
ON THE HEIGHT OF ORDER IDEALS

GÁBOR CZÉDLI AND MIKLÓS MARÓTI

Abstract. We maximize the total height of order ideals in direct products
of finitely many finite chains. We also consider several order ideals simultane-

ously. As a corollary, a shifting property of some integer sequences, including
digit sum sequences, is derived.

1. Introduction and the main results

Our notation and terminology are standard, see, for example, Davey and Priest-
ley [3] or Grätzer [6]. In particular, let B = (B;≤) be a finite order ; also called a
partially ordered set or poset. A subset I of B is called an order ideal, in notation
I C B, if x ≤ y and y ∈ I implies x ∈ I for all x, y ∈ B. By definition, ∅ C B.
For b ∈ B, let ↓b denote the order ideal {x ∈ B : x ≤ b}. Non-empty subsets of
the form {x ∈ B : a ≤ x ≤ b} are called intervals of B. By an n-element chain we
mean {0 < 1 < · · · < n − 1}; the length of this chain is n − 1.

For b ∈ B, the height of b is defined as the maximum of lengths of chains in ↓b.
By the (total) height h(X) of a subset X of B we mean

∑
a∈X h(a). We say that

an order ideal I of B maximizes the total height, if for all J C B with |J | = |I|,
we have h(J) ≤ h(I). For example, if B is the order (in fact, a distributive lattice)
depicted in Figure 1, then h(↓a) = 6 and h(↓b) = 8, and both ↓a and ↓b maximize
the total height.

Figure 1. ↓a and ↓b maximize the total height.

We have two main motivations for studying the total height of order ideals.
Firstly, total heights have a useful connection to digit sum sequences. This

connection will be exploited in Corollary 4 and the remark following it.
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Secondly, let fB : {0, . . . , |B|} → N0, n 7→ max{h(I) : I C B and |I| = n}. It
seems to be an interesting problem to

(1) determine the function fB .

The solution of (1) for finite direct powers of the two-element chain, that is for finite
boolean algebras, has been heavily used in [2]. In the present paper, Theorem 5
will solve problem (1) for direct products of finitely many finite chains. Notice that
while the usual greedy algorithm yields the solution of (1) in the boolean case,
here the straightforward greedy algorithm can fail even in the direct square of a
three-element chain. Therefore, the present approach to (1) is quite different from
and more complex than that in [2].

Let I0 ⊂ I1 ⊂ · · · ⊂ I|B] be order ideals of B such that, for all j = 0, 1, . . . , |B|,
|Ij| = j and Ij maximizes the total height. Then we call I0 ⊂ I1 ⊂ · · · ⊂ I|B] a
greedy chain of order ideals of B. In connection with problem (1), one may ask

(2) which finite orders have a greedy chain of order ideals?

Although (2) is not targeted in the present paper, we mention two facts. The answer
to (2) in case of Figure 1 is negative, since ↓a resp. ↓b is the only four element resp.
five element order ideal maximizing the total height but ↓a 6⊆ ↓b. Hence being a
distributive lattice is not a sufficient condition to guarantee (2). On the other hand,
it will be evident from Theorem 5 that the answer to (2) is positive for finite direct
products of chains. This fact rather than the usual greedy algorithm motivates the
term “greedy” in the following definition.

Definition 1. The following notations will be fixed throughout the paper. Let
t ∈ N0. For i = 1, . . . , t, let ki ∈ N \ {1}, and let Ci = {0 < 1 < · · · < ki − 1} be a
chain such that

k1 ≤ k2 ≤ · · · ≤ kt, that is |C1| ≤ |C2| ≤ · · · ≤ |Ct|.

Let D = C1×· · ·×Ct be the direct product of these chains (which is the one element
order if t = 0). By a greedy order ideal of D we mean an initial segment of the
lexicographic order of D. For example, for t = k1 = k2 = 2, the greedy order ideals
of D are exactly the following ones: ∅, {(0, 0)}, {(0, 0), (0, 1)}, {(0, 0), (0, 1), (1,0)},
and D. It is straightforward to see that each greedy order ideal of D is an order
ideal.

Definition 2. For m ∈ N, let ~X = (X1, . . . , Xm) be a sequence of greedy order
ideals of D. We say that ~X is packed to the right, if there is an i ∈ {1, . . . , m} such
that X1 = · · · = Xi−1 = ∅ and Xi+1 = · · · = Xm = D.

Theorem 3. Let X1, . . . , Xm and Y1, . . . , Ym be greedy order ideals of D such that∑m
i=1 |Xi| =

∑m
i=1 |Yi| and (Y1, . . . , Ym) is packed to the right. Then

∑m
i=1 h(Xi) ≤∑m

i=1 h(Yi).

Consider the sequence ~α(D) = (α0, α1, . . . , α|D|−1) where αi is the height of the
i-th member, with respect to the lexicographic enumeration, of D. That is, α0 =
h((0, . . . , 0, 0)) = 0, α1 = h((0, . . . , 0, 1)) = 1, and so on. In some sense, Theorem 3
is a statement on this sequence. It has an interesting corollary, a relatively simple
“shifting property”, which seems to be unnoticed so far:
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Corollary 4. Let 1 ≤ n ≤ |D| = k1k2 . . . kt, and let s be the sum of n consecutive
members of ~α(D). Then

α0 + · · ·+ αn−1 ≤ s ≤ α|D|−n + · · ·+ α|D|−1

Remark. For 2 ≤ q ∈ N, let ~β(q) = (β0, β1, β2, . . .) be the so-called digit sum
sequence of base q, that is, βi is the sum of digits of i written in base q. This sequence
and the sum of its first n members have been studied for long, see Gel’fond [4] and
Lindström [7] for example. A search for “title = sum of digits” returns more
than seventy publications in MathSciNet. Notice that the first qt elements of ~β(q)

coincides with ~α(D) where D is the t-th direct power of the q-element chain.

Our second result is the following one.

Theorem 5. Let X and Y be order ideals of D such that |X| = |Y | and Y is a
greedy order ideal. Then h(X) ≤ h(Y ).

A slightly related problem has been studied by Bollobás and Leader [1]. That
problem in [1] refers to the addition in Zn

k , whence it does not belong to the theory
of lattices and orders. However, the compression method used in [1], which is an
advanced tool of combinatorics, offers an alternative proof of Theorem 5. The
present, more elementary, approach is justified by its connection to Theorem 3,
digit sum sequences, and [2].

2. Proofs and auxiliary statements

If t = 0 or t = 1, then |D| = 1 or D is a chain. In both cases, Theorems 5 and 3
and Corollary 4 are trivial. Hence, from now on, we assume that t ≥ 2. In addition
to Definition 1, we also need the following one.

Definition 6.
• As usual, the covering relation in D is denoted by ≺. That is, x ≺ y means

that x < y but x < z < y for no z.
• Let E = C1 × C2, F = C3 × · · · × Ct, and G = C2 × · · · × Ct. For

i ∈ C1 = {0, 1, . . ., k1 − 1}, let Gi = {(i, a2, . . . , at) : (a2, . . . , at) ∈ G}.
• Similarly, for (i, j) ∈ E = C1×C2, let Fij = {(i, j, a3, . . . , at) : (a3, . . . , at) ∈

F}.
• Let d = |D| = k1 · · ·kt, g = |G| = k2 · · ·kt and f = |F | = k3 · · ·kt.
• For i ∈ {0, . . . , d}, let h′(i) = h′

D(i) denote h(X) where X is the unique
i-element greedy order ideal of D. The notations h′

G and h′
E are analogous.

Notice that the Fij and Gi are intervals of D. For t = 3, k1 = 3, k2 = 4 and
k3 = 5, the situation is depicted in Figure 2. The black-filled elements indicate how
E is embedded in D.

Lemma 7. For i ∈ C1, let Xi be a greedy order ideal of Gi such that i ≺ j implies
|Xi| ≥ |Xj|. Then

⋃
i∈C1

Xi is an order ideal of D. Similarly, if Yij is a greedy
order ideal of Fij for each (i, j) ∈ E such that (i, j) ≺ (k, `) implies |Yij| ≥ |Yk`|,
then

⋃
(i,j)∈E Yij is an order ideal of D.

Proof. The proof is almost trivial. If (k, `) covers (i, j) in E, then Fij and Fk`

are transposed intervals in the distributive lattice D, whence they are isomorphic.
Let ϕ : Fk` → Fij denote this isomorphism. Clearly, each greedy order ideal of F
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Figure 2. The structure of D for (k1, k2, k3) = (3, 4, 5)

is determined by its size. Since |Yij| ≥ |Yk`|, ϕ(Yk`) is an initial segment of Yij .
Hence the second part of the lemma follows. The first part is even simpler. �

Definition 8. Let q ∈ N. We say that (y1, . . . , yn) ∈ {0, . . . , q}n is packed to the
right in {0, . . . , q}, if, for i ∈ {1, . . . , n − 1}, yi 6= 0 implies yi+1 = q. Similarly, we
say that (y1, . . . , yn) is packed to the left in {0, . . . , q}, if (yn, . . . , y1) is packed to
the right in {0, . . . , q}.

The following lemma is a trivial counterpart of Theorem 3; its evident proof will
be omitted.

Lemma 9. Let n, q ∈ N, and consider integers x1, . . . , xn, y1, . . . , yn ∈ {0, . . . , q}
and a1 ≤ · · · ≤ an ∈ N0 such that x1 + · · ·+ xn = y1 + · · ·+ yn and (y1, . . . , yn) is
packed to the right in {0, . . . , q}. Then a1x1 + · · ·+ anxn ≤ a1y1 + · · ·+ anyn.

Proof of Theorem 3. We prove the theorem by induction on t. We assume that
t ≥ 2 and the statements hold for direct products of less than t many finite chains.
Since each greedy order ideal X of D is determined by its size |X|, the statement
is evident for m = 1.

Next, we deal with the case m = 2. Assume that (X, Y ) and (U, V ) are pairs of
greedy order ideals such that (U, V ) is packed to the right and |X|+ |Y | = |U |+ |V |.
Since the role of X and Y is symmetric, we can assume that |X| ≤ |Y |. We claim
that if (X, Y ) is not packed to the right, then there exists a pair (X ′, Y ′) of greedy
order ideals such that |X ′| + |Y ′| = |X| + |Y |, |Y ′| > |Y | and h(X) + h(Y ) ≤
h(X ′) + h(Y ′). By a repeated application of this claim the theorem will clearly
follow.

Since (X, Y ) is not packed to the right, X 6= ∅ and Y 6= D. Let Xi = X ∩Gi and
Yi = Y ∩Gi. Both X and Y are greedy, whence there exist r, s ∈ {0, 1, . . ., k1 − 1}
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such that

Xi = Gi for i < r, Xr 6= ∅, Xi = ∅ for i > r,

Yi = Gi for i < s, Ys 6= Gs, Yi = ∅ for i > s.

We know from |X| ≤ |Y | that r ≤ s. Using that Gr
∼= G ∼= Gs, we can pack the pair

(Xr , Ys) to the right. That is, we obtain a pair (X ′
r , Y

′
s) of greedy order ideals such

that X ′
r C Gr, Y ′

s C Gs, |Xr| + |Ys| = |X ′
r | + |Y ′

s |, and either X ′
r = ∅ or Y ′

s = Gs.
In both cases, |Ys| < |Y ′

s |. Let X ′ = (X \ Xr) ∪ X ′
r and Y ′ = (Y \ Ys) ∪ Y ′

s . Then
X ′ and Y ′ are greedy order ideals of D, |X ′|+ |Y ′| = |X|+ |Y | and |Y ′| > |Y |. Let
us compute:

h(X ′) + h(Y ′) −
(
h(X) + h(Y )

)
= h(X ′

r) + h(Y ′
s ) − h(Xr) − h(Ys)

= h′
G(|X ′

r|) + r|X ′
r |+ h′

G(|Y ′
s |) + s|Y ′

s | − h′
G(|(Xr|) − r|Xr| − h′

G(|Ys|) − s|Ys|

=
(
h′

G(|X ′
r |) + h′

G(|Y ′
s |) −

(
h′

G(|Xr|) + h′
G(|Ys|)

))

+
(
r|X ′

r| + s|Y ′
s | −

(
r|Xr |+ s|Ys|

))
.

The first summand at the end of the above formula is non-negative, because the
theorem holds for G by the induction hypothesis. The second summand is non-
negative by Lemma 9. Hence h(X ′) + h(Y ′) ≥ h(X) + h(Y ). This proves the
mentioned claim and settles the case m = 2.

Finally, let m > 2. Let us repeat the following transformation on the sequence
(X1, . . . , Xm) of greedy order ideals:

• Rearrange the sequence so that |X1| ≤ · · · ≤ |Xm|. If X2 6= D, then let
` = max{i : X` 6= D}, and perform a “packing the pair (X`−1, X`) to the
right”.

At each step, the sum of total heights cannot decrease. At the end of these trans-
formations we obtain a sequence (Z1, . . . , Zm) of greedy order ideals packed to
the right. Since (Z1, . . . , Zm) is determined by

∑m
i=1 |Zi| =

∑m
i=1 |Xi|, we have

(Z1, . . . , Zm) = (Y1, . . . , Ym). �

From now on, for the sake of a forthcoming induction, we assume that

(3) Theorem 5 holds for direct products of less then t finite chains.

Definition 10.
• For 0 ≤ m ≤ k1 + k2 − 2, the subset {(i, j) : i + j = m} of E is called the

m-th layer of E, and it is denoted by Lm, see Figure 2.
• In figures, C1 is always left from C2. The elements of Lm are on a horizontal

line. Hence “left” and “right” in Lm make sense. Notice that (i, j) is left
from (u, v) iff j < v and, of course, i + j = u + v.

• If (i, j), (i−1, j +1) ∈ E, then (i−1, j +1) is the right neighbor of (i, j) and
(i, j) is the left neighbor of (i−1, j +1). Sometimes we use this terminology
for objects indexed by elements of E.

• An order ideal X of D will be called an eastern order ideal, if for every
0 ≤ m ≤ k1 + k2 − 2 and every (i, j), (k, `) ∈ Lm the following condition
holds: if (i, j) 6= (k, `), (k, `) is right from (i, j) and X ∩ Fij 6= ∅, then
Fk` ⊆ X. (In other words, if the sequence (|X ∩Fij| : (i, j) ∈ Lm) is packed
to the right in {0, . . . , f}).
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• For 0 ≤ m ≤ k1 + k2 − 2, let a = (a1, a2) and b = (b1, b2) be the leftmost
and the rightmost element of Lm, respectively. If (a, b) is a (join-reducible,
join-reducible), (join-irreducible, join-irreducible) or (join-reducible, join-
irreducible) pair of elements of E, then Lm is called a layer of type A, type
V or type N , respectively. In Figure 2, L1 and L2 are of type V , L3 is of
type N , L4 and L5 are of type A, and L0 has no type.

Greedy order ideals of D are clearly eastern order ideals, but the converse is not
true. Hence the following lemma is just an intermediate step towards Theorem 5.

Lemma 11. Let X be an order ideal of D. Then there exists an eastern order ideal
Y of D such that |X| = |Y | and h(X) ≤ h(Y ).

Proof. First, observe that

(4) if i ≺ j ∈ C1, then |Gi ∩ X| ≥ |Gj ∩ X|.
Indeed, this follows form the implication (j, x2, . . . , xt) ∈ X =⇒ (i, x2, . . . , xt) ∈ X.
Replace Gi ∩ X by a greedy order ideal of Gi of the same size, for all i ∈ C1. By
(3), this way the total height does not decrease. Moreover, we obtain an order ideal
of D by Lemma 7. Hence we can assume that every Gi ∩X is a greedy order ideal
of Gi.

For (i, j) ∈ E, let Xij = Fij ∩ X and xij = |Xij|. Since Gi ∩ X is greedy, we
conclude that, for every i ∈ C1,

(5) (xi0, . . . , xi,k2−1) is packed to the left in {0, . . . , f} (a “ ↙ property”).

Similarly to (4), we conclude easily that

(6) if (i, j) ∈ E and i 6= 0 then xij ≤ xi−1,j (a “ ↘ property”).

Now we define a subset Z of D as follows. For each (i, j) ∈ E, the intersection
Zij = Fij ∩ Z will be a greedy order ideal of Fij, whence it suffices to define
zij = |Zij|. Let (i1, j1), . . . , (ip, jp) be an enumeration of Lm from left to right.
By packing the sequence (xi1j1 , . . . , xipjp) to the right in {0, . . . , f}, we obtain the
sequence (zi1j1 , . . . , zipjp). We do this for each m, and this defines zij for each
(i, j) ∈ E. Hence Z is defined and |Z| = |X|. We obtain from Theorem 3 that
h(X) ≤ h(Z).

We have to show that Z is an order ideal; then it is clearly an eastern order
ideal. In virtue of Lemma 7, it suffices to show that, for every (u, v) ∈ E \ {(0, 0)},
(7) u 6= 0 =⇒ zuv ≤ zu−1,v (“ ↘ ”) and v 6= 0 =⇒ zuv ≤ zu,v−1 (“ ↙ ”).

Let (u, v) belong to Lm. That is, m = u + v > 0. Since |C1| ≤ |C2|, we conclude
that Lm is of type V , N or A.

Case 1: Lm is of type V . Then Lm, enumerated from the left to the right, is
{(m, 0), (m − 1, 1), . . . , (0, m)}. For k ∈ {m − 1, m}, define

wk =
∑

{xij : (i, j) ∈ Lk}.

First assume that xij 6= 0 for all (i, j) ∈ Lm \ {(m, 0)}. Then we get from (5)
that xij = f and, therefore, zij = f for all (i, j) ∈ Lm−1. Then (7) holds evidently.

Secondly, assume that xm−s,s = 0 for some (m − s, s) ∈ Lm \ {(m, 0)}, see
Figure 3. By (6), we get xm−r,r ≤ xm−r−1,r, if (m − r, r) ∈ Lm is to the left from
(m − s, s), that is, r < s. We obtain from (5) that xm−r,r ≤ xm−r,r−1 if r > s.
Hence we conclude that wm ≤ wm−1.
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Figure 3. Case 1, xm−s,s = 0

If 0 < i ≤ m, then wm ≤ wm−1 implies zm−i,i ≤ zm−i,i−1. For 0 < i < m, we
obtain zm−i,i ≤ zm−i−1,i from zm−i,i ≤ zm−i,i−1 ≤ zm−i−1,i. Finally, zm,0 = 0 ≤
zm−1,0. This shows (7).

Case 2: Lm is of type N . Due to |Lm| = |Lm−1|, this case is much simpler. We have
Lm = {(k1−1, m−k1+1), (k1−2, m−k1+2), . . . , (0, m)}. Since xr,m−r ≤ xr,m−r−1

for r ∈ C1 by (5), we get wm ≤ wm−1. Hence zi,m−i ≤ zi,m−i−1 for i ∈ C1 and
zi,m−i ≤ zi,m−i−1 ≤ zi−1,m−i for i ∈ C1 \ {0}. This shows (7).

Figure 4. Case 3, xq,m−q 6= 0

Case 3: Lm is of type A. If xi,m−i = 0 for all (i, m − i) ∈ Lm, then zi,m−i = 0
for all (i, m − i) ∈ Lm, and (7) is evident. Otherwise, let us choose an element
(q, m − q) in Lm such that xq,m−q 6= 0, see Figure 4. If (i, m − i) ∈ Lm is to
the left from (q, m − q), then xi,m−i ≤ xi,m−i−1 by (5). If (i, m − i) ∈ Lm is to
the right from or equals (q, m − q), then xi,m−i ≤ xi−1,m−i by (6). These two
inequalities yield that wm ≤ wm−1 − xq,m−q−1. Since xq,m−q−1 = f by (5), we
conclude that wm ≤ wm−1 − f . Therefore at the rightmost element (u, v) of Lm−1

we have zuv = f . Let w′
m−1 =

∑
{xij : (i, j) ∈ Lm−1, (i, j) 6= (u, v)}. Then

w′
m−1 = wm−1 − xuv ≥ wm−1 − f ≥ wm, and disregarding (u, v) of Lm−1 we

conclude (7) the same way as in Case 2. �

Lemma 12. Let X be a nonempty eastern order ideal of D. Then there exists an
eastern order ideal Y of D satisfying (5) such that |X| = |Y | and h(X) ≤ h(Y ).

Proof. Suppose that (5) fails, and let i be the largest element of C1 such that Gi∩X
is not a greedy order ideal of Gi. Let Yi be the |Gi ∩ X|-element greedy ideal of
Gi, and let Y = (X \ Gi) ∪ Yi. The induction hypothesis applies to Gi, and we
conclude that h(X) ≤ h(Y ). We have to show that Y is an eastern order ideal. In
virtue of Lemma 7, only the pairs of {i − 1, i, i + 1} × C2 have to be considered.

Let i < k1 − 1, j < k2, and assume that yi+1,j = xi+1,j > 0. If j < k2 − 1,
then xi,j+1, the right neighbor of xi+1,j, equals f , because X is eastern. Then
yiu = xiu = f for 0 ≤ u ≤ j + 1, since X is an order ideal. The case j = k2 − 1 is a
bit different. Then the xi+1,u are equal to f for all u < j = k2 − 1. The same holds
for their right neighbors, that is, xi,u = f for all 1 ≤ u ∈ C2. Since X is an order
ideal, we obtain yiu = xiu = f for all u ∈ C2.

Let 0 < i ∈ C1, and assume that yij > 0. Then xij > 0. If j < k2 − 1,
then xi−1,j+1 = yi−1,j+1, the right neighbor of xij, equals f . Further, this implies
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yi−1,j = xi−1,j = f . If j = k2−1, then xi,k2−2 and its right neighbor, xi−1,k2−1 are
equal to f , whence yi−1,u = xi−1,u = f for all u ∈ C2. Hence Y is an eastern order
ideal such that Gv ∩ Y is a greedy order ideal for every v ≥ i. In other words, we
have got rid of i, the largest failure of (5). Repeating the above argument, we can
get rid of all the failures. �

Lemma 13. Let X be a nonempty eastern order ideal of D satisfying (5). Then
there exists an eastern order ideal Y of D satisfying (5) such that |X| = |Y |,
h(X) ≤ h(Y ) and, moreover, 0 < yij < f for at most one (i, j) ∈ E.

Proof. Let K = {(i, j) ∈ E : 0 < xij < f}. We intend to show that |K| ≤ 1 can be
supposed. The assumptions on X allow a (unique) enumeration {(i1, j1) . . . , (is, js)}
of K such that i1 > · · · > is and j1 < · · · < js. We claim that

(8) i1 + j1 < · · · < is + js.

By way of contradiction, assume that 1 ≤ u < v ≤ s but iu + ju ≥ iv + jv.
Since ju < jv, we have iu + ju − jv < iu. If we had iu + ju − jv < 0, then
iu + ju < jv ≤ iv + jv would contradict the assumption. Hence iu + ju − jv ∈ C1

and (iu + ju − jv, jv) ∈ E. Since (iu + ju − jv, jv) and (iu, ju) belong to the
same level, ju < jv and X is eastern, we conclude that xiu+ju−jv,jv = f . From
iu + ju ≥ iv + jv we see that iu + ju − jv ≥ iv. Since X is an order ideal, we obtain
that xivjv ≥ xiu+ju−jv,jv = f , which contradicts (iv, jv) ∈ K. This shows (8).

Next, we consider the (uniquely determined) sequence ~y = (yi1,j1 , . . . , yis,js) that
is packed to the right in {0, . . . , f} such that xi1,j1 + · · ·+xis,js = yi1,j1 + · · ·+yis,js .

(9) We intend to replace ~x = (xi1,j1 , . . . , xis,js) with ~y;

this way we obtain Y from X. The contribution of ~x to h(X) is
s∑

r=1

h′(xir,jr ) +
s∑

r=1

(ir + jr)xir,jr .

If we replace ~x with ~y, then the first sum does not decrease by Theorem 3 and
the second one does not decrease by Lemma 9. Hence h(X) ≤ h(Y ). Since K is
an antichain in E, that is, its elements are pairwise incomparable, Y is an eastern
order ideal satisfying (5). �

Proof of Theorem 5. By Lemmas 11, 12 and 13, we can assume that X is a non-
empty eastern order ideal of D satisfying (5) and at most one of the xij belongs to
{1, . . . , f − 1}.

By an “inner” induction on k1 = |C1|, we are going to show how X can be
transformed to a greedy order ideal of D. We can assume that Gk1−1 ∩X 6= ∅ and
G0 6⊆ X, because otherwise we could use the induction hypothesis on k1 (if k1 > 2)
or the induction hypothesis on t (if k1 = 2). Let m ∈ {0, . . . , k1 + k2 − 2} be the
largest subscript such that Bm = {(i, j) ∈ Lm : xij 6= 0} is non-empty.

If m > k2 − 1, then G0 ⊆ X and we are done.
Suppose that m = k2 − 1. If x0,m, corresponding to the rightmost element of

Bm, equals f , then G0 ⊆ X again. Since X is eastern, the definition of m yields
that 1 ≤ x0,m ≤ f − 1 and Bm = {(0, m)}. Since Gk1−1 ∩ X 6= ∅, there exists
a largest index r such that xk1−1,r 6= 0. Notice that xk1−1,r = f by Lemma 13.
Notice also that k1 − 1 + r ≤ m by the definition of m, whence k1 − 1 + r < m
since Bm = {(0, m)}. “Exchange xk1−1,r = f and x0,m < f ,” that is, exchange
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X ∩ Fk1−1,r and X ∩ F0,m in the ideal X. This way h(X) increases, and, clearly,
we obtain a new eastern order ideal satisfying the same conditions that are given
in the first sentence of the proof.

Next, assume that m < k2 − 1. It suffices to show that m can be enlarged.
Firstly, assume that |Bm| ≥ 2, and let (i, j) be the leftmost element of Bm. Let

q = xij > 0. Since X is eastern, the rightmost element of Bm is (0, m). Note that
(0, m + 1) ∈ E and x0,m+1 = 0. Replace xij and x0,m+1 with 0 and q, respectively.
This way h(X) increases (by q), m increases (by 1), and, clearly, we obtain a new
eastern order ideal.

Secondly, assume that |Bm| = 1. Since X is eastern, Bm = {(0, m)}. Since we
have assumed that Gk1−1 ∩ X 6= ∅, there is a (unique) largest v ∈ C2 such that
q := xk1−1,v is positive. If we had 0 < x0,m < f , then q = f and we could repeat
the trick (9) to ~x = (xk1−1,v, x0,m). Hence we can assume that x0,m = f . Then,
replacing xk1−1,v and x0,m+1 = 0 with 0 and q, we obtain a new eastern order ideal
with larger total height and larger m. �

Proof of Corollary 4. Let b0, b1, . . . , bd−1 be the lexicographic enumeration of D.
Then αi = h(bi). Let s = αj + · · ·+ αj+n−1 where 0 ≤ j and j + n − 1 ≤ d − 1.

Let X1 = {b0, . . . , bn−1}, X2 = {b0, . . . , bj−1}, Y1 = ∅ and Y2 = {b0, . . . , bj−1,
bj, . . . , bj+n−1}. The conditions of Theorem 3 hold, whence we obtain

(α0 + · · ·+ αn−1) + (α0 + · · ·+ αj−1) = h(X1) + h(X2)

≤ h(Y1) + h(Y2) = 0 + α0 + · · ·+ αj−1 + s,

which yields the first inequality of Corollary 4.
Let X1 = {b0, . . . , bj−1, bj, . . . , bj+n−1}, X2 = {b0, . . . , bd−n−1}, Y1 = {b0, . . .,

bj−1} and Y2 = D = {b0, . . . , bd−n−1, bd−n, . . . , bd−1}. Then Theorem 3 yields

(α0 + · · ·+ αj−1) + s + (α0 + · · ·+ αd−n−1) = h(X1) + h(X2) ≤ h(Y1) + h(Y2)

= (α0 + · · ·+ αj−1) + (α0 + · · ·+ αd−n−1) + (αd−n + · · ·+ αd−1),

which implies the second inequality of Corollary 4. �
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