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Abstract

We provide a correspondence between the subjects of duality and
density in classes of finite relational structures. Duality purposes to
characterise the structures C that do not admit a homomorphism into
a given target B by the existence of a homomorphism from a structure
A into C. Density is the order-theoretic property of containing no cov-
ers (or ‘gaps’). We show that the covers in the skeleton of a category
of finite relational models correspond naturally to certain instances of
duality statements, and we characterise these covers.

1 Introduction

The object of the theory of homomorphism duality is to characterise a family
C of obstructions to the existence of a homomorphism into a given structure
B. In a large sense, such a class C always exists; for instance, the class of
all the structures not admitting a homomorphism to B has this property.
However, it is desirable to seek a more tractable family of obstructions to
make this characterisation meaningful. The classical examples of graph the-
ory makes this point clear. A graph is bipartite if and only if it does not
contain an odd cycle; hence, the odd cycles are a family of obstructions to
the existence of a homomorphism into the complete graph K. However, the



class of directed graphs provides a much more fertile ground for the theory,
and numerous examples of tree dualities and of bounded treewidth dualities
are known (see [10], [5]).

When the family C of obstructions is finite (or algorithmically “well be-
having”), then such theorems clearly provide an example of good characteri-
sations (in the sense of Edmonds [2]). Any instance of such good character-
isation is called a homomorphism duality. This concept was introduced by
Nesettil and Pultr [10] and applied to various graph theoretical good charac-
terisations in [9]. The simplest homomorphism dualities are those where the
family of obstructions consists from just one structure. In the other words
such homomorphism dualities are described by a pair A, B of structures
(graphs) as follows:

Definition 1.1 (Singleton) Homomorphism Duality Scheme
G admits a homomorphism into B if and only if A does not admit a
homomorphism into G

Despite of the fact that singleton homomorphism dualities are scarce for
both undirected and directed graphs, for more general structures (such as
oriented matroids with suitable version of strong maps) the (singleton) ho-
momorphism duality may capture general theorems such as Farkas Lemma
(see [6]). J. Nesettil and A. Pultr described in [10] all singleton homomor-
phism dualities for undirected graphs and Komérek [7] and J. Nesetftil, Tardif
[11] described all homomorphism dualities for directed graphs. In this paper
we solve the problem in a surprising generality: we describe all singleton
homomorphism dualities for finite relational structures in general. In view
of the scarcity of examples that arise in the category of undirected graphs, it
seems unlikely that the framework for such a generalisation would be found
in this context rather than that of directed graphs. Yet paradoxically, this
is precisely what happens. We are able to explain the absence of good char-
acterisations for undirected graphs by an apparently unrelated result, that
is, the density theorem of Welzl, which states that the class of undirected
non-bipartite graphs is dense with respect to the homomorphism order. The
argument is purely categorial and extends to all relational structures, as
shown in Section 2. In this context, our main result is the correspondence
between ‘duality pairs’ and ‘gap pairs’ described in Theorem 2.8. Using this
correspondence we achieve simultaneously a characterisation of both single-
ton homomorphism dualities (for finite relational structures) and of gaps



in the partial order of relational structures ordered by the existence of a
homomorphism. In this way non-gap pairs are treated in Section 3 and du-
ality pairs in Section 2. Together they give the full characterisation. As a
consequence we also describe not only all singleton dualities but also all ho-
momorphism dualities which are induced by finitely many obstructions (we
call them finitary hom-dualities, see Theorem 2.9. We conclude the paper
with some examples and open problems.

2 Duality: A correspondence

Relational Structures

A relational structure of a given type generalizes the notion of a relation and
of a graph to more relations and to higher (non-binary) arities. The concept
was isolated in thirties by logicians (e.g. Léwenheim, Skolem) who developed
logical “static” theory. As we shall see this influenced terminology even today
as we find useful to speak about models (of our chosen relational language).
In the sixties new impulses (e.g. Isbell, Hedrlin, Pultr, Lovédsz) came from
the study of algebraic categories and the resulting “dynamic” studies called
for a more explicit approach, see [4], [14], [8]. We shall adopt here a later
notation (with a stance of logical vocabulary).

A type A is a sequence (d;;4 € I) of positive integers. A relational system
A of type A is a pair (X, (R;;i € I)) where X is a set and R; € X?%; that is
R; is a d;-nary relation on X. In this paper we shall always assume that X
is a finite set (thus we consider finite relational systems only).

Relational systems (of type A) will be denoted by capital letters A,B,C,....
A relational system of type A is also called a A-system (or a model). If
A = (X, (R;;i € I)) we also denote the base set X as A and the relation R;
by R;(A). Let A = (X,(R;;i € I)) and B = (Y, (S;;¢ € I)) be A-systems.
A mapping f : X — Y is called a homomorphism if for each i € I holds:
(1, ..., x5,) € R; implies (f(x1), ..., f(xs,)) € S;.

In other words a homomorphism f is any mapping F' : A — B which

satisfies f(R;(A)) C R;(B) for each i € I. (Here we extended the definition

of f bY pUttlng f(xla "'J:Et) - (f(xl)a L] f(xf)))
For A-systems A and B we write A — B if there exists a homomorphism

from A to B. Hence the symbol — denotes a relation that is defined on the



class of all A-systems. This relation is clearly reflexive and transitive, thus
induces a quasi-ordering of all A-systems. As is usual with quasi-orderings,
it is convenient to reduce it to a partial order on classes of equivalent objects:
Two A-systems A and B are called homomorphically equivalent if we have
both A — B and B — A; we then write A ~ B.

The relation — induces an order on the classes of homomorphically equiv-
alent A-system, which we call the homomorphism order. The operations of
sum, product and exponentiation reveal the rich categorical structure of the
homomorphism order:

e The sum A+ B of A and B has the property that for any A-system C,
we have A+ B — C ifand only if A - C and B — C.

e The product A x B of A and B has the property that for any A-system
C, we have C' - A x B if and only if C — A and C' — B.

e The B-th ezponent AP of A has the property that for any A-system C,
we have B x C' — A if and only if C' — AP,

e The two distributive laws hold between the sum and the product:

Ax (B+C) ~ (AxB)+(AxC),
A+(BxC) ~ (A+B)x (A+0).

Thus, the homomorphism order is a distributive lattice with exponentiation.
This categorical description will be more relevant to us that the actual (i.e.
inner) description of sums, products and exponents, which is bit technical
though standard. The sum A + B of two A-systems A and B is just their
disjoint union. Their product A x B has base set A x B, and for i € I, we have
((a1,b1), ..., (as, bs,)) € Ri(A x B) if and only if (a1,...,as) € R;(A) and
(bi,...,bs,) € R;(B). The B-th exponent A” of A has the set of all functions
from B to A as base set, and for i € I, we have (fy,..., fs.) € R(AP) if and
only if we have (fi(b1),-.., f5,(bs,)) € R(A) whenever (by,...,bs) € R(B).
These definitions of products and exponents will not be needed again until
Section 4, where they are used in the construction of examples. The sum
has an additional descriptive function, as it embodies the standard notion
of connectedness: a A-system is connected if it cannot be represented as a
sum of two nonempty A-systems. It is easy to see from this that if A, B,C



are A-systems such that A is connected and A — B+ C, then A — B or
A — C, but note that this is actually a consequence of the distributive lattice
structure of the order homomorphism.

Finally, in the context of finite structures, the concepts of retracts and
cores are quite useful. Let A, B be A-systems with B C A. Then B is
called a retract of A if there exists a homomorphism f : A +— B whose
restriction to B is the identity. In particular, if A is finite and f: A — A is
a homomorphism, then for a sufficiently large n, f"(A) is a retract of A. A
finite A-system A is called a core if it has no proper retracts, or equivalently,
if every homomorphism f : A — A is an automorphism of A. Any finite
A-system A has a retract A’ which is a core, as is easily seen by selecting A’
as a retract of A with the smallest cardinality. The question of uniqueness
is easily settled by the following observation.

Lemma 2.1 Let A" be a core which is homomorphically equivalent to A.
Then for any homomorphism ¢ . A" — A, there erists a homomorphism
¢ A — A such that ¢' o ¢ is the identity on A'. Conversely, for any
homomorphism ¢ : A — A, there exists a homomorphism ' : A" — A such
that ¢ o9’ is the identity on A’

Proof. Let ¢ : A’ — A and ¢ : A — A’ be arbitrary homomorphisms. Then,
v = 1 o ¢ is an automorphism of A’. Thus, the maps ¢’ = v ! o1 and
' = ¢ovy ! satisfy ¢’ op =1 o) =ida. |

As a consequence of this result, all the retracts of A which are cores
must be isomorphic, and it makes sense to think of A’ as the core of A.
Furthermore, all the A-systems which are homomorphically equivalent to A
must have isomorphic cores. Thus, in our investigations of homomorphisms
between finite A-systems, we can usually restrict our attention to cores with-
out loss of generality.

Duality pairs and gap pairs

Singleton good characterisations are those where the family of obstructions
consists of just one structure. This leads to the following: Given two A-
systems A and B, we call B the dual of A if the following holds.



For every A-system C', there exists a homomorphism from A to
C if and only if there does not exist a homomorphism from C' to
B.

This statement admits a natural interpretation in terms of ideals and filters
in the homomorphism order: Let — A denote the class of A-systems which
admit a homomorphism into A, and similarly for A4 A, A — and A /4. Then,
— A is just the principal ideal generated by A in the order homomorphism,
/4 A is its complement, A — is the principal filter generated by A and A /4
is its complement. The statement above is just the equality A — = /4 B.

Definition 2.2 Let A, B be A-systems. We say that the couple (A, B) is a
duality pair if we have the equality

A—-=4AB8B.

In this section, we present an alternative characterisation of duality pairs
based on the following observation.

Lemma 2.3 Let (A, B) be a duality pair, where A and B are cores. Then
A is connected, A x B — A and for every A-system C' such that A x B —
C — A, we have either C ~ A x B or C ~ A.

Proof. We first show that A must be connected. Suppose that A = A; +
...+ A,. Then, A /A A, implies A; — B for + = 1,...,n. Therefore,
A=A+ ...+ A, — B, and this implies B 4 B, which is absurd.

Thus, A is connected. We clearly have A x B — A, and for any A-system
C such that A x B — C — A, we either have A ~ C, or A /A C. In the
latter case, we have C' — B, whence C' — A x B. |

This result motivates the following definition.

Definition 2.4 Let A, B be A-systems. We say that the couple (A, B) is a
gap pairift A — B, B /& A and every A-system C such that A - C — B
satisfies C' ~ A or C ~ B.

Hence, a gap pair is just a cover in the homomorphism order. Lemma 2.3
shows how gap pairs are derived from duality pairs. The converse is the
following.



Lemma 2.5 Let (A, B) be a gap pair, where B is connected. Then (B, A?)
18 a duality pair.

Proof. For every model C' of A-system, we have A — A+ (B x C) — B.
Since (A, B) is a gap pair, this implies that we have either A + (B x C) ~ A,
or A+ (B xC) ~ B. However, we have A+ (B x C') ~ A if and only if
B x C — A, that is O — APB. Also, since B is connected and B /4 A, we
have A+ (B x C) ~ B if and only if B — B x C, that is, B — C. This
shows that the classes B — and — A® are complementary. However, we
know that the complement of the class — A® is the class 4 AZ. Thus,

B — =4 AP

Hence there is a natural correspondence between the duality pairs (A, B)
and the gap pairs (C, D) where D is connected. Starting from a duality pair
(A, B), we find the gap pair (A x B, A) by Lemma 2.3, whence (4, (4 x B)")
is a duality pair by Lemma 2.5. We then have — B = — (A x B)#, and
thus B ~ (A x B)%. Conversely, if (A, B) if a gap pair and B is connected,
then (B, AP) is a duality pair by Lemma 2.5, whence (B x AP, B) is a gap
pair by Lemma 2.3. We clearly have A ~ B x A®. This shows that up to
homomorphic equivalence, the correspondence described in Lemmas 2.3 and
2.5 is one-to-one and onto.

It remains to characterise the other gap pairs in the homomorphism or-
der, namely those where the second member is not connected. We use the
following observation.

Lemma 2.6 Let (A, B) be a gap pair, where B is connected. Then for every
A-system C' such that C'— B and B /4 C, we have C' — A.

Proof. We have A — A+ C — B, but since B is connected, we have
B 4 A+ C, whence A+ C ~ A that is, C — A. |

Lemma 2.7 Let (A, B) be a gap pair, where B is connected. Then for any
C such that A — C — AB, (C,C + B) is a gap pair. Moreover, for each
gap pair (C, D), there exists a gap pair (A, B) such that B is connected,
A—C— AB and D ~ C + B.



Proof. By Lemma 2.5, if B is connected and (A, B) is a gap pair, then (B, A?)
is a duality pair. Hence if A — C — AP then B /4 C, thus C + B 4 C.
Suppose that we have C — D — C + B for some A-system D. Then either
B — D, in which case D ~ C + B, or every connected component of D
that admits a homomorphism to B also admits a homomorphism to A by
Lemma 2.6. Since A — C, this implies D ~ C.

It remains to show that every gap pair has this structure. Let (C, D) be
an arbitrary gap pair. Then for every connected component B of D, we have
C — C+ B — D, which implies that either C+ B ~ C or C+ B ~ D.
Since D 4 C', the second alternative must be true of at least one connected
component B of D. We then have D ~ C' 4+ B. No A-system E can satisfy
CxB —FE — Band B /A F 4 C x B, for then we would have C —
C+FE—-C+Band C+ B A C+ E 4 C, acontradiction to the fact that
(C,C + B) is a gap pair. Hence, putting A = C' x B, we have that (A, B) is
a gap pair. By Lemma 2.5, (B, AP) is then a duality pair. Since B /4 C, we
then have A — C — AP, [

Hence, we can provide a complete description of the correspondence be-
tween duality pairs and gap pairs.

Theorem 2.8 Let A be a fized type. Then the gap pairs in the class of all
finite A-systems are the pairs (C, D) such that there exists a duality pair
(A,B) with Ax B— C — B and D ~ C + A. Conversely, the duality pairs
in the class of all finite A-systems are the pairs (B, A?) where (A, B) is a
gap pair and B 1s connected. [ |

Thus we have the following characterisation of finitary hom-dualities:

Theorem 2.9 Let A be a fized type. Then there exists a finite family C =
{Ay,..., A} of A-systems such that

Ui )= 4 B ()

if and only if B = X" B;, where (A;, B;) is a duality pair fori=1,... n.

Proof. Let (Ay, B1),..., (A, B,) be duality pairs, and B = x| B;. Then
for any A-system C, we have C' /A B if and only C' /A B; for some i, that is,
if and only if A; — C. This shows that (1) holds.
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Conversely, let B be a A-system such that (1) holds for some family
C = {A;,...,A,} of A-systems. We can assume that A; /A A; for every
i # 7, and from this follows that each A; is connected just as in the proof
of Lemma 2.3. Moreover, (B, B + A;) is easily seen to be a gap pair. Thus
by Lemma 2.7, there exists a gap pair (Cj, 4;) such that C; — B — C;*.
Putting B; = C{,i = 1,...,n, we then have U™ (4; =) = 4 x" B,
whence B ~ x| B;. n

Density

A partially ordered set P is called dense if it has the property that for any
x,y € P such that x < y, there exists z € P such that x < z < y. Therefore,
a homomorphism order is dense if and only if it does not contain any gaps.
Theorem 2.8 shows that duality and density are just two aspects of the same
question. Both have been investigated in the case of directed and undirected
graphs, but these subjects have been treated independently up to now.

Duality is essentially a void concept in the category of undirected graphs,
since (as shown in [10]) (0, K;), (K1, K3) are the only duality pairs. On the
positive side, this implies that the class of undirected graphs is dense ex-
cept for these ‘trivial’ gaps. This property was eventually acknowledged,
and Welzl [16] was the first to give a proof of what became known as the
‘density theorem’ for undirected graphs. The original argument was a long
and involved ad hoc construction. It seems natural that such a result would
be difficult to prove, since the question of the existence of homomorphisms
between non-bipartite graphs is NP-complete. However, a short and ele-
gant proof of the density theorem, based on exponentiation, was later found
independently by Perles and by Nesetiil (see e.g. [9]).

This unexpected proof opened the way for new investigations on the sub-
ject of density. In [17], Welzl had attracted the attention on the density prob-
lem for vertex-transitive graphs, which has recently been solved by Tardif [15]
and independently by Perles. In another direction, Nesetfil and Zhu [13] in-
vestigated the class of oriented paths, and proved a density result similar to
that of Welzl. In this context, the structure of the gaps is more intricate,
and their complete characterisation was a feat. It turns out that the gaps in
the class of oriented paths are also gaps in the class of all directed graphs.
On the other hand, the Nesetiil-Perles proof of the density theorem adapts



to some classes of directed graphs (such as unbalanced graphs, se [9]), but
not all. Thus, the problem of characterising the gaps in the category of di-
rected graphs remained open for a long time, with no simple solution in view.
All the while, the duality pairs in the class of directed graphs had already
been characterised by Komérek: For a directed (core) graph G, there exists
a directed graph Dg such that (G, Dg) is a duality pair if and only if G is
an orientation of a tree. Thus, modulo the correspondence presented here,
the problem of density for directed graphs was solved even before it was
formulated, as we mentioned in [11].

We will show that the case of directed graphs is a faithful reflection of
the general situation in relational structures: The structures that are first
members of duality pairs are ‘trees’ in a certain sense. According to Theo-
rem 2.8, we may choose to confront the problem from the point of view of
density instead of that of duality. This is indeed the approach adopted in
the next section.

3 Density: A characterisation

Shadows of relational structures

Let A be a A-system. The shadow of A is the unoriented multigraph G(A)
whose vertices are the elements of A, and containing an edge e joining a
and b whenever there exists a relation R of arity n > 2 in A such that
(ai,...,an) € R(A) with a; = a,a;+, = b for some i.

The full structure of relational models determines which maps are homo-
morphisms, but their shadows are sufficient for a description of those which
admit a dual. The 1-ary relations do not play any part in the definition of
shadows, while the relations of higher arities may contribute many edges and
loops. A cycle of G(A) can be a 1-cycle (i.e., a loop), a 2-cycle (i.e., two
parallel edges), or an ordinary n-cycle with n > 3. We will call A a tree if
G(A) is a tree (and thus has neither multiple edges nor loops). The purpose
of this section is to prove the following.

Theorem 3.1 Let A be a connected core. Then there exists a A-system B
such that (B, A) is a gap pair if and only if A is a tree.
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The proof consists of two constructions. The first is the arrow construc-
tion discussed in [12], which is used to find A-systems that are homomorphi-
cally ‘in between’ two given A-systems. We next characterise the ‘gap below
a tree’ with a new construction based on local inversions of homomorphisms.

The arrow construction

Definition 3.2 Let A be a A-system, and P a partition of A .(Here we
wiew a partition P as a set of disjoint subsets P, ..., P,.) The quotient A|P
is the A-system defined on the set P by putting, for every relation R; of A,
(Pi,...,Ps,) € Rs,(A|P) if and only if there exists a; € A;,i=1,...,; such
that (ai,...,as) € R;(A). We denote ¢p the quotient map from A to A|P.

The quotient A|P has the least structure which makes the quotient map
¢p a homomorphism. This explains why quotients arise naturally in connec-
tion with homomorphisms. In particular, when P is a partition of A, then a
homomorphism ¢ : A — B can be factored through A|P, that is, expressed
as ¢ = 1 o ¢p, where ¢ : A|P — B is a homomorphism, if and only if P
refines the partition {¢~'(b) : b € B} of A.

The operation presented next can be described informally as replacing the
arcs of a directed graph by copies of a A-system. Formally, this procedure is
best presented in terms of quotients.

Definition 3.3 Let K be a directed graph and D a A-system. For a,b € D,
the arrow product K x D(a,b) is the A-system (E(K) - D)|P, where

e F(K)- D is the disjoint union of |E(K)| copies of D, defined on the
base set E(K) x D by putting ((e1,d1), ..., (es;,ds;)) € Ri(E(K) - D)
if and only if e; = ... =e5, and (dy,...,ds,) € R;(D) for every i € I.

e P =Py UPy is a partition of F(K) - D, where P, contains one set V,,
for each vertex u of K, defined by

V;t = {((U,U), CL) : (U, U) € E(K)} U {((v,u), b) : (Ua U) € E(K)}J
and P; consists of singletons containing the remaining elements:

Pr={{(e,0)} : e € B(K) and c € D\ {a,b}}.
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Thus, K * D(a,b) is the A-system obtained by replacing every directed
edge (u,v) of K by a copy of D, with a taking the role of u and b taking the
role of v. Independently of the structure of K, we then have K % D(a,b) —
D|P,p, where the partition P,, only identifies a and b (in all our applications
elements a and b will be distinct). This observation will be the basis of our
construction.

Proposition 3.4 Let A be a connected core such that G(A) contains a cycle.
Then for any A-system B such that A / B, there exists a A-system C' such
that C' — A, A4 C and C 4 B.

Proof. We first ‘split up’ an element of A, that is, express A as a quotient
D|P,y, where the partition P, only identifies two elements a and b. We need
to choose this element carefully. Since G(A) contains a cycle, there exists
i € I and (ay,...,a5) € Ri(A) such that at least one of the corresponding
edges [a;,aj1] is contained in a cycle of G(A) (to simplify the notation,
we use brackets to denote edges even though G(A) is a multigraph). Let j
be the minimum index such that the edge [a;, a;;1] is contained in a cycle.
Put a = a; and @’ = aj1,. Let D be the A-system defined on the base set
D = AU {b} (we assume b ¢ A) by putting,

L] R7(D) = R,(A) \ (al, .. .,a(gi) U (al, .. .,ai,l,b, Ajt1y - - .,a,;i),

We then have A = D|P,. The edges of G(A) correspond naturally to the
edges of G(D). The vertex b of G(D) is incident to at most two edges, and
by minimality, the edge [a,a'], which is in a cycle of G(A), correspond to
[b, a'] which is not contained in any cycle of G(D). (Note that if a = d', [a, a]
is a loop of G(A) while [b, a] is not a loop of G(D).)

It is possible that we already have D 4 B, and we are done (as D — A
and A 4 D as one can check easily - if not see the argument below). In any
case, no homomorphism from D to B can identify a and b, since D|P,, =
A 4 B. Hence, such homomorphisms from D to B can be thought of as
colourings of a and b with different elements of B. Let K be an arbitrary
oriented graph with chromatic number greater than the cardinality of B, and
put C = K % D(a,b). We shall prove that C satisfies the required conditions.

12



e C — A as noted above. The natural homomorphism ¢ : C — A
coincides with the quotient map ¢p , on every canonical copy of D in

C.

e C 4 B since any homomorphism from C' to B should map V,, and V,
to different elements of B whenever (u,v) is an edge of K, which is
impossible because x(K) > |B|.

It only remains to show that A 4 C. Note that A — C holds if and
only if A is the core of C'. Supposing that this is the case, there exists a
homomorphism ¢’ : A — C such that ¢ o ¢’ = id4 by Lemma 2.1, where
¢ : C +— A is the canonical homomorphism defined above. This means that
¢' maps a to the set V,, for some vertex u of K, and maps every other element
c of A to a singleton {(e,c)}. Note that ¢’ induces an embedding of G(A)
into G(C). In particular, the edge [a,a'] of G(A) is mapped to some edge
[V, {(e,a’)}] in G(C), and the cycle containing [a,a’| must be mapped to
some cycle in G(C). However, since [b, a'] is not contained in any cycle of
G(D), any cycle of G(C') containing [V,, {(e, a’)}] must pass through other
sets V,, corresponding to vertices of K. This is a contradiction, since these
sets do not belong to the image of ¢'. Note that if « = o/, the contradiction
is immediate since the edges of C' corresponding to [a, a] are not loops. W

In particular, if B — A and A 4 B, then with C' as in Proposition 3.4, we
have B - BUC — Aand A A BUC 4 B. Thus, we have the following.

Corollary 3.5 Let A be a connected core such that G(A) contains a cycle.
Then for any A-system B such that B — A and A 4 B, there exists a
A-system C such that B— C — A and A /A C 4 B. |

This completes the first part of the proof of Theorem 3.1

The gap below a tree

The concept of ‘tree’ is quite descriptive, even in the case of relational A-
systems. A A-system which is a tree will be called shortly A-tree. However,
it is not entirely clear what should be meant by a ‘subtree’ of a A-system
A which is a tree. Indeed, the A-system A may contain 1-ary relations, and
these are not represented in the structure of G(A). Our construction makes
an extensive use of subtrees, and it is necessary to give a precise definition.
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Definition 3.6 Let A be a A-tree. A subtree of A is a A-system B which is
a tree such that B C A and the inclusion is a homomorphism from B to A.
B is a proper subtree of A if the inclusion is not an isomorphism from B to

A,

It can happen that different subtrees of A share the same shadow. In
particular, a proper subtree B of A can have G(A) as its shadow. In this
case, there exists a l-ary relation R; such that a € R;(A) and a ¢ R;(B)
for some a € A = B. This shows that the standard set-theoretic notation
is not convenient to represent subtree inclusion. We will reserve the set-
theoretic notation for the base sets, and use lattice-theoretic notations to
order subtrees, as detailed in the following.

Definition 3.7 Let A be a A-tree.

e The family of all A-subtrees of A is denoted T4. We will use the symbol
< to denote the order relation “is a subtree of” on Ty.

e (T4, <) is a lattice, with By A By defined by By A By = B; N By and
R7(B1 N BQ) = R,(Bl) N R7(B2) for every 1€ 1.

e Conversely, we write By V Bs to denote the supremum of B; and B; in

(Ta, <)

This lattice ordering of the subtrees of a tree parallels the situation in
graphs, but note that G(B; V By) can be strictly greater than the smallest
subtree of G(A) containing both G(B;) and G(By). This follows from the
fact that not all the subtrees of G(A) induce subtrees of A. Given a subtree T’
of G(A), there exists a subtree B of A with G(B) = T if and only if for every
i€l A;>2 (ay,...,a5) € R;j(A) implies that the path P = ay,...,as, of
G/(A) is either contained in 7" or intersects 7" in at most one vertex.

Following these preliminary definitions, we can present the concept that
will be the basis of our construction.

Definition 3.8 Let A be a tree. For a € A, a set Z of proper subtrees of A
containing a is called a a-ideal if

e B'< B € T implies B' € T whenever a € B,
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e By V By € T whenever By, B, € 7 and B; N By = {a}.
We can now present our construction of the predecessor of a tree.

Definition 3.9 Let A be a A-tree. The A-system AY is defined on the base
set

At ={(a,T) :a € A, T is an a-ideal of T}

as follows:

e If R, is a l-ary relation, i.e. if §; = 1, put (a,Z) € R;(AY) if a € R;(B)
for some B € 7.

e If R; is a d-ary relation with § > 1, put ((a1,Z1), ..., (a5, Zs)) € R;(AY)
if and only if (ay,...,a5) € R;(A) and Vf;:] B; € ﬂf;:] Z; for every
family B; € Z;,j = 1,...,6 such that B; N B; = () whenever j' # j.

We clearly have A} — A, since the projection 7 : A* — A defined by
7(a,Z) = a is a homomorphism. The next two lemmas will show that (A}, A)
is a gap.

Lemma 3.10 Let A be a A-tree. Then for any A-system X such that X —
A and A 4 X, we have X — At

Proof. Let X be a A-system such that X — Aand A A X. Let¢p: X — A
be a homomorphism. For x € X, let Z, be the family of subtrees B of A such
that ¢(z) € B and ¢ admits a ‘local inverse’ around z with domain B, that
is, a homomorphism 5 : B — X such that ¢p(¢(z)) = z and po¢pp = idp.

We first show that Z, is a ¢(x)-ideal. The fact that A /4 X implies
that each element of Z, is a proper subtree of A. We clearly have B' € 7,
whenever B' < B € T, and ¢(x) € B', since the restriction of a local inverse
Yp : B — X to B’ is also a local inverse of ¢. It remains to show that
for By, By € I, such that By N By = {¢(x)}, we have By V By € Z,. Let
Y1 @ By — X, @ By — X be local inverses of ¢ around xz. Note that
BV By = By U By, and ¢4 (¢(z)) = 12(é(x)) = x. Hence we can define
Y By V By — X by ¢(b) = ¢;(b) if b € B;. This is a homomorphism, since
for any relation R; i € I, (by,...,bs,) € R;(ByV By) implies that by, ..., b,

all belong to the same B;, whence (¢;(by),...,%i(bs;)) € R;(X). Thus, Z, is
a ¢(x)-ideal.
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Therefore, we can define a map b: X — A by ¢(z) = (¢(x),Z,), and
it only remains to show that ¢ is a homomorphism from X to A%. For
(x1,...,25,) € Ri(X), we have (¢(z1),...,9(xs,)) € R;(A) since ¢ is a ho-
momorphism. Let {By,..., Bs,} be a family of pairwise disjoint subtrees of
A such that B; € Z,,,5 = 1,...,0;, and ¢; : B; — X the associated local
inverses. Then, \/_f-i:] B; = Uj; Bj, and the map v : \/_f-i:] Bj — X defined by
(b) = ¢;(b) if b € b; is a homomorphism by the same argument as the one
used above. Thus, Vj;l B; € ﬂf-i:le. Therefore, ((x1,Zy,), -, (3:51,,1,7;51_)) €
R;(AY), and ¢ is a homomorphism. |

Lemma 3.11 Let A be a tree and a core. Then A /s A'.

Proof. Suppose that ¢ : A — A'is a homomorphism. Since A is a core,
we can assume by Lemma 2.1 that 7 o ¢ = id,, where 7 : AY — A is the
natural projection. Thus, for every a € A, there exists an a-ideal Z, such
that ¢(a) = (a,Z,). We will show that A € Z,, for some a € A, which is a
contradiction since Z, should only contain proper subtrees of A.

Note that the set of edges of G(A) admits a canonical partition into
paths P; = a;{, el a;g]_,j =1,...,m such that for every path P;, there exists

a relation R; of arity §; > 2 such that (a/y,...a’s,) € R;(A); these are called
the elementary paths of A. If T is a subtree of G(A) which is a union of some
elementary paths, we denote A the subtree of A induced by T', that is, the
maximal subtree of A having T as its shadow. We will prove that if a is a
vertex of T', then A, € Z, by induction on the number of elementary paths
of T'. This will provide our contradiction since Aga) = A.

First step of our induction is the case where 1" contains no elementary
path. Then, T consists of a single vertex a, and Ar is the A-system with base
set {a} such that for every l-ary relation R;, we have a € R;(Ar) if and only
ifa € R;(A). Let Ry, ..., R, be the 1-ary relations of A such that a € R;(A).
Since ¢ is a homomorphism, we have (a,Z,) € R;(A*) which means that Z,
contains at least one tree B; with base set {a} such that a € R;(B;) for
i =1,...,n. Therefore, VI B, = Ar € Z, since Z, is an a-ideal.

Now suppose that our assumption is true for every subtree of G(A) with
at most k elementary paths. Let T'C G(A) be the union of k + 1 elementary
paths. Then a belongs to some elementary path P = ay,...,a,, of A. Let
T; be the connected component of T'— E(P) which contains a;, i = 1,...,n.
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By our induction hypothesis, we have A, € Z,, 1 = 1,...,n. Since ¢ is
a homomorphism and (ai,...,a,) € R(A) for some R € L, we then have
((a1,Za,), -, (an,Z,,)) € R(AY). By the definition of At this implies

Ap = \/ATz € ﬂIflz

i=1 i=1
In particular, Ay € Z,. [ |

Combining the two previous lemmas, we get the following.

Proposition 3.12 Let A be a A-system that is a tree and a core. Then
At — A, and for every L-model B such that A — B — A, we have B ~ A
or B ~ A¥. |

This completes the second part of the proof of Theorem 3.1.

4 Examples

As a consequence of Theorem 3.1, the dualities that are characterised in
Theorem 2.8 are of the type

A= =2 (A,

where A is a core tree. The ‘good characterisations’ of Theorem 2.9 are ob-
tained by combining some of these dualities. In this section, we present a
few examples to illustrate the use of the predecessor construction and expo-
nentiation, and point out some questions raised by this characterisation.
Types A with binary relations allow for the construction of meaningful
examples that are not too large. In our first example, the type A has two
binary relations R, and R,. Let A be the A-system defined by A = {1, 2, 3},
Ry(A) ={(1,2)} and R,(A) = {(2,3)}. If we interpret the elements of R, as
blue arcs and those of R, as green arcs, then A is a path with the first arc
blue and the second green. Thus, A is a core tree, and admits a predecessor
A%, The proper subtrees of A are the singletons and By = {1,2}, B, = {2, 3}
(we can identify subtrees with subsets of A since £ does not contain 1-
ary relations). Hence, the only nontrivial 1-ideal is Z; = {{1}, B;}, the
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only nontrivial 3-ideal is Z3 = {{3}, By}, and there are three nontrivial 2-
ideals, namely 7, = {{2}, B}, Z), = {{2}, B2} and 7!/ = {{2}, By, By}. The
elements of A' corresponding to trivial ideals are necessarily isolated, hence
can be omitted. Thus, the elements of At are 1, = (1,Z;), 2, = (2,Z,),
2, = (2,7Y), 2y = (2,ZY)), and 3, = (3,Z3). Since {z} V B; = A whenever
x ¢ B;, Ry(AY) contains the only the arc (1,,2;), and R,(A") contains the
only the arc (24,3,). It turns out that 2y is also isolated; essentially, A%
consists of the blue arc (15,2,) and the green arc (24, 3,).

The base set of the dual (A%)? of A consists of functions from A to
At There are 64 such functions, if we restrict the image to the core of A,
However, most of them do not belong to the core of (A+)4, and we can restrict
our attention to the functions which carry the most structure.

e A function f is the beginning of a blue arc only if f(1) = 1,.
e A function f is the end of a blue arc only if f(2) = 2.

e A function f is the beginning of a green arc only if f(2) = 2,.
e A function f is the end of a green arc only if f(3) = 3,.

Only two functions satisfy at least three of these conditions, namely f, defined
by fb(l) = 1bafb(2) = 2bafb(3) = 3_(} and fg defined by fq(]-) = 1bafg(2) =
29, f4(3) = 3,. We have (fy, fo), (fy, fo) € Ro((A%)") and (fy. fo). (f4, fy) €
R,((AY)™). We will not need to look any further. Given a £-model C, define
amap ¢: C +— (AN by

b(c) = { f» if ¢ is the end of a blue arc,

fy otherwise.

Then, whenever (¢, d) € R,(C), we have ¢(d) = fy, thus (¢(c),d(d)) €
Ry((AHM). If ¢ is not a homomorphism, then there exists (c,d) € R,(C)
such that (¢(c), ¢(d)) € R,((AY)?), that is, ¢(c) = f,. The element ¢ of C
is then the beginning of a green arrow and the end of a blue arrow, whence
A — C. This shows that {f}, f,} is the core of (A+)".

In this example, (Ai)A turns out to have a relatively small core, even
though its characterisation involves two exponential constructions, namely
the predecessor construction and exponentiation. Is this always the case? Of
course, the precise meaning of ‘small’” depends on the type A, since a tree
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with one element can have a dual with n elements whenever the type A has
n l-ary relations. Our question can therefore be formulated as follows.

Problem 1 Given a fixed type A, does there exist a polynomial pa such that
for every type A-system A that is a core tree with |A| < n, the core of (A4)4
has at most pa elements?

We conclude with an example which shows that the size of the core of
(AH)A can grow exponentially with respect to |[A| + |A|. For a given integer
n > 2, let A contains one n-ary relation Ry and n 1-ary relations Ry, ..., R,,.
We define the A-system A by A = {1,...,n}, Ry(A) = {(1,...,n)} and
Ri(A) = {i},i =1,...,n. Then A is a core tree and admits a dual (A})%.
Instead of constructing A+ and (A%)# directly from the definitions, it is possi-
ble to guess a plausible candidate for the dual of A and verify that it satisfies
the required conditions. This turns out to be more practical in this case, and
we will show that the dual of A has 2" elements.

Let B be the A-system whose base set consists of all the subsets of
{1,...,n}, defined by putting S € R;(B) if i € S fori = 1,...,n, and
(S1,...,5n) € Ry(S) if we have ¢ ¢ S; for some i. Then for any A-system
C', we can define a map ¢ : C'+— B by ¢(c) = {i:c € R;(C)}. We then have
oi(c) € R;(B) whenever ¢ € R;(C) fori=1,...,n. If A /4 C, then for every
(c1y...,cn) € Ry(C), there exists an index i such that ¢; € R;(C), whence
i & ¢(c;) and (P(c1), ..., d(cn)) € Ry(B). Therefore, A 4 C implies C — B.
This shows that B is the dual of A, since A /4 B.

We next show that B is a core. Let ¢ : B — B be a homomorphism.
Then S C ¢(S) for all S € B, since ¢ must preserve the l-ary relations
Ry,...,R,. Suppose that S is a proper subset of ¢(S) for some S € B.
Define Sy,...,S, by S; = Sifi € ¢(S) and S; = {1,...,n}if i € ¢(S). Then
(S1,...,Sn) € Ro(B) while (6¢(S1),...,0(Sn)) € Ro(B), a contradiction.
This shows that ¢ must be the identity, whence B is a core.

The predecessor of A is homomorphically equivalent to A x B. Ry(A x B)
consists of the n-tuples ((1,541),...,(n,S,)) such that i € S; for at least one
index ¢, and (i,S) € R;(A x B) if and only if j = ¢ € S. The core C of
A x B is obtained by collapsing, for each i € {1,...,n}, all the couples (i, S)
such that 7 € S onto one element labelled ', and all the elements (7, S) such
that i € S onto one element labelled i". If C is viewed as the core of A‘,
then 7' corresponds to the i-ideal which contains all proper subtrees of A,
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and " corresponds to the principal i-ideal generated by the subtree obtained
by removing i from R;(A). Note that B can then be viewed as the set of
functions f € C4 such that f(i) € {i',é"} fori=1,...,n.

In both of our examples, the core of A* admits a unique homomorphism to
A, and the core of (A%)4 consists of the functions which map each element of
A into its preimage by this homomorphism. This seems to suggest a general
simplification for the construction of the core of (A%)?. However, such a
simplification could only make sense if the homomorphism from the core of
At to A was always unique, and this is not the case. Moreover, even when
the homomorphism is unique, the core of (A%+)“ does not necessarily consist
of functions mapping each element to its preimage. It would be interesting
to know up to which extent can the characterisation of duals be simplified,
and whether the indirect approach via density is optimal.
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