## Problem Set 2

Problem 1. Find the clone generated by the given algebra A:
(a) $\mathbf{A}=(\{0,1\} ; \wedge)$
(b) $\mathbf{A}=(\{0,1\} ; \wedge, \vee)$
(c) $\mathbf{A}=(\{0,1\} ; \neg, \wedge, \vee)$
(d) $\mathbf{A}=(\{0,1\} ; \neg, \wedge)$
(e) $\mathbf{A}=(\{0,1\} ; f)$, where $f(x, y)=x+y \bmod 2$
(f) $\mathbf{A}=(\{0,1\} ; f)$, where $f(x, y, z)=x+y+z \bmod 2$
(g) $\mathbf{A}=(\{0,1\} ; \rightarrow)$ (Hint: Observe that the operation $f=\rightarrow$ has the following property: $f(x, y)=0$ implies $y=0$. Is some property like that preserved by composition?)

Problem 2. For every binary operation $f$ on $\{0,1\}$, find the clone generated by the algebra ( $\{0,1\} ; f$ ). (Thus we have 16 problems here.)

Problem 3. Prove that every clone on the set $\{0,1\}$, which has an operation which is not essentially unary, contains at least one of the following operations
(a) a constant unary operation (i.e. the operation $f(0)=f(1)=0$, or the operation $f(0)=$ $f(1)=1$ ), or
(b) $\wedge$, or $\vee$, or
(c) the majority operation $m$ (defined by $f(x, y, z)=1$ iff at least two of the numbers $x, y, z$ are equal to 1 ), or
(d) the ternary addition operation $p(x, y, z)=x+y+z \bmod 2$.

A possible strategy for the proof:

- First assume that the only unary operation in the clone is the identity (the operation $f(x)=$ $x)$. (Observe, that then all the operations are idempotent - they satisfy $f(x, x, \ldots, x)=x$ )
- Assume that none of the operations $\wedge, \vee, m, p$ are in the clone.
- Prove that the only binary operations are projections.
- Prove that the only ternary operations are projections.
- Take a smallest number $n$ such that the clone contains a nontrivial operation of arity $n$ and derive contradiction using the previous items.
- Get rid of the idempotency assumption.

Problem 4. For every natural number $n$ find a finite number of operations $f_{1}, \ldots, f_{m}$ on the set $[n]=\{0,1, \ldots, n-1\}$ so that the clone generated by the algebra $\left([n] ; f_{1}, \ldots, f_{m}\right)$ contains all operations on $[n]$. Can you achieve $m=1$ ?

