admits a near
unanimity operation. By using Theorem 2.5 there is a non-surjective retraction r
such that r → idG or idG → r in GG. We assume that idG → r, the case, where
r → idG is similar. We may also assume that the edge (idG, r) is non-refinable.
Since G is acyclic, by the use of Lemma 2.10, the set Neq(idG, r) is one element.
This means that r is a one point elementary retraction. Now, the retract r(G)
inherits all relevant properties of G, and an induction on the size of G finishes the
proof. �

We say that a digraph has the fixed point property if each of its endomorphisms
has a fixed vertex. It is well known [18] that dismantlable posets have the fixed
point property. The proof of this result works for acyclic reflexive digraphs as well.
For the sake of completeness we include it in the paper.

Lemma 3.2. Every dismantlable acyclic reflexive digraph has the fixed point prop-
erty.

Proof. The proof goes by an induction on the size of G. Let f be an endomorphism
of G and r a one point elementary retraction of G that maps a into a different
vertex a∗. Put R = r(G). Now, by the induction hypothesis rf |R has a fixed
vertex, say b. If f(b) 6= a, then b is a fixed vertex of f and we are done. If f(b) = a,
then rf(b) = a∗. So b = a∗, and f(a∗) = a. Since r is one point elementary, there
is an edge connecting a∗ and a, say a∗ → a. Then a = f(a∗) → f(a), and so
fn(a) → fn+1(a) for all n. Since G is finite and acyclic, there is an n such that
fn(a) = fn+1(a), and so fn(a) is a fixed vertex of f . �

By putting together the preceding two lemmas we get the following corollary.

Corollary 3.3. Every finite connected acyclic reflexive digraph that admits a near
unanimity operation has the fixed point property. �

A clique of a digraph G is subset of vertices of G that spans a complete digraph in
G. A digraph G has the fixed clique property if any endomorphism of G preserves
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some clique of G. The following lemma and its proof can be found in [6], see
Theorem 2.65.

Lemma 3.4. Every dismantlable symmetric reflexive digraph has the fixed clique
property. �

This lemma and the result mentioned in the third paragraph of this section yield
the following corollary.

Corollary 3.5. Every finite connected symmetric reflexive digraph that admits a
near unanimity operation has the fixed clique property. �

We prove that this corollary generalizes to finite connected reflexive digraphs.
The symmetric skeleton of a digraph G is the digraph obtained from G by removing
all edges (a, b) of G, where (b, a) is not an edge of G.

Lemma 3.6. Every finite connected reflexive digraph that admits a near unanimity
operation has the fixed clique property.

Proof. Let G be a finite connected reflexive digraph that admits a near unanimity
operation, and let f be any endomorphism of G. Let γ be the equivalence given by
the strong connectivity property on G. Clearly, by reflexivity every polymorphism
of G preserves γ.

By factoring G out with γ we get an acyclic connected reflexive digraph that also
admits a near unanimity operation. Hence G/γ has the fixed point property, and
so the endomorphism induced by f on G/γ has a fixed vertex. This means that
f preserves some of the strong components of G. Let C be a strong component
preserved by f , and let D be the symmetric skeleton of C. Let m be a near
unanimity operation on G. Then m preserves C and the near unanimity operation
m|C is admitted by C. So by Theorem 2.9, D is connected, moreover it admits
the near unanimity operation m|C and also admits f |C . By Corollary 3.5, D has
the fixed clique property. So f |C preserves a clique of D, and hence f preserves a
clique of G. �

This lemma gives a key to the proof of the following theorem.

Theorem 3.7. Every finite reflexive digraph that admits a near unanimity opera-
tion admits cyclic idempotent operations of all arities.

Proof. It suffices to prove the claim for connected digraphs. Let G be a finite
connected reflexive digraph that admits a near unanimity operation. Let I be
the digraph formed by the n-ary idempotent polymorphisms of G. As I is an
idempotent G-subalgebra, by Corollary 2.8, I is connected. Clearly, I admits a
near unanimity operation and is reflexive, hence by the previous lemma I has the
fixed clique property.

We define a unary operation f on I by f(t(x1, x2, . . . , xn)) = t(x2, . . . , xn, x1).
Now f is clearly an endomorphism of I, so there is a clique C of I that is preserved
by f . Let t be any map in C. Since C is closed under f , for all 0 ≤ i ≤ n− 1 the
operations t(x1+i, x2+i, . . . , xn+i) are in C, where the indices are meant modulo n.
So all of these maps are connected by edges in both directions in I.

Now we define an n-ary operation s on Gn by

s(x1+i, x2+i, . . . , xn+i) = t(x1, x2, . . . , xn)
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for all 0 ≤ i ≤ n − 1, where the n-tuple (x1, . . . , xn) runs through a set of rep-
resentatives of the sets {(y1+i, y2+i, . . . , yn+i) : i ∈ {0, 1, . . . , n − 1}}, where
y1, y2, . . . , yn are any vertices of G. Clearly, s is a well defined cyclic idempo-
tent operation on G and it is also a polymorphism, since for all 0 ≤ i ≤ n − 1 the
maps t(x1+i, x2+i, . . . , xn+i) are connected by edges in both directions in I. �

A G-colored digraph is a pair (H, f), where H is a finite digraph and f is a
partial map from H to G. A G-colored digraph (H, f) is extendible if f extends
to a fully defined homomorphism from H to G. A colored element is an element
in the domain of f . We say that g is a homomorphism from (H, f) to (H ′, f ′) if g
is a homomorphism from H to H ′ and f = f ′g. We say that a G-colored digraph
contains an other if its vertex set, edge set, and partial coloring contains the vertex
set, edge set, and partial coloring of the other, respectively.

A G-colored digraph (H, f) is a G-obstruction if (H, f) is non-extendible but
any (H ′, f ′) properly contained in (H, f) is extendible. It is immediate from the
definition that if G is reflexive, then the base digraph of any G-obstruction is a
connected irreflexive digraph. The following theorem is a special case of Theorem
1.17 in [20].

Theorem 3.8. Let G be any finite digraph and n ≥ 3. Then G admits an n-
ary near unanimity operation if and only if the number of colored elements in any
G-obstruction is at most n− 1. �

We call an obstruction a tree obstruction if its underlying digraph is an oriented
tree. The following characterization of digraphs admitting totally symmetric idem-
potent operations of all arities is also well known. It is a combination of Theorem
19 of Feder and Vardi in [5] and Theorem 1 of Dalmau and Pearson in [4] applied
to the special case of digraphs augmented by all unary one element relations.

Theorem 3.9. Let G be a finite digraph. Then G admits totally symmetric idem-
potent operations of all arities if and only if every G-obstruction is a homomorphic
image of a tree obstruction.

By using the preceding two characterizations we prove the main result of this
section.

Theorem 3.10. Every finite reflexive digraph that admits a near unanimity oper-
ation admits totally symmetric idempotent operation of all arities.

Proof. It suffices to prove the claim in the connected case, hence we assume that
G is a finite connected reflexive digraph that admits a near unanimity operation.
Let (H, f) be an arbitrary G-obstruction. We are going to prove that (H, f) is a
homomorphic image of a tree obstruction.

In a digraph P a closed path whose edges are pairwise different is called a closed
trail. The reflexive closure of connectivity by closed trails is an equivalence relation
on P that we denote by γP . The classes of γP are called the trail components of
P .

Let (Q, g) be a G-obstruction that is a preimage of (H, f) with the property that
the number of colored elements of (Q, g) is maximal and the maximum number of
edges in a trail component of Q is minimal. Such a (Q, g) must exists, since G
admits a near unanimity operation and so the number of colored elements in the
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G-obstructions has an upper bound. We denote by a the number of colored elements
of (Q, g) and by b the maximum number of edges in a trail component of Q .

By the maximality of a each of the colored elements of (Q, g) has degree one, for
otherwise we could split the colored element to obtain a new G-obstruction that is
a preimage of (Q, g) and has more colored elements than (Q, g). So each colored
element of (Q, g) constitutes a one element trail component of (Q, g). Clearly, Q/γQ
is a tree, and so the one element trail components containing the colored elements of
Q are leaves of this tree. They are the only leaves. Indeed, (Q, g) is an obstruction
and the relation of G is reflexive, hence there are no non-colored leaves of Q/γQ.
We shall prove that the non-leaf vertices of Q/γQ are also singletons, that is, (Q, g)
is a tree obstruction.

Suppose this is not true and let M be the set of trail components with the
maximum number of edges in Q/γQ. Let B0 be an element of M and M0 =
M \ {B0}. We define s(B), B ∈ M0, to be the number of leaves A ∈ Q/γQ such
that the shortest path between B0 and A contains B. We put sQ,g for the minimum
of the sums

∑
B∈M0

s(B), when B0 ranges over M . We call sQ,g the split number
of sQ,g. Intuitively, the smaller the split number is, the bushier the M part of the
tree Q/γQ looks.

We construct an obstruction (Q′, g′) such that (Q, g) is a homomorphic image
of (Q′, g′), the number of colored elements of (Q′, g′) is a, the maximum number of
edges in a trail component of Q′ equals b, and sQ′,g′ is strictly less than sQ,g. Notice
that this gives a contradiction, since by repeating the construction for (Q′, g′) and so
on we arrive at an infinite strictly decreasing sequence of natural numbers, namely,
at the sequence of the split numbers of the obstructions constructed.

Let B0 ∈ M such that sQ,g =
∑

B∈M0
s(B). Let us fix an edge (c, d) in B0.

Let (Q0, g0) be the colored digraph obtained from (Q, g) by deleting (c, d). For
each k ≥ 2 we define a G-colored digraph as follows. We take k disjoint copies of
(Q0, g0) and denote them by (Qj , gj) for 1 ≤ j ≤ k. The element corresponding to
any q ∈ Q in Qj is denoted by qj . We connect the (Qj , gj) by the edges of the form
(cj , dj+1) for 1 ≤ j ≤ k − 1, and call the resulting colored digraph (Rk, rk).

We claim that there exists a k such that (Rk, rk) is non-extendible. Suppose that
this is not true. Then there exist some l and a homomorphism extension v : Rl → G
of rl such that v|Qj = v|Qj′ for some j + 1 < j′ ≤ l. Let t be a (j − j′)-ary cyclic
idempotent operation admitted by G. We define a map α : Q→ G by

α(q) = t(v(qj), v(qj+1), . . . , v(qj′−1)).

By using that v|Qj
= v|Qj′ and t is cyclic we get that α(c) → α(d), and so it is

clear that α is a homomorphism. Since t is idempotent, α is an extension of g. This
contradicts the non-extendibility of (Q, g).

We choose k to be minimal such that (Rk, rk) is non-extendible. Since (Rk, rk) is
non-extendible, it contains an obstruction (Q′, g′). Then there exists a natural ho-
momorphism from (Q′, g′) to (Q, g). Moreover, every homomorphism from (Q′, g′)
to (Q, g) must be surjective, for otherwise (Q′, g′) would be extendible. Thus,
(Q, g) is a homomorphic image of (Q′, g′). Hence the number of colored elements
of (Q′, g′) is larger than or equal to a. Then by the maximality of a the number
of colored elements of (Q′, g′) equals a. Clearly, no trail component of Q′ contains
more edges than a trail component of Q with the maximum number of edges. So
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by the minimality of b the maximum number of edges in a trail component of Q′

coincides with b.

Let M ′ be the set of the trail components of Q′ with b edges. All it remains to
prove is that for some trail component C0 ∈M ′ the sum

∑
C∈M ′

0
s(C) over Q′/γQ′ ,

where M ′0 = M ′ \ {C0}is less than sQ,g. By the definition of (Q′, g′) for each trail
component C of Q′ with b edges there is a trail component B of Q such that C
equals one of the k copies of B. We call the trail components of Q′ that contain
the copies of elements of B0 the remnants of B0. Clearly, each of the remnants of
B0 has less than b edges. We choose C0 ∈M ′ such that the shortest path between
C0 and the remnants of B0 in Q′/γQ′ does not contain any element of M ′0. Now,
let B ∈M0 and C1, . . . , Cl the list of full copies of B in M ′0. If none of the Ci equal

C0, then
∑l

i=1 s(Ci) ≤ s(B). If some of the Ci equals C0, then
∑l

i=1 s(Ci) < s(B).
Finally, for each B ∈ M0 whose full copy is not present in M ′ put the inequality
0 < s(B). By summing up the aforementioned inequalities over B ∈M0, we obtain
that ∑

C∈M ′
0

s(C) <
∑

B∈M0

s(B) = sQ,g,

which concludes the proof. �

Finally, we note that the theorem does not hold for irreflexive digraphs, as for
the two element digraph ({0, 1}, {(0, 1), (1, 0)}) admits no cyclic operations of even
arities.

4. An algorithm deciding NU for reflexive digraphs

In this section we describe a polynomial-time algorithm that decides whether a
finite reflexive digraph admits a near unanimity operation. First, we are going to
prove that if a finite reflexive digraph G admits a sequence of Jónsson operations,
then it admits one whose length is bounded by a polynomial of |G|. We require a
lemma for the proof of this statement. For a subset R of a digraph G we denote by
GR the digraph spanned in GG by the endomorphisms that fix every element in R.

Lemma 4.1. Let G be a finite digraph and R a retract of G. If for some retraction
r with range R there is a path from idG to r in GR, then for any retraction s with
range R there is a path of length at most 2|G| from idG to s in GR. Moreover, if
the path from idG to r is symmetric, then so is the path from idG to s.

Proof. Let idG = r0, . . . , rn be a path of shortest length from idG to rn in GR,
where rn is a retraction with range R. By composing this path with itself by
sufficiently many times we may assume that the ri are retractions. Suppose that
ri(P ) ⊆ ri−1(P ) for 0 < i ≤ j < n. We shall construct a path of retractions
idG = s0, s1, . . . , sn = rn such that si(P ) ⊆ si−1(P ) if 0 ≤ i ≤ j + 1. To get a
path of this form just take the path idG = r0, r1, . . . , rj , rjrj+1, . . . , rjrn in GR and
compose with itself by sufficiently many times. Proceeding by induction, in this
way we may assume that there is a path of retractions idG = r0, r1, . . . , rn from
idG to rn in GR such that ri(P ) ⊆ ri−1(P ) for 0 < i ≤ n.

We claim that the sequence of ranges of the ri is strictly decreasing. Suppose
not, say the ranges of rj and rj+1 are the same. Then rj = rj+1rj , and the range
of rnrj equals R. So the length of the path idG = r0, r1, . . . , rj = rj+1rj , . . . , rnrj
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in GR is one shorter than it is supposed to be, a contradiction. Since the sequence
of the ranges of the ri are strictly decreasing, n ≤ |G|.

Let now s be any retraction in GR with range R. Then

idG = r0, r1, . . . , rn = srn, srn−1, . . . , sidG = s

is a path of length at most 2|G| from idG to s in GR.

The proof of the second statement of the lemma is similar. �

The diameter of a finite digraph is the maximum length of the shortest paths
connecting any two vertices of the digraph.

Corollary 4.2. If G is a finite connected reflexive digraph that admits Gumm
operations, then the diameter of every idempotent G-subalgebra is at most 2|G|2.
If, in addition, G is strongly connected, then the diameter of the symmetric skeleton
of every idempotent G-subalgebra is at most 2|G|2.

Proof. We prove the first claim of the corollary, the proof of the second claim is
similar. Let

I = {f ∈ G2G
2

: f(a, a) = (a, a) for every vertex a in G}.
We define a retraction r in I by r(a, b) = (b, b) for any vertices a and b in G. Since I
is an idempotent G2-subalgebra, by Corollary 2.8 there is a path of endomorphisms
from idG2 to r in I. Then by the preceding lemma there is a path of length at
most 2|G|2 from idG2 to r in I. Notice that the first components of the vertices of
this path form a path P of length at most 2|G|2 connecting the two projections in
I2(G).

Let K be an idempotent G-subalgebra in GH , and let f and g be any vertices
in K. Plugging (f, g) in the binary idempotent operations of P we get a path of
length at most 2|G|2 from f to g in K, which concludes the proof. �

Theorem 4.3. If a finite reflexive digraph G admits a sequence of Jónsson opera-
tions, then it admits one whose length is at most 16|G|7.

Proof. A closer look at the proof of Theorem 2.11 gives the required bound as
follows. In the proof the Jónsson operations we constructed came from a path that
connects idG and a retraction s in an idempotent G-subalgebra. By the preceding
corollary a path like this can be taken with length at most 2|G|2.

Then we had to refine the edges of this path by inserting paths of length at most
|G|3 between consecutive vertices to get a path with non-refinable edges. So the
resulting path with non-refinable edges has length at most 2|G|5.

Then in the proof we inserted certain symmetric paths between consecutive ver-
tices of the path with non-refinable edges. These symmetric paths came from
symmetric paths of idempotent C-subalgebras, where C is a strongly connected
component of G. So by the preceding corollary the length of each symmetric path
inserted can be bounded by 2|G|2. Then the length of the path we obtain in our
proof by inserting these symmetric paths is at most 4|G|7.

Proceeding further in the proof we inserted one endomorphism between certain
consecutive elements of the path. Finally, we got our Jónsson operations by taking
the first components of the members of the resulting path, possibly duplicating
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some of the first components. Consequently, the length of the sequence of Jónsson
operations obtained at the end of the procedure can be bounded by 16|G|7. �

Theorem 4.4. There exists a polynomial-time algorithm that decides whether a
finite reflexive digraph admits a near unanimity operation.

Proof. The main result of [1] states that a finite relational structure admits a near
unanimity operation if and only if it admits Jónsson operations, therefore it is
enough to decide of a reflexive digraph G whether it admits Jónsson operations
d0, . . . , dn for some n. By the preceding theorem we may assume that n ≤ 16|G|7.
We may actually assume that n = 16|G|7 by adding projections at the end of the
list of Jónsson operations.

For a given finite reflexive digraph G we will construct a constraint satisfaction
problem instance P of polynomial size in |G| such that P has a solution if and only
if G admits Jónsson operations of size n = 16|G|7.

Let the variables of P be xi,a,b,c, where i ∈ {0, . . . , n} and a, b, and c are arbitrary
vertices of G. For all i and (a, b, c) → (a′, b′, c′) in G3 we impose the binary
constraints xi,a,b,c → xi,a′,b′,c′ . Thus for any solution of P the maps defined as
di(a, b, c) = xi,a,b,c are homomorphisms from G3 to G. Next, we add the unary
singleton constraints xi,a,b,a = a, x0,a,b,c = a, and xn,a,b,c = c for any i and for
any vertices a, b, and c of G. Finally, we add the equality constraint between
xi,a,b,b and xi+1,a,b,b for even i, and between the xi,a,b,b and xi+1,a,b,b for odd i.
The construction ensures that P has a solution if and only if G has a sequence of
Jónsson operations of length n.

Next we present a polynomial-time algorithm that actually finds a solution of P
whenever there exists one, i.e., our algorithm produces Jónsson operations, provided
there exist such.

First we assume that G admits a near unanimity operation, and describe our
algorithm in this case. By Theorem 3.10, G admits a totally symmetric idempotent
operation of any arity. These operations are also admitted by the equality and the
unary singleton relations. So P is an instance of a constraint satisfaction problem
over a structure whose relations are at most binary and are preserved by a totally
symmetric idempotent operation of any arity. Then, by Theorem 1 in [4], the (1, 2)-
consistency algorithm decides in polynomial time whether P has a solution. In fact,
our algorithm makes repeated use of the (1, 2)-consistency algorithm as follows.

Let x1, . . . , xm be the list of variables of P . Put P0 = P , and let j ∈ {1, . . . ,m}.
In the jth step our algorithm works on the instance Pj−1 as follows. It adds a
unary constraint xj = c for some vertex c of G to the constraints of Pj−1, and runs
the (1, 2)-consistency algorithm for the extended instance whose relations are also
preserved by totally symmetric idempotent operations of all arities. It repeats this
procedure going through the vertices of G one by one until for some vertex c in G,
when xj is set to c, the output relations of the (1, 2)-consistency algorithm are not
empty. We must have such a c in G, since there is a solution of Pj−1.

After c is found Pj is defined to be the output of the (1, 2)-algorithm run for
the instance Pj−1 augmented with the constraint xj = c. Then the instance Pj

must have a solution, since it has nonempty relations and is an output of the (1, 2)-
algorithm that operated on an instance whose relations are preserved by totally
symmetric idempotent operations for all arities. Clearly, the relations of Pj are
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also preserved by these operations. Thus, we see that by going through all variables
and obtaining the values of xj in the vertex set of G for each j ∈ {1, . . . ,m}, our
procedure finds a solution of P in polynomial time.

On the other hand if G does not admit a near unanimity operation, then we can
still run the above algorithm that will stop in polynomial time without producing
a solution of P . Consequently, the above algorithm is a polynomial time procedure
deciding whether G admits a near unanimity operation. �

We remark that for producing a polynomial-time algorithm we do not really have
to use Theorem 3.10 and the (1,2)-consistency algorithm. We only have to use the
fact that there are some constants l and k such that the (l, k)-consistency algorithm
works properly for constraint satisfaction instances when G admits Jónsson opera-
tions. For example, a result in [2] also guarantees us appropriate values of l and k,
namely, l = 2 and k = 3.

We also note that by the use of any of conditions (4) and (5) in Theorem 2.11 one
can design a polynomial-time algorithm based on the (1,2)-consistency algorithm
as in the proof of Theorem 4.4 to test whether a finite reflexive digraph admits a
near unanimity operation. This is a consequence of the fact that, by Lemma 4.1
and Corollary 4.2, there is a polynomial bound on the length of the paths in items
(4) and (5).

5. Concluding remarks

In Theorem 2.11 we gave a characterization of finite reflexive digraphs with
Gumm operations. It would be nice to get a similar characterization of finite
reflexive binary structures with Gumm operations. We cannot expect that such
structures admit a near unanimity operation or Jónsson operations. All we can
hope for, according to Valeriote’s conjecture is that those reflexive binary struc-
tures admit an edge operation. We remark that in [1] a conversion between finite
structures of finite type and finite binary structures is delineated with the property
of preserving Maltsev conditions and reflexivity. So a proof of Valeriote’s conjecture
for finite (reflexive) binary structures would also confirm the conjecture for finite
(reflexive) structures.

Kazda’s result mentioned in the introduction and Theorem 2.11 suggest that it
may be true that if a finite digraph admits Gumm operations, then it admits a
near unanimity operation. However, the truth is that there exist finite digraphs
that admit Gumm operations, but no near unanimity operation. This was proved
by Bulin, Delic, Jackson, and Niven in manuscript [3], which was made public
during the editorial process of the present paper. The results in [3] also imply that
it suffices to prove Valeriote’s conjecture for finite digraphs.
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