## Problem Set 3

Problem 1. Consider the relational structure $\mathbb{A}=(\{0,1\} ; R)$, where $R=\{(a, b): a \leq b\}$. Does there exist an instance of $\operatorname{CSP}(\mathbb{A})$ with no solution?

Problem 2. Let $\mathbb{A}=(\{0,1\} ;\{0\},\{1\}, R)$, where $R=\{(a, b): a \leq b\}$.
(a) Does the following instance of $\operatorname{CSP}(\mathbb{A})$ have a solution?

$$
\left(x_{2}, x_{1}\right) \in R \& x_{3} \in\{1\} \&\left(x_{1}, x_{4}\right) \in R \&\left(x_{1}, x_{3}\right) \in R \& x_{4} \in\{0\} \&\left(x_{3}, x_{2}\right) \in R
$$

(b) Describe instances of $\operatorname{CSP}(\mathbb{A})$ which have a solution.
(c) Find a fast algorithm for solving $\operatorname{CSP}(\mathbb{A})$.

Problem 3. Let $\mathbb{A}=(\{0,1\} ; R)$, where $R=\{(0,1),(1,0)\}$.
(a) Do the following instances of $\operatorname{CSP}(\mathbb{A})$ have a solution?

$$
\begin{aligned}
& -(x, y) \in R \&(z, y) \in R \&(z, x) \in R \\
& -(x, y) \in R \&(z, y) \in R \&(z, v) \in R \&(v, x) \in R \\
& -(x, y) \in R \&(y, x) \in R \&(z, y) \in R \&(y, z) \in R \&(z, v) \in R \&(v, x) \in R
\end{aligned}
$$

(b) Describe instances which have a solution.
(c) Find a fast algorithm for solving $\operatorname{CSP}(\mathbb{A})$.

Problem 4. Let $\mathbb{A}=(\{0,1\} ;\{0\},\{1\}, R)$, where $R=\{0,1\}^{3} \backslash(1,1,0)$. Find a fast algorithm for solving $\operatorname{CSP}(\mathbb{A})$.
Problem 5. Let $\mathbb{A}$ be a relational structure such that some constant mapping is a polymorphism of $\mathbb{A}$. Prove that every instance of $\operatorname{CSP}(\mathbb{A})$ has a solution.

Problem 6. Let $\mathbb{A}=(\{0,1,2\} ;\{0\},\{1\},\{2\}, R)$, where $R=\{(x, y, z): x+y+z=0\}$ (we add modulo 3). Find a fast algorithm for solving $\operatorname{CSP}(\mathbb{A})$.
Problem 7. An instance of 2-CLAUSE-CONJ is a conjunction of clauses, where each clause is a disjunction of at most two variables, possibly negated. The question is whether this boolean formula is satisfiable.
(a) Is the following instance of 2-CLAUSE-CONJ satisfiable?

$$
(x \vee \neg y) \wedge z \wedge(\neg x \vee \neg z)
$$

(b) Find a relational structure $\mathbb{A}$ such that $\operatorname{CSP}(\mathbb{A})$ can be viewed as 2-CLAUSE-CONJ
( $c^{*}$ ) Find a fast algorithm for solving 2-CLAUSE-CONJ

