Problem Set 4

Problem 1. Let $\mathbb{A} = (\{0, 1, 2\}; \{0\}, \{1\}, R)$ where

 $R = \{000, 110, 120, 210, 220, 101, 102, 201, 202, 011, 012, 021, 022\}.$

- (a) Find a unary polymorphism f of \mathbb{A} which is not a permutation. (Hint: there is only one.)
- (b) Show how to use f and the P-time algorithm for solving $CSP((\{0,1\};\{0\},\{1\},"x+y=z"))$ as a "black box" to give a P-time algorithm solving $CSP(\mathbb{A})$. (This is an example of a "P-time reducibility.")

Problem 2. Let $\mathbb{A} = (A; ...)$ be a relational structure and let f be a unary polymorphism which is not a permutation. Find a relational structure $\mathbb{B} = (B; ...)$ such that |B| < |A| and $CSP(\mathbb{A})$ is P-time equivalent to $CSP(\mathbb{B})$. Hints:

- First assume that f(f(x)) = f(x) (for all $x \in A$). Observe that this is equivalent to f(x) = x for every x in the image of f, let us denote this image by B. Consider the relational structure $(B; \ldots)$ obtained by restricting all the relations in A to B and observe that CSP(A) and CSP(B) are P-time equivalent.
- Show that if a unary operation f which is not a permutation is in a clone, then this clone also contains an operation g which is not a permutation and satisfies g(g(x)) = g(x).

Problem 3. Let $A = \{0, 1\}$ and let $\mathbb{A} = (A; R, \{0\}, \{1\})$ be the relational structure from Problem 4, Problem Set 3. Let S be the 4-ary relation defined by $S = \{0, 1\}^4 \setminus \{(1, 1, 1, 0)\}$.

(a) Show that S can be equivalently defined as follows:

 $S = \{ (x, y, z, w) \in A^4 : \exists u \in A \text{ such that } (x, y, u) \in R \text{ and } (u, z, w) \in R \}.$

(b) Use part (a) to show how the P-time algorithm for $CSP(\mathbb{A})$ may be used as a "black box" to give a P-time algorithm for CSP(A; R, S, 0, 1).

Problem 4. Let $\mathbb{A} = (A; R_1, R_2, R_4)$ be a relational structure such that R_1 is unary, R_2 is binary and R_4 is 4-ary. Let E be the equality relation on A (i.e. $E = \{(a, b) : a = b\}$), let S be the ternary relation on A defined by

$$(x, y, z) \in S$$
 iff $x \in R_1 \& (z, x) \in R_2 \& (y, z, y, x) \in R_4$

and let T be the binary relation on A defined by

$$(x,y) \in T$$
 iff $(\exists z) (x,y,z) \in S$

- (a) Show that $CSP(A; R_1, R_2, R_4, E)$ is P-time reducible to $CSP(\mathbb{A})$
- (b) Show that $CSP(A; R_1, R_2, R_4, E, S)$ is P-time reducible to $CSP(\mathbb{A})$
- (c) Show that $CSP(A; R_1, R_2, R_4, E, S, T)$ is P-time reducible to $CSP(\mathbb{A})$

Now let $\mathbb{A} = (A; R_1, \dots, R_n)$ be any relational structure. We say that a relation W is *pp-definable* from R_1, \dots, R_i (or from \mathbb{A}), if it can be defined by a formula of the form

$$(x_1, x_2, \ldots, x_n) \in W$$

iff

 $(\exists x_{?}) \dots (\exists x_{?})(tuple_of_var \in R_{?}) \& (\dots \in R_{?}) \& \dots \& (x_{?} = x_{?}) \& \dots \& (x_{?} = x_{?})$

Make sure you understand this vague definition.

- (d) Show that every relation, which is pp-definable from some relations which are pp-definable from relations R_1, \ldots, R_n , is pp-definable from R_1, \ldots, R_n .
- (e) Observe that $CSP(A; S_1, \ldots, S_m)$ is P-time reducible to $CSP(A; R_1, \ldots, R_n)$ whenever S_1, \ldots, S_m are relations pp-definable from R_1, \ldots, R_n .

Problem 5. Let $\mathbb{A} = (\{0,1\}; \{0\}, \{1\}, R_1)$, where $R_1 = \{0,1\}^3 \setminus \{(0,0,0), (1,1,1)\}$ and let $\mathbb{B} = (\{0,1\}; \{0\}, \{1\}, R_{000}, R_{001}, R_{010}, \dots, R_{111})$, where $R_{ijk} = \{0,1\}^3 \setminus \{(i,j,k)\}$

- Show that every relation in \mathbb{A} is pp-definable from \mathbb{B}
- Show that every relation in \mathbb{B} is pp-definable from \mathbb{A}
- Conclude that $CSP(\mathbb{A})$ and $CSP(\mathbb{B})$ are P-time equivalent

Problem 6. Let $\mathbb{A} = (A; R_1, \dots, R_n)$ be a relational structure and S be a *nonempty* relation on A.

- (a) Show that if S is pp-definable from \mathbb{A} then every polymorphism of \mathbb{A} is a polymorphism of S.
- (b)** Show that if every polymorphism of \mathbb{A} is a polymorphism of S, then S is pp-definable from \mathbb{A} . Hints:
 - Let $S = \{(a_{11}, \ldots, a_{1m}), \ldots, (a_{n1}, \ldots, a_{nm})\}$ and let F denote the set of *n*-ary polymorphisms of \mathbb{A}
 - Observe that F can be viewed as an A^n -ary relation on A (i.e. coordinates of the relation are indexed by *n*-tuples of elements of A)
 - Show that F is pp-definable from \mathbb{A}
 - Consider relation T defined by from F by existentially quantifying over all the coordinates different from $(a_{11}, \ldots, a_{n1}), \ldots, (a_{1m}, \ldots, a_{nm})$.
 - Show that S = T

Problem 7. Using the result of Problem 4 (and another problem from different problem set) show that

- (a) Every relation on $\{0, 1, 2\}$ is pp-definable from $(\{0, 1, 2\}; \{0\}, \{1\}, \neq)$
- (b) Every relation on $\{0,1\}$ is pp-definable from $(\{0,1\};\{0\},\{1\},\{0,1\}^3 \setminus \{(0,0,0),(1,1,1)\}$

(c) Characterize relations on A pp-definable from the empty set of relations. Compare with Problem 1.(c) in Problem Set 1.

Problem 8. Let $\mathbb{A} = (\{0, 1, 2\}; R)$, where $R = \{(a, b) : a \neq b\}$.

- (a) Explain why solving $CSP(\mathbb{A})$ is essentially the same as finding 3-coloring of a given graph.
- (b) Let $\mathbb{B} = (\{0, 1, 2\}; \{0\}, \{1\}, \{2\}, R)$. Show that $CSP(\mathbb{B})$ is P-time reducible to $CSP(\mathbb{A})$.

Now let $\mathbb{A} = \{\{1, 2, \dots, n\}; R_1, \dots, R_n\}$ be any relational structure whose every unary polymorphism is a permutation. (Such a structure is called a *core*.)

(c) Show that the relation n-ary relation

 $P = \{(f(1), f(2), \dots, f(n)) : f \text{ is a unary polymorphism of } \mathbb{A}\}\$

is pp-definable from A. (Hint: Problem 4). Use this fact to prove that $CSP((1, 2, ..., n); R_1, ..., R_n, P)$ is P-time reducible to $CSP(\mathbb{A})$.

(d) Show that $CSP(\{1, 2, ..., n\}; R_1, ..., R_n, \{1\}, \{2\}, ..., \{n\}\})$ is P-time reducible to $CSP(\mathbb{A})$.

Problem 9. Let $\mathbb{A} = (\{0, 1\}; R_1, \dots, R_n)$ be a relational structure such that the operation \wedge is a polymorphism. Find a P-time algorithm for solving $\text{CSP}(\mathbb{A})$. (Hint: Consider first the case that R_1, \dots, R_n are at most binary. To do that, start with finding all binary relations compatible with \wedge .)

Problem 10. Let $\mathbb{A} = (\{0, 1\}; R_1, \dots, R_n)$ be a relational structure such that the majority operation is a polymorphism. Show that $CSP(\mathbb{A})$ can be solved in P-time. Hints:

- Show that the CSP of any relational structure on {0,1} containing at most binary relation is solvable in P-time. (See Problem 7 in Problem Set 3.)
- Let $R \subseteq \{0,1\}^n$. For $1 \le i, j \le n$, the projection of R to coordinates i, j is defined by

 $R|_{i,j} = \{(c,d) : \exists (a_1, \dots, a_n) \in R \ a_i = c, a_j = d\}$

Prove that if R is compatible with the majority operation, then R is determined by projections to pair of coordinates in the following sense. For any tuple $(a_1, \ldots, a_n) \in \{0, 1\}^n$,

$$(a_1, \dots, a_n) \in R$$

iff
 $(a_i, a_j) \in R|_{i,j}$ for every $1 \le i, j \le n$

- Conclude that every R_i is pp-definable from (at most) binary relations
- Finish the proof using previous problems.

Problem 11. Show that for any relational structure $\mathbb{A} = \{(0, 1); ...\}$ the following dichotomy holds:

Either $\text{CSP}(\mathbb{B})$ is P-time reducible to $\text{CSP}(\mathbb{A})$ for every relational structure \mathbb{B} on the set $\{0, 1\}$, or

 $\mathrm{CSP}(\mathbbm{A})$ is P-time solvable. (Hint: Combine several problems from several problem sets.)

Problem 12. ***** Show similar dichotomy for relational structures on arbitrary finite set.