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Abstract. We prove that the constraint languages invariant under a short
sequence of Jónsson terms (containing at most three non-trivial ternary terms)

are tractable by showing that they have bounded width. This improves the

previous result by Kiss and Valeriote [15] and presents some evidence that the
Larose-Zádori conjecture [19] holds in the congruence-distributive case.

1. Introduction

In recent years, universal algebra has proven to be very useful in the study of
the computational complexity of the constraint satisfaction problem. For every
relational structure B, the constraint satisfaction problem (CSP) associated to B,
CSP(B), is the following computational problem: given a finite structure A, de-
termine whether A is homomorphic to B. Many computational problems, coming
from areas as diverse as artificial intelligence, scheduling, graph theory, database
theory, and others can be formulated, in a natural way, as a constraint satisfaction
problem. From a computational complexity point of view the importance of the
CSP was first pointed out by Feder and Vardi [10] who have shown that if the class
of constraint satisfaction problems, in its logic formulation, is slightly generalized
in several different ways then we obtain a class of problems which is essentially
as rich as the whole of NP. This fact motivates the dichotomy question “are there
CSPs that are not solvable in polynomial time nor NP-complete?” which despite
considerable effort still remains open.

The groundbreaking work of Jeavons, Cohen, and Gyssens [13] successively de-
veloped and refined by Bulatov, Jeavons, and Krokhin [6] and Larose and Tesson
[18] has shown strong ties between CSP and universal algebra. In particular, it has
been shown that the computational complexity of CSP(B) is uniquely determined
by the algebra AB which has the same universe as B and whose basic operations
are the polymorphisms of the relations in B. A good deal of recent results on the
complexity of the CSP are due to this link (see the survey of Bulatov, Jeavons and
Krokhin [17] for an overview). It is worth mentioning that all this activity has
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spurred development of universal algebra itself, witnessed mostly in the develop-
ment of all sorts of new Mal’cev-style conditions. Some examples of results of this
sort are [20], [2] and [1].

There are basically two algorithms, or rather algorithmic principles, for CSPs.
The first one is linked to the few subalgebras property studied in [8] and [12].

The second one, central to this paper, is called the k-consistency algorithm and
gives rise to the notion of bounded width (see the recent survey [7] by Bulatov,
Krokhin, and Larose for a nice overview of bounded width). In a nutshell, for
every fixed k > 0, the k-consistency algorithm is an iterative, polynomial-time,
algorithm that computes a set H of partial homomorphisms from A to B satisfying
the condition that every complete homomorphism (if it exists) from A to B must
have all its k-ary projections in H (see section 2 for precise definitions). When
the set H returned by the k-consistency algorithm is empty we have a guarantee
that there is no homomorphism from A to B. Those relational structures B for
which there exists some k > 0 such that the converse also holds are said to have
bounded width. Consequently, if B has bounded width then it is possible to use the
k-consistency algorithm for some k > 0 to solve CSP(B) correctly in polynomial
time. A most important question in the area is to determine which structures B
have bounded width, which is equivalent to delineate the reach of the k-consistency
algorithm as a tool to solve CSPs. In this study, universal algebra has played a
major role. Larose and Zádori [19] have shown that if B has bounded width then
its associated algebra AB generates a variety that omits Hobby-McKenzie types 1
and 2 (also Bulatov has proved an essentially equivalent statement in [4]). It has
been conjectured in [19] that this condition is also sufficient. The Larose-Zádori
conjecture would imply, in particular, that any structure B whose associated algebra
AB is in a congruence-distributive variety (for short, CD) has bounded width. This
has only been verified for algebras containing a near-unanimity term by Feder and
Vardi [10] and for algebras in CD(3) by Kiss and Valeriote [15]. In this paper we
generalize the latter result to algebras in CD(4).

2. Preliminaries

2.1. Constraint Satisfaction Problems and Bounded width. Most of the
terminology introduced in this section is fairly standard. A vocabulary is a finite set
of relation symbols or predicates. In what follows, τ always denotes a vocabulary.
Every relation symbol R in τ has an arity r ≥ 0 associated to it. We also say that
R is an r-ary relation symbol.

A τ -structure A consists of a set A, called the universe of A, and relations RA ⊆
Ar for every relation symbol R ∈ τ where r is the arity of R. All structures in this
paper are assumed to be finite, i.e., structures with a finite universe. Throughout
the paper we use the same boldface and slanted capital letters to denote a structure
and its universe, respectively.

A homomorphism from a τ -structure A to a τ -structure B is a mapping h :
A → B such that for every r-ary R ∈ τ and every (a1, . . . , ar) ∈ RA, we have
(h(a1), . . . , h(ar)) ∈ RB. We will write A → B, meaning that there exists a
homomorphism from A to B and say A is homomorphic to B.
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Definition 1. (Constraint Satisfaction Problems) Let B be a finite relational struc-
ture. CSP(B) is defined to be the set of all structures A such that A → B. Alter-
natively, we view CSP(B) as the computational problem asking to decide whether a
given τ -structure A (the input) is homomorphic to B.

The notion of bounded width has several equivalent formulations. In this paper
we shall base our definition on a variant of the existential k-pebble game [16] due
to Feder and Vardi [10].

Definition 2. Let 0 ≤ j < k be integers and let A and B be relational structures.
A partial homomorphism from A to B is any mapping from some subset of the
universe of A to B that preserves all tuples of A entirely contained in its domain.
Given two mappings f, g we say that g extends f , denoted by f ⊆ g if the domain
of f is a subset of that of g and both coincide over the domain of f . A winning
strategy for the duplicator in the existential (j, k)-pebble game on A and B - or a
(j, k)-strategy or even just a strategy if the rest is clear - is a nonempty set H of
partial homomorphisms satisfying the following two conditions:

• Closure under subfunctions. If g ∈ H and f ⊆ g then f ∈ H
• (j, k)-forth property. If I ⊆ J ⊆ A with |I| ≤ j and |J | ≤ k and f ∈ H

with domain I, then there exists g ∈ H with domain J such that f ⊆ g.

There is a standard procedure [19], called (j, k)-consistency (in [19] they called
it the (j, k)-algorithm), that given two relational structures A and B returns, if it
exists, a (j, k)-winning strategy. The (j, k)-consistency algorithm starts by throwing
initially in H all partial homomorphisms with domain size ≤ k. Once this is done
the procedure removes all those mappings that falsify one of the two conditions
that define a winning strategy. At the end of this iterative process we either get
a winning strategy or an empty set, implying that such a strategy does not exist.
It is not difficult to verify that this process runs in time exponential on k, but
polynomial if k is fixed.

Observe that every satisfiable instance has a winning strategy that consists of
all subfunctions of the solution with domain size ≤ k. The converse is not true. A
structure B has width (j, k) if the opposite always holds. More formally,

Definition 3. A σ-structure B has width (j, k) if for every σ-structure A, if there
exists a winning (j, k)-strategy then A is homomorphic to B. Furthermore, B is
said to be of width j if it has width (j, k) for some k and to be of bounded width
if it has width j for some j.

It is a major open problem in the area to characterize all structures with bounded
width. Up to the present moment only width 1 has been characterized [10] (see
also [9]). Another very important question is the existence of an infinite hierarchy,
i.e., whether for any j there are structures of bounded width but that do not have
width j. This is known to be true for j = 1 but open even for j = 2.

2.2. Congruence distributive varieties. In this subsection we are going to de-
fine the algebraic notions used in the paper. We assume that the reader is familiar
with basic notions and results of universal algebra, such as algebras, varieties, con-
gruences, clones, and so on. Good textbooks are [3] and [21]. We do not use the
results of Tame Congruence Theory (see [11]) in this paper, except for its mention
in the Introduction, but it is fair to say that iteration of Jónsson terms at the
beginning of Section 4 was in part inspired by its basic methods. Contrary to the
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standard notation, we are using A, B etc. to denote algebras, as we reserved the
boldfaced letters for relational structures.

It is well known that congruences of any algebra form an algebraic lattice under
the inclusion order. A famous result by B. Jónsson [14] states that an algebra A
lies in a congruence-distributive variety (the congruence lattice of any algebra in
the variety is distributive) if and only if there exists some n > 0 such that A has
ternary term operations p0, p1, . . . , pn that satisfy the following identities:

p0(x, y, z) ≈ x
pn(x, y, z) ≈ z
pi(x, y, x) ≈ x
pi(x, x, y) ≈ pi+1(x, x, y) for all even i
pi(x, y, y) ≈ pi+1(x, y, y) for all odd i

We will say that an algebra A lies in CD(n) if it has fundamental operations
p1, p2, . . . , pn−1 satisfying the above identities.

We define two operators which provide a Galois connection between algebras and
relational structures: Let A be a relational structure. Then Pol(A) is the clone of
all operations on the universe of A which preserve each of the relations in A. Let
A be an algebra. Then Inv(A) is the relational clone (set of relations closed under
constructions via primitive positive formulas) of all relations on the universe of A
which are preserved by each of the operations of A. In other words, the relations
of Inv(A) are all subuniverses of all finite powers of A.

The well-known result of Bulatov, Jeavons and Krokhin [6] states that, when
B1 is a relational structure all of whose relations lie in Inv(Pol(B))—or even in
Inv(Polid(B)), where Polid(B) denotes the idempotent subclone of Pol(B)—then
the problem CSP(B1) is not harder than CSP(B). Therefore, we may say that an
algebra B is tractable, meaning that the problem CSP(B) is tractable for any rela-
tional structure B with relations in Inv(B). Having in mind the reduction to idem-
potent subclone, in this paper we are interested only in finite idempotent algebras
and the varieties they generate, that is finite algebras in which each fundamental
operation f satisfies the identity f(x, x, . . . , x) ≈ x.

3. Main Theorem

An algebra B has bounded width if every structure B with relations in Inv(B)
has bounded width. We are now ready to state the main result of this paper:

Theorem 1. Every algebra in CD(4) has bounded width.

Clearly, our result proves also that every algebra which has non-trivial Jónsson
terms p1, p2 and p3 has bounded width, as adding operations to an algebra reduces
the set of compatible relations, making the set of possible inputs of the related
constraint satisfaction problem smaller. Therefore, as in most papers in the area,
when an algebra satisfies a Mal’cev-style condition, we immediately assume that
the term(s) guaranteed by this condition are all basic operations of the algebra.

The proof of Theorem 1 spans the next two sections. In Section 4 we prove
some results concerning ideal free (defined below) simple algebras in CD(4). In
Section 5 we start by reducing a k-strategy in Inv(B) (with B in CD(4)) to one
whose components are ideal free. Next, we use the nice properties of the ideal free
algebras in CD(4) to reduce the strategy to one whose components are singletons.
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4. The structure of relations

Recall that any algebra B in CD(4) has three basic operations p1, p2, p3. We
shall denote p2(y, x, x) by l(x, y) and p2(x, x, y) by r(x, y). Note that the Jónsson
equations imply that p1(y, x, x) = l(x, y) and p3(x, x, y) = r(x, y).

Definition 4. Let D be a member of CD(4) and C a nonempty subuniverse of D.
We say that C is an l-ideal (resp. r-ideal) of D if for every x, y ∈ D, l(x, y) ∈ C
(resp. r(x, y) ∈ C) whenever x ∈ C. The algebra D is said to be l-ideal free if its
only l-ideal is itself, and it is said to be ideal free it it is l-ideal free and r-ideal
free. The l-ideal of D generated by an element a ∈ D is the smallest l-ideal of D
containing a. An element a ∈ D generates a minimal l-ideal if the generated ideal
contains no proper subuniverses which are l-ideals of D. Analogous notions can be
defined for r-ideals.

Let B be a finite algebra in CD(4) and let p1, p2, p3 be the Jónsson terms of
B. We shall do some preprocessing over these operations. In particular we want
to guarantee that p1, p2, and p3 besides obeying the Jónsson identities satisfy
a few more equations. More precisely, we need that l(x, l(x, y)) = l(x, y) and
r(x, r(x, y)) = r(x, y).

We shall see how to obtain from p1, p2, and p3, a new family of terms p′1, p′2,
and p′3 that satisfies all required identities.

For every x consider the function lx that maps every element y to l(x, y). There
exists some natural nx such that composing lx with itself nx times we obtain a
retraction.

We define inductively the sequence of operations qi
1(x, y, z), i ≥ 0 with rules:

(i) q0
1(x, y, z) = x and (ii) qi+1

1 (x, y, z) = qi
1(p1(x, y, z), y, z). It is easy to verify by

induction that for every i, qi
1 satisfies the identities: qi

1(x, x, y) = qi
1(x, y, x) = x,

and qi
1(y, x, x) = (lx)i(y). Let us fix p′1 to be qn1

1 with n1 =
∏

x∈A nx. Similarly
define p′3 and n3. Finally, define p′2(x, y, z) as p2(qn1−1

1 (x, y, z), y, qn3−1
3 (x, y, z)). It

is easy to verify that p′1, p′2 and p′3 satisfy the required identities.
From now on we fix the finite algebra B in CD(4) and the variety V = V(B).

We stipulate that the Jónsson terms p1, p2 and p3 satisfy the additional equations
l(x, l(x, y)) = l(x, y) and r(x, r(x, y)) = r(x, y) in V. The following observation is
going to be used a good number of times.

Observation 1. Let B1 be a finite algebra in V and let X be a subuniverse of B1.
If X is not an l-ideal of B1, we can always find some x in X and some x′ in B1 \X
such that l(x, x′) = x′. Same applies to r-ideals.

Lemma 1. Let B1 and B2 be finite algebras in V, B1 l-ideal free, D be a minimal
r-ideal of B2, and let R ≤ B1×D be subdirect. If B1 × {d} ⊆ R for some d ∈ D
then R = B1 ×D. The same statement holds with l and r changing places.

Proof. Put E = { e ∈ D : B1 × {e} ⊆ R }. By our assumption E contains d, and
our goal is to show that E is an r-ideal of B2. Clearly E is a subalgebra. Suppose
that E is not an r-ideal. Then there exists e ∈ E and e′ ∈ B2 \ E such that
p2(e, e, e′) = e′. Since e ∈ D and D is an r-ideal of B2, we get that e′ ∈ D. Put
C = { c ∈ B1 : (c, e′) ∈ R }. As R is subdirect and e′ 6∈ E, C 6= ∅ is a proper
subuniverse of B1. We show that C is an l-ideal of B1. Take c ∈ C and a ∈ B1.
Then (a, e), (c, e), (c, e′) ∈ R and therefore (p2(a, c, c), p2(e, e, e′)) = (l(c, a), e′) ∈ R,
that is l(c, a) ∈ C. This proves that C = B1 which is a contradiction. �
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In this section, B1 and B2 will always denote finite algebras in V and R will be
a subdirect product of B1 and B2. We shall define G1, as the subuniverse of B2

1

that consists of all tuples (a, a′) ∈ B2
1 such that there exists some b such that both

(a, b) and (a′, b) are in R. We shall regard G1 as a reflexive graph.

Lemma 2. If B1 is simple and R is not the graph of a homomorphism B2 → B1

then G1 is connected.

Proof. Indeed, by composing G1 with itself a large enough number of times we
obtain a graph G∗

1 that has an edge precisely in those elements that are connected
in G1. G∗

1 is a congruence and hence trivial. If G∗
1 is the identity then R is a

homomorphism B2 → B1, which is impossible. Hence we can conclude that G∗
1 is

B1 ×B1 and hence G1 is connected. �

Let X ⊆ B1 and Y ⊆ B2, we shall say that X sees Y if for every y ∈ Y there
exists a tuple (x, y) ∈ R with x ∈ X and similarly that Y sees X if for every x ∈ X
there exists some tuple (x, y) ∈ R with y ∈ Y . We shall also say that a sees a set
Y meaning that {a} sees Y .

An element a of B1 is said to be 2-fan if it can see two different elements of
B2. Similarly we define 2-fan elements of B2. Obviously, R is not the graph of
homomorphism from B2 to B1 iff B2 contains a 2-fan element.

Lemma 3. Let B1 be simple, R ≤ B1×B2 be subdirect, and S be an r-ideal of R.
Assume that R is not the graph of a homomorphism from B2 onto B1, and that S
is the graph of a homomorphism of D = π2(S) onto C = π1(S). Then r(c, a) = c
for all c ∈ C and a ∈ B1. The analogous statement with l replacing r everywhere
also holds.

Proof. Since R is not the graph of a homomorphism and B1 is simple, G1 is con-
nected. Clearly, r(c, c) = c for any c ∈ C. By using the connectivity of G1 it is
enough to show that r(c, a′) = c whenever r(c, a) = c and (a, a′) ∈ G1. As c ∈ C,
there exists d ∈ D so that (c, d) ∈ S. Let b ∈ B2 be such that (a, b), (a′, b) ∈ R.
Then r((c, d), (a′, b)) = (r(c, a′), r(d, b)) ∈ S and r((c, d), (a, b)) = (r(c, a), r(d, b)) =
(c, r(d, b)) ∈ S. Since S is the graph of homomorphism we get that r(c, a′) = c. �

Lemma 4. Let B1 and B2 be finite algebras in V, where B1 is simple and ideal
free, and let R be a subdirect product of B1 and B2. If B2 contains a 2-fan element
then it also contains an element that sees the whole of B1.

Proof. Let us assume that R is a counterexample to the statement with |B1|+ |B2|
as small as possible. We shall do a separate analysis depending on whether B2 has
a proper ideal and/or congruence. In all cases we shall reach a contradiction.

CASE 1: B2 is not ideal free. Let Y be a proper l-ideal of B2. We first prove
that Y sees the whole of B1 by showing that the subset Z of B1 that contains all
elements seen by Y is an l-ideal of B1. Indeed, let a, a′ be any elements of B1 with
a ∈ Z. Let b, b′ be elements of B2 seen by a, a′ respectively. Since a ∈ Z we can
assume that b ∈ Y . By applying l to (a, b) and (a′, b′) we obtain (l(a, a′), l(b, b′)).
Since l(b, b′) ∈ Y we conclude that l(a, a′) ∈ Z.

So, the projection S of R to B1 × Y is subdirect and a proper l-ideal of R. As
|B1| > 1, the ideal freeness of B1 implies that there exist elements a, b ∈ B1 such
that l(a, b) 6= a. According to Lemma 3, this means that S contains an element
which sees two elements of B1, a contradiction with minimality of (B1, B2, R).
Analogously we prove that B2 can have no r-ideals.
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CASE 2: B2 is not simple. Let θ be a non trivial congruence of B2. Consider
now the relation S defined as

{(a, b/θ) | (a, b) ∈ R}

If b is any element in B2 that has 2-fan in R, then b/θ has 2-fan in S. By the
minimality of R and Lemma 1, S = B1 × B2/θ. Let Y be b/θ (now regarded as a
subset of B2). We have that Y sees the whole of B1 and contains a 2-fan element,
namely b. By the minimality of R, B2 contains an element that sees the whole of
B1, a contradiction.

CASE 3: B2 is ideal free and simple. Select any 2-fan element b of B2 and
construct the sequence Y 0, Y 1, . . . , defined inductively by the following rules: (i)
Y 0 = {b}, and (ii) Y i+1 is the set of elements seen by Y i. By Lemma 2 G1 is
connected and therefore the sequence reaches at some point B1 (and hence also
B2). Let Y i be the latest element of the sequence before any of B1 or B2 occurs.
We consider two possibilities: If Y i ⊆ B2, then it must contain b. Consider the
relation S defined as R ∩ (B1 × Y i). By the minimality of R, the relation S must
contain some element that sees the whole of B1. The very same element should
also see the whole of B1 in R, a contradiction. If Y i ⊆ B1 we see that if Y i has
no 2-fan elements, then Y i−1 = Y i+1 = B2, which contradicts the choice of Y i.
Hence we conclude that there exists an element of B1 that sees the whole of B2.
By Lemma 1 R = B1 ×B2 and we are done. �

The next lemma is quite trivial, but its use is going to be essential in the con-
struction of substrategies.

Lemma 5. Let B1 and B2 be algebras in V and let R be a subdirect product of B1

and B2.
(1) If (a, b) ∈ R generates a minimal l-ideal in R, then a generates a minimal

l-ideal in B1 and b generates a minimal l-ideal in B2.
(2) If a ∈ B1 generates a minimal l-ideal in B1, then there exists b ∈ B2 such

that (a, b) ∈ R and (a, b) generates a minimal l-ideal in R.
Same statements holds for r-ideals.

Proof. To prove statement (1), assume that (a, b) ∈ R generates a minimal l-ideal
in R. Let C be the ideal of B1 generated by a. If C is not minimal, then there exists
an element c ∈ C that does not generate a. However, as R is subdirect, there is
d ∈ B2 so that (c, d) ∈ R is generated by (a, b) (just follow the steps in generation
of c by a, start from (a, b) and whenever a constant x ∈ B1 is used, replace it by
(x, y) ∈ R). Therefore (c, d) cannot generate (a, b) in R, which is a contradiction
with the choice of (a, b).

To prove statement (2), assume that a ∈ B1 generates a minimal ideal C of B1.
Since R is subdirect, there exists b ∈ B2 such that (a, b) ∈ R. Let S be the ideal
of R generated by (a, b), and choose (c, d) ∈ S that generates a minimal ideal S ′ of
R (any element of a minimal ideal S′ ⊆ S generates it, of course). Since (c, d) ∈ S,
then c ∈ C. Then since C is minimal, we see that C is also the ideal of B1 generated
by c. So, as a is in the ideal generated by c, we can generate an element (a, b′) ∈ S′.
This element generates S′, a minimal ideal in R. �

Lemma 6. Let B1 be simple, ideal free member of V and let B2 ∈ V. Let R ≤
B1×B2 be a subdirect product that is not the graph of a homomorphism from B2
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onto B1. If S is a minimal l-ideal of R or a minimal r-ideal of R, then S =
B1 × π2(S).

Proof. Put C = π1(S) and D = π2(S). By Lemma 5, C and D are minimal l-
ideals of B1 and B2, respectively. However, B1 is l-ideal free, thus C = B1. We
cannot have p2(c, c, a) = c for all a, c ∈ B1 because then every one-element subset
of B1 would be an l-ideal of B1. Therefore, by Lemma 3, S is not the graph of
a homomorphism. Now S ≤ B1 × D is subdirect, then by Lemma 4, there exists
d ∈ D such that B1 × {d} ⊆ S. Now using Lemma 1 we get that S = B1 ×D. �

5. Proof of Theorem 1

If H is a strategy and I = {a1, . . . , ai} is a subset of A with i ≤ k we denote
by HI the subset of H that contains precisely all the mappings with domain I. An
alternative but essentially equivalent view is to fix an order on the elements of I,
say a1 < a2 < · · · < ai, and to regard HI , or rather Ha1,...,ai

, as the i-ary relation
on B

{(f(a1), . . . , f(ai)) | f ∈ H,dom(f) = I}
In what follows we shall assume that every relation of B is in Inv(B). In this

case, it is easy to verify -and widely known- that the strategy H returned by the
(j, k)-consistency procedure satisfies the following property: for every a1, . . . , ai,
Ha1,...,ai is in Inv(B). We shall say, somehow abusing notation, that H ∈ Inv(B).
We shall apply some transformations to the winning strategy returned by the (j, k)-
consistency algorithm. In all our transformations this property will be maintained.

We shall also fix the values of j and k. From now on j is assumed to be k−1 and
k is the maximum between 3 and the largest of the arities of signature σ. Observe
that if j = k−1 then the (j, k)-forth property can be rephrased as follows: If f ∈ H
with domain |I| < k and a ∈ A then there exists some g ∈ H defined on I ∪ {a}
such that f ⊆ g. We will call the (k − 1, k)-forth property the k-forth property
from now on.

In order to simplify notation we shall omit the parameter j and we shall speak
of k-winning strategy, k-consistency algorithm and so on.

Lemma 7. Let A and B be σ-structures such that every relation of B is in Inv(B)
and let H ∈ Inv(B) be a k-strategy. Then there exists a k-strategy H ′ ∈ Inv(B)
where for every a ∈ A, H ′

a is ideal free.

Proof. This proof shamelessly duplicates that of Lemma 3.14 in [15]. We include
it here for the sake of completeness.

For simplicity of notation we shall use integers to denote the elements of A. Let
us assume that H1 has a proper ideal X. We shall obtain a new k-strategy H ′ such
that H ′

1 = X in the following way:

• In the first stage we place in H ′ every mapping g ∈ H with 1 in its domain
such that g(1) ∈ X and every one of its subfunctions f ⊆ g.

• In the second stage we include in H ′ all the mappings f of H such that the
domain of f has exactly k elements and every one of its proper subfunctions
was included in the first stage.

It is routine to verify that H ′ is nonempty, closed under subfunctions and in
Inv(B). It has to be proved that H ′ has the k-forth property. We shall present the
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proof in the case that X is an l-ideal, which uses operation p1. The proof for X
being an r-ideal is obtained analogously by using operation p3.

Throughout the proof we will use the following fact: if a mapping f is added
to H ′ in the first stage then there exists an extension of f , g ∈ H, with 1 in its
domain such that g(1) ∈ X.

Let f ∈ H ′ be a mapping with domain I with |I| < k and let i be any element
of A. We have to prove that there exists some mapping h ∈ H ′ defined on i that
extends f . We shall observe first that the only challenging case is when |I| = k−1.
Indeed, if |I| < k−1 the extension h is obtained in the following way: First observe
that mapping f can only be added to H ′ in the first stage. Let g ∈ H with domain
{1} ∪ I be the extension of f with g(1) ∈ X. Hence by the k-forth property, there
exists some extension h ∈ H of g defined on {1, i} ∪ I. Since h(1) = g(1) ∈ X, g is
also included in the first stage, as is its restriction to I ∪ {i}, which extends f .

So for now we shall assume that |I| = k − 1. The case 1 ∈ I ∪ {i} is also
straightforward: f has to be included in H in the first stage, let g ∈ H with
domain I∪{1} be the extension of f such that g(1) ∈ X. If i = 1 then we are done.
Otherwise, 1 ∈ I and f = g. Mapping f can be extended to I ∪ {i}. The obtained
mapping belongs to H ′ because it is necessarily included in the first stage.

Hence, we can assume that 1 6∈ I∪{i}. This turns out to be the more complicated
case. Let us set, for ease of notation, that I = {2, 3, 4, . . . , k} and that i = k + 1.
We shall show that there exists some bk+1 such that (b2, . . . , bk+1) ∈ H ′

2,3,...,k+1.
By the k-forth property of H there exists some extension (b2, b3, b4 . . . , bk, uk+1)

∈ H of f , with b1 = g(1) ∈ X, where g is the extension of f . We conclude
that (b1, b2, b3, b4 . . . , bk) ∈ H1,...,k. By applying successively the closure under
subfunctions and the k-forth property of H we conclude that H contains some as-
signments (b1, b3, b4 . . . , bk, vk+1), (v2, b3, b4 . . . , bk, vk+1), (b1, b2, b4, . . . , bk, wk+1),
and (b2, w3, b4, . . . , bk, wk+1) (the domains of the mappings are implicitly indi-
cated by the indexes). Let bk+1 be p1(uk+1, vk+1, wk+1). By applying p1 to
(b2, b3, b4 . . . , bk, uk+1), (v2, b3, b4 . . . , bk, vk+1), and (b2, w3, b4 . . . , bk, wk+1) we con-
clude that the tuple (b2, b3, b4 . . . , bk, bk+1) belongs to H. We need to show that for
all 2 ≤ i ≤ k, (b2, . . . , bi−1, bi+1, . . . , bk+1) was included in the first stage, or equiva-
lently, that there exists some c1 ∈ X such that (c1, b2, . . . , bi−1, bi+1, . . . , bk+1) ∈ H.
There are a number of cases to consider:

• If i = k + 1 then the tuple (b2, . . . , bk) extends to (b1, . . . , bk), as required.
• If i = 2 then by the properties of H we can conclude that H contains

some tuples (x1, b3, . . . , bk, uk+1) and (b1, y3, b4, . . . , bk, wk+1). Applying p1

to these tuples along with the tuple (b1, b3, b4, . . . , vk+1) we obtain the tuple
(l(b1, x1), b2, . . . , bk). Since X is an l-ideal, l(b1, x1) ∈ X.

• If i = 3 or 3 < i < k + 1 then small variations of the previous argument
will work.

By repeated application of the procedure we shall obtain the required strategy. �

Lemma 8. Let A and B be σ-structures such that every relation of B is in Inv(B)
and let H ∈ Inv(B) be a k-strategy. Assume that for all i ∈ A, |Hi| ≥ 2 and Hi is
ideal free. Then there exists a nonempty subset M ⊆ A and maximal congruences
ϑm of Hm for all m ∈ M that satisfy the following statements.

(1) For any pair m1,m2 ∈ M of distinct elements, Hm1,m2 /(ϑm1 ×ϑm2) is the
graph of an isomorphism τm1,m2 : Hm1 /ϑm1 → Hm2 /ϑm2 .
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(2) For any m ∈ M and n ∈ A \M , Hn,m /(0Hn × ϑm) = Hn×(Hm /ϑm).
(3) By setting τm,m to be the identity on Hm /ϑm for all m ∈ M , then τm1,m2 ◦

τm2,m3 = τm1,m3 for all m1,m2,m3 ∈ M .

Proof. Let M ⊆ A be of maximal size with respect to satisfying statement (1).
Then M is nonempty, as any one-element subset of A satisfies that condition.
Assume that statement (2) is not satisfied, that is there exist elements m ∈ M
and n ∈ A \ M such that Hn,m /(0Hn

× ϑm) is not the direct product. Since
ϑm is a maximal congruence of Hm we know that Hm /ϑm is simple, also Hn

and Hm (and consequently Hm /ϑm) have no ideals, so we can apply Lemma 6
to Hn,m /(0Hn × ϑm). Hence Hn,m /(0Hn × ϑm) is the graph of a homomorphism
ϕ : Hn → Hm /ϑm. Put ϑn = kerϕ and τn,m = ϕ/ϑn. Clearly, ϑn is a maximal
congruence of Hn and τn,m is an isomorphism. If |M | = 1 then it follows, at this
stage, that M ∪ {n} also satisfies statement (1). This contradicts the maximality
of M . Suppose now that |M | ≥ 2. Let m′ ∈ M \ {m} be any element. Since
H is also a (2, 3)-strategy, π1,2(Hn,m,m′) = Hn,m, π2,3(Hn,m,m′) = Hm,m′ and
π1,3(Hn,m,m′) = Hn,m′ . Now the projection of Hn,m,m′/(ϑn × ϑm × ϑm′) onto the
first two and last two coordinates yield the graphs of the isomorphisms τn,m and
τm,m′ , respectively, therefore the projection onto the first and last coordinate yields
the graph of the isomorphism τn,m′ = τn,m ◦ τm,m′ . This proves that M ∪ {n} also
satisfies statement (1), which is a contradiction. Note, that the last argument of
the proof proves statement (3) as well. �

With the assumptions of Lemma 8, by fixing an element m ∈ M and a congruence
class of θm we can obtain isomorphic congruence classes of θn, for all other elements
n ∈ M , by means of the isomorphism τm,n. For all m ∈ M , let Cm be congruence
classes obtained in this way.

Lemma 9. For all m ∈ M let Cm be the congruence of θm defined above. Let G
be the set of all functions g ∈ H that satisfy the following conditions

(1) g(m) ∈ Cm for all m ∈ dom(g) ∩M , and
(2) g generates a minimal r-ideal of Hdom(g).

Then G is a k-strategy.

Proof. Clearly G is nonempty, as for any element m ∈ M and element b ∈ Hm

generates a minimal r-ideal of Hm and therefore the function g with domain {m}
with g(m) = b is in G. Clearly, the set of functions satisfying condition (1) is closed
under subfunctions, and also the ones satisfying condition (2) because of Lemma 5.
We need to prove the k-forth property.

Let f ∈ G with |dom(f)| < k and choose i ∈ A \ dom(f). Put J = dom(f) and
K = dom(f)∪ {i}. Note, that HK is a subdirect product of HJ and Hi, therefore,
by Lemma 5, there exists a function h ∈ HK such that h generates a minimal
r-ideal in HK and h|J = f . If i 6∈ M , then h ∈ G and we are done. So assume that
i ∈ M .

If J ∩M 6= ∅, then for j ∈ J ∩M , (h(i), h(j)) ∈ Hi,j , and as h(j) ∈ Cj we get
that h(i) ∈ Ci as desired. So we can assume that J ∩M = ∅.

Let D = Hi, E = HJ and R = Hi,J , and S be the minimal r-ideal of R generated
by the element h. Put D̂ = D /ϑi, ϑ̂ = ϑi × 0HJ

, R̂ = R /ϑ̂ and Ŝ = S /ϑ̂. Clearly
D̂ is simple ideal free, R̂ is a subdirect product of D̂ and E , and Ŝ is a minimal
r-ideal of R̂.
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Assume first that R̂ is the graph of a homomorphism from E onto D̂ with θ as its
kernel, then θ is a maximal congruence in Con(E), since D̂ is simple. If we denote
the kernels of projections as ηj , for j ∈ J , then

θ = θ ∨
∧
j∈J

ηj =
∧
j∈J

(θ ∨ ηj)

(by the distributivity of congruences). As θ is maximal, there exists j ∈ J so that
θ ≥ ηj . Therefore, pri,j Ŝ, which is an r-ideal of pri,j R̂, is the graph of a homo-
morphism, while pri,j R̂ = Hi,j /(ϑi × 0Hj

) is not the graph of a homomorphism,
according to the properties of M . It follows, by Lemma 3, that r(x, y) = x for all
x ∈ pri Ŝ and all y ∈ D̂. This implies that every element of pri Ŝ is an r-ideal
of D̂. This contradiction the fact that R̂ is the graph of a homomorphism. Us-
ing Lemma 6 for R̂ and Ŝ we get that Ŝ = D̂ × π2(Ŝ) = D̂ × π2(S). However,
f = h|J ∈ π2(S). Therefore there exists an element g ∈ S such that g(i) ∈ Ci and
g|J = f . As S was a minimal r-ideal, g ∈ G. �

From the strategy G obtained in this lemma we construct a k-strategy G in
Inv(B), generated by G. This strategy has functions GK = Sg∏

k∈K Hk
(GK) for all

K ⊆ A of size k. Since Cm is a subalgebra for all m ∈ M , the strategy G also
satisfies condition (1) of Lemma 9.

We are in a position to prove Theorem 1:

Proof of Theorem 1. By repeated application of Lemmas 7 and 9, using the strategy
G generated by this lemma, (before each application of Lemma 9 we project the
new H to coordinates which are not already singletons) we can construct a winning
strategy where for every i ∈ A, Hi is a singleton. Since the arity of every relation
is at most k the mapping s sending i to the only element in Hi is a solution. �
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