Problem Set 1

Problem 1.

- (a) Find all operations on a given set A which are polymorphisms of every relational structure with universe A.
- (b) Assume that binary operations \circ, \star are polymorphisms of a relational structure $\mathbb{A} = (A; ...)$. Let f be a ternary operation on A defined by $f(x, y, z) = (x \circ (y \star z)) \star x$. Is it always the case that f is a polymorphisms of \mathbb{A} ? Can you generalize this?
- (c) Find all relations on a fixed set A which are compatible with all operations on the set A.

Problem 2. Find all polymorphisms of the following relational structures:

- (a) $(\{0,1\};\{0\},\{1\},R_1)$, where $R_1 = \{0,1\}^3 \setminus \{(0,0,0),(1,1,1)\}$
- (b) $(\{0,1,2\};\{0\},\{1\},R_2)$, where $R_2 = \{0,1,2\}^2 \setminus \{(0,0),(1,1),(2,2)\}$ (the inequality relation)
- (c) $(\{0, 1, 2\}; R_2)$ (the same R_2 as above)

Problem 3. Let us call the polymorphisms from Problem 1, item (a) *trivial*. Consider the relational structure:

- (a) $\mathbb{A} = (\{0,1\};\{0\},\{1\},S)$, where $S = \{0,1\}^3 \setminus \{(1,1,0)\}$
- (b) $\mathbb{A} = (\{0,1\}; \{0\}, \{1\}, R_1, R_2, \dots, R_n)$, where R_1, \dots, R_n is a list of all binary relations on $\{0,1\}$ (what is the value of n, by the way?)
- (c) $\mathbb{A} = (\{0, 1\}; \{0\}, \{1\}, R)$, where $R = \{(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)\}$.

Does \mathbb{A} admit any nontrivial polymorphism?

Is the answer different when we remove the unary relations $\{0\}, \{1\}$ from \mathbb{A} ?.

Problem 4. Describe all relations compatible with the operation f(x, y, z) = x + y + z, where + is the addition modulo 2 on the set $\{0, 1\}$.

Problem 5. Let us say that an operation f on the set $\{0,1\}$ is a *min* operation, if f can be written in the form $f(x_1, \ldots, x_n) = \min\{x_{i_1}, x_{i_2}, \ldots, x_{i_m}\}$ for some natural number m and some $1 \le i_1 < i_2 < \cdots < i_m \le n$.

Moreover, let us say that f is a max-min operation, if $f(x_1, \ldots, x_n) = \max\{g_1(x_1, \ldots, x_n), g_2(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n)\}$, where g_1, \ldots, g_k are min operations.

- (a) Show that the set of all min-max-min-max-min-max operations (defined in the obvious way) coincide with the set of all max-min operations.
- (b) Find a relational structure $\mathbb{A} = \{\{0, 1\}, \dots\}$ such that polymorphisms of \mathbb{A} are precisely the max-min operations.

Problem 6. Let us call the polymorphisms from Problem 1, item (a) *trivial* (as in Problem 3). Find the smallest digraph A such that A has only trivial polymorphisms. Where "smallest" is

- (a) with respect to the number of vertices,
- (b) with respect to the number of edges.

Problem 7. Find an infinite sequence $\mathbb{A}_1, \mathbb{A}_2, \ldots$ of relational structures with universe $\{0, 1\}$ such that, for all i > j, every polymorphism of \mathbb{A}_i is a polymorphism of \mathbb{A}_j , and there exists a polymorphism of \mathbb{A}_j which is not a polymorphism of \mathbb{A}_i .