Problem Set 4

Problem 1. Let $\mathbb{A}=(\{0,1,2\} ;\{0\},\{1\}, R)$ where

$$
R=\{000,110,120,210,220,101,102,201,202,011,012,021,022\}
$$

(a) Find a unary polymorphism f of \mathbb{A} which is not a permutation. (Hint: there is only one.)
(b) Show how to use f and the P-time algorithm for solving $\operatorname{CSP}((\{0,1\} ;\{0\},\{1\}, " x+y=z "))$ as a "black box" to give a P-time algorithm solving $\operatorname{CSP}(\mathbb{A})$. (This is an example of a "P-time reducibility.")

Problem 2. Let $\mathbb{A}=(A ; \ldots)$ be a relational structure and let f be a unary polymorphism which is not a permutation. Find a relational structure $\mathbb{B}=(B ; \ldots)$ such that $|B|<|A|$ and $\operatorname{CSP}(\mathbb{A})$ is P-time equivalent to $\operatorname{CSP}(\mathbb{B})$. Hints:

- First assume that $f(f(x))=f(x)$ (for all $x \in A$). Observe that this is equivalent to $f(x)=x$ for every x in the image of f, let us denote this image by B. Consider the relational structure $(B ; \ldots)$ obtained by restricting all the relations in \mathbb{A} to B and observe that $\operatorname{CSP}(\mathbb{A})$ and $\operatorname{CSP}(\mathbb{B})$ are P -time equivalent.
- Show that if a unary operation f which is not a permutation is in a clone, then this clone also contains an operation g which is not a permutation and satisfies $g(g(x))=g(x)$.

Problem 3. Let $A=\{0,1\}$ and let $\mathbb{A}=(A ; R,\{0\},\{1\})$ be the relational structure from Problem 4, Problem Set 3. Let S be the 4 -ary relation defined by $S=\{0,1\}^{4} \backslash\{(1,1,1,0)\}$.
(a) Show that S can be equivalently defined as follows:

$$
S=\left\{(x, y, z, w) \in A^{4}: \exists u \in A \text { such that }(x, y, u) \in R \text { and }(u, z, w) \in R\right\}
$$

(b) Use part (a) to show how the P-time algorithm for $\operatorname{CSP}(\mathbb{A})$ may be used as a "black box" to give a P -time algorithm for $\operatorname{CSP}(A ; R, S, 0,1)$.

Problem 4. Let $\mathbb{A}=\left(A ; R_{1}, R_{2}, R_{4}\right)$ be a relational structure such that R_{1} is unary, R_{2} is binary and R_{4} is 4-ary. Let E be the equality relation on A (i.e. $E=\{(a, b): a=b\}$), let S be the ternary relation on A defined by

$$
(x, y, z) \in S \quad \text { iff } \quad x \in R_{1} \&(z, x) \in R_{2} \&(y, z, y, x) \in R_{4}
$$

and let T be the binary relation on A defined by

$$
(x, y) \in T \quad \text { iff } \quad(\exists z)(x, y, z) \in S
$$

(a) Show that $\operatorname{CSP}\left(A ; R_{1}, R_{2}, R_{4}, E\right)$ is P-time reducible to $\operatorname{CSP}(\mathbb{A})$
(b) Show that $\operatorname{CSP}\left(A ; R_{1}, R_{2}, R_{4}, E, S\right)$ is P-time reducible to $\operatorname{CSP}(\mathbb{A})$
(c) Show that $\operatorname{CSP}\left(A ; R_{1}, R_{2}, R_{4}, E, S, T\right)$ is P-time reducible to $\operatorname{CSP}(\mathbb{A})$

Now let $\mathbb{A}=\left(A ; R_{1}, \ldots, R_{n}\right)$ be any relational structure. We say that a relation W is pp-definable from R_{1}, \ldots, R_{i} (or from \mathbb{A}), if it can be defined by a formula of the form

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in W
$$

> iff
> $\left(\exists x_{?}\right) \ldots\left(\exists x_{?}\right)\left(\right.$ tuple_of_var $\left.\in R_{?}\right) \&\left(\cdots \in R_{?}\right) \& \ldots \ldots \&\left(x_{?}=x_{?}\right) \& \ldots \&\left(x_{?}=x_{?}\right)$

Make sure you understand this vague definition.
(d) Show that every relation, which is pp-definable from some relations which are pp-definable from relations R_{1}, \ldots, R_{n}, is pp-definable from R_{1}, \ldots, R_{n}.
(e) Observe that $\operatorname{CSP}\left(A ; S_{1}, \ldots, S_{m}\right)$ is P-time reducible to $\operatorname{CSP}\left(A ; R_{1}, \ldots, R_{n}\right)$ whenever $S_{1}, \ldots S_{m}$ are relations pp-definable from $R_{1}, \ldots R_{n}$.

Problem 5. Let $\mathbb{A}=\left(\{0,1\} ;\{0\},\{1\}, R_{1}\right)$, where $R_{1}=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$ and let $\mathbb{B}=\left(\{0,1\} ;\{0\},\{1\}, R_{000}, R_{001}, R_{010}, \ldots, R_{111}\right)$, where $R_{i j k}=\{0,1\}^{3} \backslash\{(i, j, k)\}$

- Show that every relation in \mathbb{A} is pp-definable from \mathbb{B}
- Show that every relation in \mathbb{B} is pp-definable from \mathbb{A}
- Conclude that $\operatorname{CSP}(\mathbb{A})$ and $\operatorname{CSP}(\mathbb{B})$ are P-time equivalent

Problem 6. Let $\mathbb{A}=\left(A ; R_{1}, \ldots, R_{n}\right)$ be a relational structure and S be a nonempty relation on A.
(a) Show that if S is pp-definable from \mathbb{A} then every polymorphism of \mathbb{A} is a polymorphism of S.
(b) ${ }^{* *}$ Show that if every polymorphism of \mathbb{A} is a polymorphism of S, then S is pp-definable from \mathbb{A}. Hints:

- Let $S=\left\{\left(a_{11}, \ldots, a_{1 m}\right), \ldots,\left(a_{n 1}, \ldots, a_{n m}\right)\right\}$ and let F denote the set of n-ary polymorphisms of \mathbb{A}
- Observe that F can be viewed as an A^{n}-ary relation on A (i.e. coordinates of the relation are indexed by n-tuples of elements of A)
- Show that F is pp-definable from \mathbb{A}
- Consider relation T defined by from F by existentially quantifying over all the coordinates different from $\left(a_{11}, \ldots, a_{n 1}\right), \ldots,\left(a_{1 m}, \ldots, a_{n m}\right)$.
- Show that $S=T$

Problem 7. Using the result of Problem 4 (and another problem from different problem set) show that
(a) Every relation on $\{0,1,2\}$ is pp-definable from $(\{0,1,2\} ;\{0\},\{1\}, \neq)$
(b) Every relation on $\{0,1\}$ is pp-definable from $\left(\{0,1\} ;\{0\},\{1\},\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}\right.$
(c) Characterize relations on A pp-definable from the empty set of relations. Compare with Problem 1.(c) in Problem Set 1.

Problem 8. Let $\mathbb{A}=(\{0,1,2\} ; R)$, where $R=\{(a, b): a \neq b\}$.
(a) Explain why solving $\operatorname{CSP}(\mathbb{A})$ is essentially the same as finding 3-coloring of a given graph.
(b) Let $\mathbb{B}=(\{0,1,2\} ;\{0\},\{1\},\{2\}, R)$. Show that $\operatorname{CSP}(\mathbb{B})$ is P-time reducible to $\operatorname{CSP}(\mathbb{A})$.

Now let $\mathbb{A}=\left\{\{1,2, \ldots, n\} ; R_{1}, \ldots, R_{n}\right\}$ be any relational structure whose every unary polymorphism is a permutation. (Such a structure is called a core.)
(c) Show that the relation n-ary relation

$$
P=\{(f(1), f(2), \ldots, f(n)): f \text { is a unary polymorphism of } \mathbb{A}\}
$$

is pp-definable from \mathbb{A}. (Hint: Problem 4). Use this fact to prove that $\operatorname{CSP}\left((1,2, \ldots, n) ; R_{1}, \ldots, R_{n}, P\right)$ is P-time reducible to $\operatorname{CSP}(\mathbb{A})$.
(d) Show that $\left.\operatorname{CSP}\left(\{1,2, \ldots, n\} ; R_{1}, \ldots, R_{n},\{1\},\{2\}, \ldots,\{n\}\right\}\right)$ is P-time reducible to $\operatorname{CSP}(\mathbb{A})$.

Problem 9. Let $\mathbb{A}=\left(\{0,1\} ; R_{1}, \ldots, R_{n}\right)$ be a relational structure such that the operation \wedge is a polymorphism. Find a P-time algorithm for solving $\operatorname{CSP}(\mathbb{A})$. (Hint: Consider first the case that R_{1}, \ldots, R_{n} are at most binary. To do that, start with finding all binary relations compatible with \wedge.)
Problem 10. Let $\mathbb{A}=\left(\{0,1\} ; R_{1}, \ldots, R_{n}\right)$ be a relational structure such that the majority operation is a polymorphism. Show that $\operatorname{CSP}(\mathbb{A})$ can be solved in P-time. Hints:

- Show that the CSP of any relational structure on $\{0,1\}$ containing at most binary relation is solvable in P-time. (See Problem 7 in Problem Set 3.)
- Let $R \subseteq\{0,1\}^{n}$. For $1 \leq i, j \leq n$, the projection of R to coordinates i, j is defined by

$$
\left.R\right|_{i, j}=\left\{(c, d): \exists\left(a_{1}, \ldots, a_{n}\right) \in R \quad a_{i}=c, a_{j}=d\right\}
$$

Prove that if R is compatible with the majority operation, then R is determined by projections to pair of coordinates in the following sense. For any tuple $\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$,

$$
\begin{gathered}
\left(a_{1}, \ldots, a_{n}\right) \in R \\
\text { iff } \\
\left.\left(a_{i}, a_{j}\right) \in R\right|_{i, j} \text { for every } 1 \leq i, j \leq n
\end{gathered}
$$

- Conclude that every R_{i} is pp-definable from (at most) binary relations
- Finish the proof using previous problems.

Problem 11. Show that for any relational structure $\mathbb{A}=\{(0,1) ; \ldots\}$ the following dichotomy holds:
Either $\operatorname{CSP}(\mathbb{B})$ is P-time reducible to $\operatorname{CSP}(\mathbb{A})$ for every relational structure \mathbb{B} on the set $\{0,1\}$, or
$\operatorname{CSP}(\mathbb{A})$ is P-time solvable. (Hint: Combine several problems from several problem sets.)
Problem 12. ${ }^{* * * * * *}$ Show similar dichotomy for relational structures on arbitrary finite set.

