
Duality Theorems for Finite Structures(characterising gaps and goodcharacterisations)Jaroslav Ne�set�rilCharles University Claude TardifUniversity of ReginaOctober 26, 1998AbstractWe provide a correspondence between the subjects of duality anddensity in classes of �nite relational structures. Duality purposes tocharacterise the structures C that do not admit a homomorphism intoa given target B by the existence of a homomorphism from a structureA into C. Density is the order-theoretic property of containing no cov-ers (or `gaps'). We show that the covers in the skeleton of a categoryof �nite relational models correspond naturally to certain instances ofduality statements, and we characterise these covers.1 IntroductionThe object of the theory of homomorphism duality is to characterise a familyC of obstructions to the existence of a homomorphism into a given structureB. In a large sense, such a class C always exists; for instance, the class ofall the structures not admitting a homomorphism to B has this property.However, it is desirable to seek a more tractable family of obstructions tomake this characterisation meaningful. The classical examples of graph the-ory makes this point clear. A graph is bipartite if and only if it does notcontain an odd cycle; hence, the odd cycles are a family of obstructions tothe existence of a homomorphism into the complete graph K2. However, the1



class of directed graphs provides a much more fertile ground for the theory,and numerous examples of tree dualities and of bounded treewidth dualitiesare known (see [10], [5]).When the family C of obstructions is �nite (or algorithmically \well be-having"), then such theorems clearly provide an example of good characteri-sations (in the sense of Edmonds [2]). Any instance of such good character-isation is called a homomorphism duality. This concept was introduced byNe�set�ril and Pultr [10] and applied to various graph theoretical good charac-terisations in [9]. The simplest homomorphism dualities are those where thefamily of obstructions consists from just one structure. In the other wordssuch homomorphism dualities are described by a pair A, B of structures(graphs) as follows:De�nition 1.1 (Singleton) Homomorphism Duality SchemeG admits a homomorphism into B if and only if A does not admit ahomomorphism into GDespite of the fact that singleton homomorphism dualities are scarce forboth undirected and directed graphs, for more general structures (such asoriented matroids with suitable version of strong maps) the (singleton) ho-momorphism duality may capture general theorems such as Farkas Lemma(see [6]). J. Ne�set�ril and A. Pultr described in [10] all singleton homomor-phism dualities for undirected graphs and Kom�arek [7] and J. Ne�set�ril, Tardif[11] described all homomorphism dualities for directed graphs. In this paperwe solve the problem in a surprising generality: we describe all singletonhomomorphism dualities for �nite relational structures in general. In viewof the scarcity of examples that arise in the category of undirected graphs, itseems unlikely that the framework for such a generalisation would be foundin this context rather than that of directed graphs. Yet paradoxically, thisis precisely what happens. We are able to explain the absence of good char-acterisations for undirected graphs by an apparently unrelated result, thatis, the density theorem of Welzl, which states that the class of undirectednon-bipartite graphs is dense with respect to the homomorphism order. Theargument is purely categorial and extends to all relational structures, asshown in Section 2. In this context, our main result is the correspondencebetween `duality pairs' and `gap pairs' described in Theorem 2.8. Using thiscorrespondence we achieve simultaneously a characterisation of both single-ton homomorphism dualities (for �nite relational structures) and of gaps2



in the partial order of relational structures ordered by the existence of ahomomorphism. In this way non-gap pairs are treated in Section 3 and du-ality pairs in Section 2. Together they give the full characterisation. As aconsequence we also describe not only all singleton dualities but also all ho-momorphism dualities which are induced by �nitely many obstructions (wecall them �nitary hom-dualities, see Theorem 2.9. We conclude the paperwith some examples and open problems.2 Duality: A correspondenceRelational StructuresA relational structure of a given type generalizes the notion of a relation andof a graph to more relations and to higher (non-binary) arities. The conceptwas isolated in thirties by logicians (e.g. L�owenheim, Skolem) who developedlogical \static" theory. As we shall see this inuenced terminology even todayas we �nd useful to speak about models (of our chosen relational language).In the sixties new impulses (e.g. Isbell, Hedrl��n, Pultr, Lov�asz) came fromthe study of algebraic categories and the resulting \dynamic" studies calledfor a more explicit approach, see [4], [14], [8]. We shall adopt here a laternotation (with a stance of logical vocabulary).A type � is a sequence (�i; i 2 I) of positive integers. A relational systemA of type � is a pair (X; (Ri; i 2 I)) where X is a set and Ri 2 X�i; that isRi is a �i-nary relation on X. In this paper we shall always assume that Xis a �nite set (thus we consider �nite relational systems only).Relational systems (of type �) will be denoted by capital letters A,B,C,....A relational system of type � is also called a �-system (or a model). IfA = (X; (Ri; i 2 I)) we also denote the base set X as A and the relation Riby Ri(A). Let A = (X; (Ri; i 2 I)) and B = (Y; (Si; i 2 I)) be �-systems.A mapping f : X ! Y is called a homomorphism if for each i 2 I holds:(x1; :::; x�i) 2 Ri implies (f(x1); :::; f(x�i)) 2 Si.In other words a homomorphism f is any mapping F : A ! B whichsatis�es f(Ri(A)) � Ri(B) for each i 2 I. (Here we extended the de�nitionof f by putting f(x1; :::; xt) = (f(x1); :::; f(xt)).)For �-systems A and B we write A! B if there exists a homomorphismfrom A to B. Hence the symbol ! denotes a relation that is de�ned on the3



class of all �-systems. This relation is clearly reexive and transitive, thusinduces a quasi-ordering of all �-systems. As is usual with quasi-orderings,it is convenient to reduce it to a partial order on classes of equivalent objects:Two �-systems A and B are called homomorphically equivalent if we haveboth A! B and B ! A; we then write A � B.The relation! induces an order on the classes of homomorphically equiv-alent �-system, which we call the homomorphism order. The operations ofsum, product and exponentiation reveal the rich categorical structure of thehomomorphism order:� The sum A+B of A and B has the property that for any �-system C,we have A +B ! C if and only if A! C and B ! C.� The product A�B of A and B has the property that for any �-systemC, we have C ! A� B if and only if C ! A and C ! B.� The B-th exponent AB of A has the property that for any �-system C,we have B � C ! A if and only if C ! AB.� The two distributive laws hold between the sum and the product:A� (B + C) � (A�B) + (A� C);A+ (B � C) � (A+B)� (A+ C):Thus, the homomorphism order is a distributive lattice with exponentiation.This categorical description will be more relevant to us that the actual (i.e.inner) description of sums, products and exponents, which is bit technicalthough standard. The sum A + B of two �-systems A and B is just theirdisjoint union. Their product A�B has base set A�B, and for i 2 I, we have((a1; b1); : : : ; (a�i; b�i)) 2 Ri(A � B) if and only if (a1; : : : ; a�i) 2 Ri(A) and(b1; : : : ; b�i) 2 Ri(B). The B-th exponent AB of A has the set of all functionsfrom B to A as base set, and for i 2 I, we have (f1; : : : ; f�i) 2 R(AB) if andonly if we have (f1(b1); : : : ; f�i(b�i)) 2 R(A) whenever (b1; : : : ; b�i) 2 R(B).These de�nitions of products and exponents will not be needed again untilSection 4, where they are used in the construction of examples. The sumhas an additional descriptive function, as it embodies the standard notionof connectedness: a �-system is connected if it cannot be represented as asum of two nonempty �-systems. It is easy to see from this that if A;B;C4



are �-systems such that A is connected and A ! B + C, then A ! B orA! C, but note that this is actually a consequence of the distributive latticestructure of the order homomorphism.Finally, in the context of �nite structures, the concepts of retracts andcores are quite useful. Let A;B be �-systems with B � A. Then B iscalled a retract of A if there exists a homomorphism f : A 7! B whoserestriction to B is the identity. In particular, if A is �nite and f : A 7! A isa homomorphism, then for a su�ciently large n, fn(A) is a retract of A. A�nite �-system A is called a core if it has no proper retracts, or equivalently,if every homomorphism f : A 7! A is an automorphism of A. Any �nite�-system A has a retract A0 which is a core, as is easily seen by selecting A0as a retract of A with the smallest cardinality. The question of uniquenessis easily settled by the following observation.Lemma 2.1 Let A0 be a core which is homomorphically equivalent to A.Then for any homomorphism � : A0 7! A, there exists a homomorphism�0 : A 7! A0 such that �0 � � is the identity on A0. Conversely, for anyhomomorphism  : A 7! A0, there exists a homomorphism  0 : A0 7! A suchthat  �  0 is the identity on A0Proof. Let � : A0 7! A and  : A 7! A0 be arbitrary homomorphisms. Then, =  � � is an automorphism of A0. Thus, the maps �0 = �1 �  and 0 = � � �1 satisfy �0 � � =  �  0 = idA0.As a consequence of this result, all the retracts of A which are coresmust be isomorphic, and it makes sense to think of A0 as the core of A.Furthermore, all the �-systems which are homomorphically equivalent to Amust have isomorphic cores. Thus, in our investigations of homomorphismsbetween �nite �-systems, we can usually restrict our attention to cores with-out loss of generality.Duality pairs and gap pairsSingleton good characterisations are those where the family of obstructionsconsists of just one structure. This leads to the following: Given two �-systems A and B, we call B the dual of A if the following holds.5



For every �-system C, there exists a homomorphism from A toC if and only if there does not exist a homomorphism from C toB.This statement admits a natural interpretation in terms of ideals and �ltersin the homomorphism order: Let ! A denote the class of �-systems whichadmit a homomorphism into A, and similarly for 6! A, A! and A 6!. Then,! A is just the principal ideal generated by A in the order homomorphism,6! A is its complement, A! is the principal �lter generated by A and A 6!is its complement. The statement above is just the equality A! = 6! B.De�nition 2.2 Let A;B be �-systems. We say that the couple (A;B) is aduality pair if we have the equalityA! = 6! B:In this section, we present an alternative characterisation of duality pairsbased on the following observation.Lemma 2.3 Let (A;B) be a duality pair, where A and B are cores. ThenA is connected, A� B ! A and for every �-system C such that A�B !C ! A, we have either C � A� B or C � A.Proof. We �rst show that A must be connected. Suppose that A = A1 +: : : + An. Then, A 6! Ai implies Ai ! B for i = 1; : : : ; n. Therefore,A = A1 + : : :+ An ! B, and this implies B 6! B, which is absurd.Thus, A is connected. We clearly have A�B ! A, and for any �-systemC such that A� B ! C ! A, we either have A � C, or A 6! C. In thelatter case, we have C ! B, whence C ! A�B.This result motivates the following de�nition.De�nition 2.4 Let A;B be �-systems. We say that the couple (A;B) is agap pair if A ! B, B 6! A and every �-system C such that A ! C ! Bsatis�es C � A or C � B.Hence, a gap pair is just a cover in the homomorphism order. Lemma 2.3shows how gap pairs are derived from duality pairs. The converse is thefollowing. 6



Lemma 2.5 Let (A;B) be a gap pair, where B is connected. Then (B;AB)is a duality pair.Proof. For every model C of �-system, we have A ! A+ (B � C) ! B.Since (A;B) is a gap pair, this implies that we have either A+ (B � C) � A,or A + (B � C) � B. However, we have A+ (B � C) � A if and only ifB � C ! A, that is C ! AB. Also, since B is connected and B 6! A, wehave A+ (B � C) � B if and only if B ! B � C, that is, B ! C. Thisshows that the classes B ! and ! AB are complementary. However, weknow that the complement of the class ! AB is the class 6! AB. Thus,B ! = 6! AB:Hence there is a natural correspondence between the duality pairs (A;B)and the gap pairs (C;D) where D is connected. Starting from a duality pair(A;B), we �nd the gap pair (A�B;A) by Lemma 2.3, whence (A; (A�B)A)is a duality pair by Lemma 2.5. We then have ! B = ! (A� B)A, andthus B � (A� B)A. Conversely, if (A;B) if a gap pair and B is connected,then (B;AB) is a duality pair by Lemma 2.5, whence (B � AB; B) is a gappair by Lemma 2.3. We clearly have A � B � AB. This shows that up tohomomorphic equivalence, the correspondence described in Lemmas 2.3 and2.5 is one-to-one and onto.It remains to characterise the other gap pairs in the homomorphism or-der, namely those where the second member is not connected. We use thefollowing observation.Lemma 2.6 Let (A;B) be a gap pair, where B is connected. Then for every�-system C such that C ! B and B 6! C, we have C ! A.Proof. We have A ! A+ C ! B, but since B is connected, we haveB 6! A+ C, whence A + C � A, that is, C ! A.Lemma 2.7 Let (A;B) be a gap pair, where B is connected. Then for anyC such that A ! C ! AB, (C;C + B) is a gap pair. Moreover, for eachgap pair (C;D), there exists a gap pair (A;B) such that B is connected,A! C ! AB and D � C +B. 7



Proof. By Lemma 2.5, ifB is connected and (A;B) is a gap pair, then (B;AB)is a duality pair. Hence if A ! C ! AB, then B 6! C, thus C +B 6! C.Suppose that we have C ! D ! C +B for some �-system D. Then eitherB ! D, in which case D � C +B, or every connected component of Dthat admits a homomorphism to B also admits a homomorphism to A byLemma 2.6. Since A! C, this implies D � C.It remains to show that every gap pair has this structure. Let (C;D) bean arbitrary gap pair. Then for every connected component B of D, we haveC ! C +B ! D, which implies that either C +B � C or C +B � D.Since D 6! C, the second alternative must be true of at least one connectedcomponent B of D. We then have D � C + B. No �-system E can satisfyC � B ! E ! B and B 6! E 6! C �B, for then we would have C !C + E ! C +B and C +B 6! C + E 6! C, a contradiction to the fact that(C;C +B) is a gap pair. Hence, putting A = C �B, we have that (A;B) isa gap pair. By Lemma 2.5, (B;AB) is then a duality pair. Since B 6! C, wethen have A! C ! AB.Hence, we can provide a complete description of the correspondence be-tween duality pairs and gap pairs.Theorem 2.8 Let � be a �xed type. Then the gap pairs in the class of all�nite �-systems are the pairs (C;D) such that there exists a duality pair(A;B) with A�B ! C ! B and D � C + A. Conversely, the duality pairsin the class of all �nite �-systems are the pairs (B;AB) where (A;B) is agap pair and B is connected.Thus we have the following characterisation of �nitary hom-dualities:Theorem 2.9 Let � be a �xed type. Then there exists a �nite family C =fA1; : : : ; Ang of �-systems such thatn[i=1(Ai !) = 6! B (1)if and only if B = �ni=1Bi, where (Ai; Bi) is a duality pair for i = 1; : : : ; n.Proof. Let (A1; B1); : : : ; (An; Bn) be duality pairs, and B = �ni=1Bi. Thenfor any �-system C, we have C 6! B if and only C 6! Bi for some i, that is,if and only if Ai ! C. This shows that (1) holds.8



Conversely, let B be a �-system such that (1) holds for some familyC = fA1; : : : ; Ang of �-systems. We can assume that Ai 6! Aj for everyi 6= j, and from this follows that each Ai is connected just as in the proofof Lemma 2.3. Moreover, (B;B + Ai) is easily seen to be a gap pair. Thusby Lemma 2.7, there exists a gap pair (Ci; Ai) such that Ci ! B ! CAii .Putting Bi = CAii ; i = 1; : : : ; n, we then have Sni=1(Ai !) = 6! �ni=1Bi,whence B � �ni=1Bi.DensityA partially ordered set P is called dense if it has the property that for anyx; y 2 P such that x < y, there exists z 2 P such that x < z < y. Therefore,a homomorphism order is dense if and only if it does not contain any gaps.Theorem 2.8 shows that duality and density are just two aspects of the samequestion. Both have been investigated in the case of directed and undirectedgraphs, but these subjects have been treated independently up to now.Duality is essentially a void concept in the category of undirected graphs,since (as shown in [10]) (;; K1); (K1; K2) are the only duality pairs. On thepositive side, this implies that the class of undirected graphs is dense ex-cept for these `trivial' gaps. This property was eventually acknowledged,and Welzl [16] was the �rst to give a proof of what became known as the`density theorem' for undirected graphs. The original argument was a longand involved ad hoc construction. It seems natural that such a result wouldbe di�cult to prove, since the question of the existence of homomorphismsbetween non-bipartite graphs is NP-complete. However, a short and ele-gant proof of the density theorem, based on exponentiation, was later foundindependently by Perles and by Ne�set�ril (see e.g. [9]).This unexpected proof opened the way for new investigations on the sub-ject of density. In [17], Welzl had attracted the attention on the density prob-lem for vertex-transitive graphs, which has recently been solved by Tardif [15]and independently by Perles. In another direction, Ne�set�ril and Zhu [13] in-vestigated the class of oriented paths, and proved a density result similar tothat of Welzl. In this context, the structure of the gaps is more intricate,and their complete characterisation was a feat. It turns out that the gaps inthe class of oriented paths are also gaps in the class of all directed graphs.On the other hand, the Ne�set�ril-Perles proof of the density theorem adapts9



to some classes of directed graphs (such as unbalanced graphs, se [9]), butnot all. Thus, the problem of characterising the gaps in the category of di-rected graphs remained open for a long time, with no simple solution in view.All the while, the duality pairs in the class of directed graphs had alreadybeen characterised by Kom�arek: For a directed (core) graph G, there existsa directed graph DG such that (G;DG) is a duality pair if and only if G isan orientation of a tree. Thus, modulo the correspondence presented here,the problem of density for directed graphs was solved even before it wasformulated, as we mentioned in [11].We will show that the case of directed graphs is a faithful reection ofthe general situation in relational structures: The structures that are �rstmembers of duality pairs are `trees' in a certain sense. According to Theo-rem 2.8, we may choose to confront the problem from the point of view ofdensity instead of that of duality. This is indeed the approach adopted inthe next section.3 Density: A characterisationShadows of relational structuresLet A be a �-system. The shadow of A is the unoriented multigraph G(A)whose vertices are the elements of A, and containing an edge e joining aand b whenever there exists a relation R of arity n � 2 in A such that(a1; : : : ; an) 2 R(A) with ai = a; ai+1 = b for some i.The full structure of relational models determines which maps are homo-morphisms, but their shadows are su�cient for a description of those whichadmit a dual. The 1-ary relations do not play any part in the de�nition ofshadows, while the relations of higher arities may contribute many edges andloops. A cycle of G(A) can be a 1-cycle (i.e., a loop), a 2-cycle (i.e., twoparallel edges), or an ordinary n-cycle with n � 3. We will call A a tree ifG(A) is a tree (and thus has neither multiple edges nor loops). The purposeof this section is to prove the following.Theorem 3.1 Let A be a connected core. Then there exists a �-system Bsuch that (B;A) is a gap pair if and only if A is a tree.10



The proof consists of two constructions. The �rst is the arrow construc-tion discussed in [12], which is used to �nd �-systems that are homomorphi-cally `in between' two given �-systems. We next characterise the `gap belowa tree' with a new construction based on local inversions of homomorphisms.The arrow constructionDe�nition 3.2 Let A be a �-system, and P a partition of A .(Here wewiew a partition P as a set of disjoint subsets P1; :::; Pn.) The quotient AjPis the �-system de�ned on the set P by putting, for every relation Ri of A,(P1; : : : ; P�i) 2 R�i(AjP) if and only if there exists ai 2 Ai; i = 1; : : : ; �i suchthat (a1; : : : ; a�i) 2 Ri(A). We denote �P the quotient map from A to AjP.The quotient AjP has the least structure which makes the quotient map�P a homomorphism. This explains why quotients arise naturally in connec-tion with homomorphisms. In particular, when P is a partition of A, then ahomomorphism � : A 7! B can be factored through AjP, that is, expressedas � =  � �P , where  : AjP 7! B is a homomorphism, if and only if Pre�nes the partition f��1(b) : b 2 Bg of A.The operation presented next can be described informally as replacing thearcs of a directed graph by copies of a �-system. Formally, this procedure isbest presented in terms of quotients.De�nition 3.3 Let K be a directed graph and D a �-system. For a; b 2 D,the arrow product K �D(a; b) is the �-system (E(K) �D)jP, where� E(K) � D is the disjoint union of jE(K)j copies of D, de�ned on thebase set E(K) � D by putting ((e1; d1); : : : ; (e�i; d�i)) 2 Ri(E(K) �D)if and only if e1 = : : : = e�i and (d1; : : : ; d�i) 2 Ri(D) for every i 2 I.� P = P0 [ P1 is a partition of E(K) �D, where P0 contains one set Vufor each vertex u of K, de�ned byVu = f((u; v); a) : (u; v) 2 E(K)g [ f((v; u); b) : (v; u) 2 E(K)g;and P1 consists of singletons containing the remaining elements:P1 = ff(e; c)g : e 2 E(K) and c 2 D n fa; bgg:11



Thus, K � D(a; b) is the �-system obtained by replacing every directededge (u; v) of K by a copy of D, with a taking the role of u and b taking therole of v. Independently of the structure of K, we then have K �D(a; b) !DjPab, where the partition Pab only identi�es a and b (in all our applicationselements a and b will be distinct). This observation will be the basis of ourconstruction.Proposition 3.4 Let A be a connected core such that G(A) contains a cycle.Then for any �-system B such that A 6! B, there exists a �-system C suchthat C ! A, A 6! C and C 6! B.Proof. We �rst `split up' an element of A, that is, express A as a quotientDjPab, where the partition Pab only identi�es two elements a and b. We needto choose this element carefully. Since G(A) contains a cycle, there existsi 2 I and (a1; : : : ; a�i) 2 Ri(A) such that at least one of the correspondingedges [aj; aj+1] is contained in a cycle of G(A) (to simplify the notation,we use brackets to denote edges even though G(A) is a multigraph). Let jbe the minimum index such that the edge [aj; aj+1] is contained in a cycle.Put a = aj and a0 = aj+1. Let D be the �-system de�ned on the base setD = A [ fbg (we assume b =2 A) by putting,� Ri(D) = Ri(A) n (a1; : : : ; a�i) [ (a1; : : : ; ai�1; b; ai+1; : : : ; a�i),� Ri0(D) = Ri0(A) if i0 6= i.We then have A = DjPab. The edges of G(A) correspond naturally to theedges of G(D). The vertex b of G(D) is incident to at most two edges, andby minimality, the edge [a; a0], which is in a cycle of G(A), correspond to[b; a0] which is not contained in any cycle of G(D). (Note that if a = a0, [a; a]is a loop of G(A) while [b; a] is not a loop of G(D).)It is possible that we already have D 6! B, and we are done (as D ! Aand A 6! D as one can check easily - if not see the argument below). In anycase, no homomorphism from D to B can identify a and b, since DjPab =A 6! B. Hence, such homomorphisms from D to B can be thought of ascolourings of a and b with di�erent elements of B. Let K be an arbitraryoriented graph with chromatic number greater than the cardinality of B, andput C = K �D(a; b). We shall prove that C satis�es the required conditions.12



� C ! A as noted above. The natural homomorphism � : C 7! Acoincides with the quotient map �Pab on every canonical copy of D inC.� C 6! B since any homomorphism from C to B should map Vu and Vvto di�erent elements of B whenever (u; v) is an edge of K, which isimpossible because �(K) > jBj.It only remains to show that A 6! C. Note that A ! C holds if andonly if A is the core of C. Supposing that this is the case, there exists ahomomorphism �0 : A 7! C such that � � �0 = idA by Lemma 2.1, where� : C 7! A is the canonical homomorphism de�ned above. This means that�0 maps a to the set Vu for some vertex u of K, and maps every other elementc of A to a singleton f(e; c)g. Note that �0 induces an embedding of G(A)into G(C). In particular, the edge [a; a0] of G(A) is mapped to some edge[Vu; f(e; a0)g] in G(C), and the cycle containing [a; a0] must be mapped tosome cycle in G(C). However, since [b; a0] is not contained in any cycle ofG(D), any cycle of G(C) containing [Vu; f(e; a0)g] must pass through othersets Vv corresponding to vertices of K. This is a contradiction, since thesesets do not belong to the image of �0. Note that if a = a0, the contradictionis immediate since the edges of C corresponding to [a; a] are not loops.In particular, if B ! A and A 6! B, then with C as in Proposition 3.4, wehave B ! B [ C ! A and A 6! B [ C 6! B. Thus, we have the following.Corollary 3.5 Let A be a connected core such that G(A) contains a cycle.Then for any �-system B such that B ! A and A 6! B, there exists a�-system C such that B ! C ! A and A 6! C 6! B.This completes the �rst part of the proof of Theorem 3.1The gap below a treeThe concept of `tree' is quite descriptive, even in the case of relational �-systems. A �-system which is a tree will be called shortly �-tree. However,it is not entirely clear what should be meant by a `subtree' of a �-systemA which is a tree. Indeed, the �-system A may contain 1-ary relations, andthese are not represented in the structure of G(A). Our construction makesan extensive use of subtrees, and it is necessary to give a precise de�nition.13



De�nition 3.6 Let A be a �-tree. A subtree of A is a �-system B which isa tree such that B � A and the inclusion is a homomorphism from B to A.B is a proper subtree of A if the inclusion is not an isomorphism from B toA. It can happen that di�erent subtrees of A share the same shadow. Inparticular, a proper subtree B of A can have G(A) as its shadow. In thiscase, there exists a 1-ary relation Ri such that a 2 Ri(A) and a 62 Ri(B)for some a 2 A = B. This shows that the standard set-theoretic notationis not convenient to represent subtree inclusion. We will reserve the set-theoretic notation for the base sets, and use lattice-theoretic notations toorder subtrees, as detailed in the following.De�nition 3.7 Let A be a �-tree.� The family of all �-subtrees of A is denoted TA. We will use the symbol� to denote the order relation \is a subtree of" on TA.� (TA;�) is a lattice, with B1 ^ B2 de�ned by B1 ^ B2 = B1 \B2 andRi(B1 ^B2) = Ri(B1) \ Ri(B2) for every i 2 I.� Conversely, we write B1 _B2 to denote the supremum of B1 and B2 in(TA;�).This lattice ordering of the subtrees of a tree parallels the situation ingraphs, but note that G(B1 _ B2) can be strictly greater than the smallestsubtree of G(A) containing both G(B1) and G(B2). This follows from thefact that not all the subtrees of G(A) induce subtrees of A. Given a subtree Tof G(A), there exists a subtree B of A with G(B) = T if and only if for everyi 2 I �i � 2, (a1; : : : ; a�i) 2 Ri(A) implies that the path P = a1; : : : ; a�i ofG(A) is either contained in T or intersects T in at most one vertex.Following these preliminary de�nitions, we can present the concept thatwill be the basis of our construction.De�nition 3.8 Let A be a tree. For a 2 A, a set I of proper subtrees of Acontaining a is called a a-ideal if� B0 � B 2 I implies B0 2 I whenever a 2 B0,14



� B1 _ B2 2 I whenever B1; B2 2 I and B1 \B2 = fag.We can now present our construction of the predecessor of a tree.De�nition 3.9 Let A be a �-tree. The �-system A# is de�ned on the baseset A# = f(a; I) : a 2 A; I is an a-ideal of TAgas follows:� If Ri is a 1-ary relation, i.e. if �i = 1, put (a; I) 2 Ri(A#) if a 2 Ri(B)for some B 2 I.� If Ri is a �-ary relation with � > 1, put ((a1; I1); : : : ; (a�; I�)) 2 Ri(A#)if and only if (a1; : : : ; a�) 2 Ri(A) and W�j=1Bj 2 T�j=1 Ij for everyfamily Bj 2 Ij; j = 1; : : : ; � such that Bj0 \ Bj = ; whenever j 0 6= j.We clearly have A# ! A, since the projection � : A# 7! A de�ned by�(a; I) = a is a homomorphism. The next two lemmas will show that (A#; A)is a gap.Lemma 3.10 Let A be a �-tree. Then for any �-system X such that X !A and A 6! X, we have X ! A#.Proof. Let X be a �-system such that X ! A and A 6! X. Let � : X 7! Abe a homomorphism. For x 2 X, let Ix be the family of subtrees B of A suchthat �(x) 2 B and � admits a `local inverse' around x with domain B, thatis, a homomorphism  B : B 7! X such that  B(�(x)) = x and � � B = idB.We �rst show that Ix is a �(x)-ideal. The fact that A 6! X impliesthat each element of Ix is a proper subtree of A. We clearly have B0 2 Ixwhenever B0 � B 2 Ix and �(x) 2 B0, since the restriction of a local inverse B : B 7! X to B0 is also a local inverse of �. It remains to show thatfor B1; B2 2 Ix such that B1 \ B2 = f�(x)g, we have B1 _ B2 2 Ix. Let 1 : B1 7! X; 2 : B2 7! X be local inverses of � around x. Note thatB1 _B2 = B1 [ B2, and  1(�(x)) =  2(�(x)) = x. Hence we can de�ne : B1 _ B2 7! X by  (b) =  i(b) if b 2 Bi. This is a homomorphism, sincefor any relation Ri i 2 I, (b1; : : : ; b�i) 2 Ri(B1 _ B2) implies that b1; : : : ; b�iall belong to the same Bj, whence ( i(b1); : : : ;  i(b�i)) 2 Ri(X). Thus, Ix isa �(x)-ideal. 15



Therefore, we can de�ne a map �̂ : X 7! A# by �̂(x) = (�(x); Ix), andit only remains to show that �̂ is a homomorphism from X to A#. For(x1; : : : ; x�i) 2 Ri(X), we have (�(x1); : : : ; �(x�i)) 2 Ri(A) since � is a ho-momorphism. Let fB1; : : : ; B�ig be a family of pairwise disjoint subtrees ofA such that Bj 2 Ixj ; j = 1; : : : ; �i, and  j : Bj 7! X the associated localinverses. Then, W�ij=1Bj = S�ij=1Bj, and the map  : W�ij=1Bj 7! X de�ned by (b) =  j(b) if b 2 bj is a homomorphism by the same argument as the oneused above. Thus, W�ij=1Bj 2 T�ij=1 Ij. Therefore, ((x1; Ix1); : : : ; (x�i ; Ix�i )) 2Ri(A#), and �̂ is a homomorphism.Lemma 3.11 Let A be a tree and a core. Then A 6! A#.Proof. Suppose that � : A 7! A# is a homomorphism. Since A is a core,we can assume by Lemma 2.1 that � � � = idA, where � : A# 7! A is thenatural projection. Thus, for every a 2 A, there exists an a-ideal Ia suchthat �(a) = (a; Ia). We will show that A 2 Ia, for some a 2 A, which is acontradiction since Ia should only contain proper subtrees of A.Note that the set of edges of G(A) admits a canonical partition intopaths Pj = aj1; : : : ; aj�j ; j = 1; : : : ; m such that for every path Pj, there existsa relation Rj of arity �j � 2 such that (aj1; : : : aj�j ) 2 Rj(A); these are calledthe elementary paths of A. If T is a subtree of G(A) which is a union of someelementary paths, we denote AT the subtree of A induced by T , that is, themaximal subtree of A having T as its shadow. We will prove that if a is avertex of T , then AT 2 Ia by induction on the number of elementary pathsof T . This will provide our contradiction since AG(A) = A.First step of our induction is the case where T contains no elementarypath. Then, T consists of a single vertex a, and AT is the �-system with baseset fag such that for every 1-ary relation Ri, we have a 2 Ri(AT ) if and onlyif a 2 Ri(A). Let R1; : : : ; Rn be the 1-ary relations of A such that a 2 Ri(A).Since � is a homomorphism, we have (a; Ia) 2 Ri(A#) which means that Iacontains at least one tree Bi with base set fag such that a 2 Ri(Bi) fori = 1; : : : ; n. Therefore, _ni=1Bi = AT 2 Ia since Ia is an a-ideal.Now suppose that our assumption is true for every subtree of G(A) withat most k elementary paths. Let T � G(A) be the union of k+1 elementarypaths. Then a belongs to some elementary path P = a1; : : : ; an, of A. LetTi be the connected component of T �E(P ) which contains ai, i = 1; : : : ; n.16



By our induction hypothesis, we have ATi 2 Iai , i = 1; : : : ; n. Since � isa homomorphism and (a1; : : : ; an) 2 R(A) for some R 2 L, we then have((a1; Ia1); : : : ; (an; Ian)) 2 R(A#). By the de�nition of A#, this impliesAT = n_i=1ATi 2 n\i=1 Iai :In particular, AT 2 Ia.Combining the two previous lemmas, we get the following.Proposition 3.12 Let A be a �-system that is a tree and a core. ThenA# ! A, and for every L-model B such that A# ! B ! A, we have B � Aor B � A#.This completes the second part of the proof of Theorem 3.1.4 ExamplesAs a consequence of Theorem 3.1, the dualities that are characterised inTheorem 2.8 are of the type A! = 6! (A#)A;where A is a core tree. The `good characterisations' of Theorem 2.9 are ob-tained by combining some of these dualities. In this section, we present afew examples to illustrate the use of the predecessor construction and expo-nentiation, and point out some questions raised by this characterisation.Types � with binary relations allow for the construction of meaningfulexamples that are not too large. In our �rst example, the type � has twobinary relations Rb and Rg. Let A be the �-system de�ned by A = f1; 2; 3g,Rb(A) = f(1; 2)g and Rg(A) = f(2; 3)g. If we interpret the elements of Rb asblue arcs and those of Rg as green arcs, then A is a path with the �rst arcblue and the second green. Thus, A is a core tree, and admits a predecessorA#. The proper subtrees of A are the singletons and B1 = f1; 2g; B2 = f2; 3g(we can identify subtrees with subsets of A since L does not contain 1-ary relations). Hence, the only nontrivial 1-ideal is I1 = ff1g; B1g, the17



only nontrivial 3-ideal is I3 = ff3g; B2g, and there are three nontrivial 2-ideals, namely I2 = ff2g; B1g, I 02 = ff2g; B2g and I 002 = ff2g; B1; B2g. Theelements of A# corresponding to trivial ideals are necessarily isolated, hencecan be omitted. Thus, the elements of A# are 1b = (1; I1), 2b = (2; I2),2g = (2; I 02), 2; = (2; I 002 ), and 3g = (3; I3). Since fxg _ Bi = A wheneverx 62 Bi, Rb(A#) contains the only the arc (1b; 2b), and Rg(A#) contains theonly the arc (2g; 3g). It turns out that 2; is also isolated; essentially, A#consists of the blue arc (1b; 2b) and the green arc (2g; 3g).The base set of the dual (A#)A of A consists of functions from A toA#. There are 64 such functions, if we restrict the image to the core of A#.However, most of them do not belong to the core of (A#)A, and we can restrictour attention to the functions which carry the most structure.� A function f is the beginning of a blue arc only if f(1) = 1b.� A function f is the end of a blue arc only if f(2) = 2b.� A function f is the beginning of a green arc only if f(2) = 2g.� A function f is the end of a green arc only if f(3) = 3g.Only two functions satisfy at least three of these conditions, namely fb de�nedby fb(1) = 1b; fb(2) = 2b; fb(3) = 3g and fg de�ned by fg(1) = 1b; fg(2) =2g; fg(3) = 3g. We have (fb; fb); (fg; fb) 2 Rb((A#)A) and (fg; fb); (fg; fg) 2Rg((A#)A). We will not need to look any further. Given a L-model C, de�nea map � : C 7! (A#)A by�(c) = ( fb if c is the end of a blue arc,fg otherwise.Then, whenever (c; d) 2 Rb(C), we have �(d) = fb, thus (�(c); �(d)) 2Rb((A#)A). If � is not a homomorphism, then there exists (c; d) 2 Rg(C)such that (�(c); �(d)) 62 Rg((A#)A), that is, �(c) = fb. The element c of Cis then the beginning of a green arrow and the end of a blue arrow, whenceA! C. This shows that ffb; fgg is the core of (A#)A.In this example, (A#)A turns out to have a relatively small core, eventhough its characterisation involves two exponential constructions, namelythe predecessor construction and exponentiation. Is this always the case? Ofcourse, the precise meaning of `small' depends on the type �, since a tree18



with one element can have a dual with n elements whenever the type � hasn 1-ary relations. Our question can therefore be formulated as follows.Problem 1 Given a �xed type �, does there exist a polynomial p� such thatfor every type �-system A that is a core tree with jAj � n, the core of (A#)Ahas at most p� elements?We conclude with an example which shows that the size of the core of(A#)A can grow exponentially with respect to jAj+ j�j. For a given integern � 2, let � contains one n-ary relation R0 and n 1-ary relations R1; : : : ; Rn.We de�ne the �-system A by A = f1; : : : ; ng, R0(A) = f(1; : : : ; n)g andRi(A) = fig; i = 1; : : : ; n. Then A is a core tree and admits a dual (A#)A.Instead of constructing A# and (A#)A directly from the de�nitions, it is possi-ble to guess a plausible candidate for the dual of A and verify that it satis�esthe required conditions. This turns out to be more practical in this case, andwe will show that the dual of A has 2n elements.Let B be the �-system whose base set consists of all the subsets off1; : : : ; ng, de�ned by putting S 2 Ri(B) if i 2 S for i = 1; : : : ; n, and(S1; : : : ; Sn) 2 R0(S) if we have i 62 Si for some i. Then for any �-systemC, we can de�ne a map � : C 7! B by �(c) = fi : c 2 Ri(C)g. We then have�i(c) 2 Ri(B) whenever c 2 Ri(C) for i = 1; : : : ; n. If A 6! C, then for every(c1; : : : ; cn) 2 R0(C), there exists an index i such that ci 62 Ri(C), whencei 62 �(ci) and (�(c1); : : : ; �(cn)) 2 R0(B). Therefore, A 6! C implies C ! B.This shows that B is the dual of A, since A 6! B.We next show that B is a core. Let � : B 7! B be a homomorphism.Then S � �(S) for all S 2 B, since � must preserve the 1-ary relationsR1; : : : ; Rn. Suppose that S is a proper subset of �(S) for some S 2 B.De�ne S1; : : : ; Sn by Si = S if i 2 �(S) and Si = f1; : : : ; ng if i 62 �(S). Then(S1; : : : ; Sn) 2 R0(B) while (�(S1); : : : ; �(Sn)) 62 R0(B), a contradiction.This shows that � must be the identity, whence B is a core.The predecessor of A is homomorphically equivalent to A�B. R0(A�B)consists of the n-tuples ((1; S1); : : : ; (n; Sn)) such that i 62 Si for at least oneindex i, and (i; S) 2 Rj(A � B) if and only if j = i 2 S. The core C ofA�B is obtained by collapsing, for each i 2 f1; : : : ; ng, all the couples (i; S)such that i 2 S onto one element labelled i0, and all the elements (i; S) suchthat i 62 S onto one element labelled i00. If C is viewed as the core of A#,then i0 corresponds to the i-ideal which contains all proper subtrees of A,19



and i00 corresponds to the principal i-ideal generated by the subtree obtainedby removing i from Ri(A). Note that B can then be viewed as the set offunctions f 2 CA such that f(i) 2 fi0; i00g for i = 1; : : : ; n.In both of our examples, the core of A# admits a unique homomorphism toA, and the core of (A#)A consists of the functions which map each element ofA into its preimage by this homomorphism. This seems to suggest a generalsimpli�cation for the construction of the core of (A#)A. However, such asimpli�cation could only make sense if the homomorphism from the core ofA# to A was always unique, and this is not the case. Moreover, even whenthe homomorphism is unique, the core of (A#)A does not necessarily consistof functions mapping each element to its preimage. It would be interestingto know up to which extent can the characterisation of duals be simpli�ed,and whether the indirect approach via density is optimal.Acknowledgements This research was done while the second author wasvisiting Charles University. The support of DIMATIA is gratefully acknowl-edged. The �rst author was supported by GA�CR 0194 and GAUK 194grants.References[1] D. Du�us, N. Sauer, Lattices arising in categorial investigations ofHedetniemi's conjecture, Discrete Math. 152 (1996), 125{139.[2] J. Edmonds, Paths, Trees and Flowers, Canad. J. Math. 17(1965), 449-467.[3] R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe,Compos. Math. 6(1938), 239-250[4] Z. Hedrl��n, A. Pultr, Symmetric Relations (Undirected Graphs) withGiven Semigroups, Monatshefte f. Mathematik 69,4(1965), 318-322[5] P. Hell, J. Ne�set�ril, X. Zhu, Duality and polynomial testing of tree ho-momorphisms, Trans. Amer. Math. Soc. 348 (1996), 1281{1297.[6] W. Hochst�atter, J. Ne�set�ril, Linear Programming Duality and Mor-phisms, KAM Series 95-298 20
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