Problem Set 1

Problem 1.

(a) Find all operations on a given set A which are polymorphisms of every relational structure with universe A.
(b) Assume that binary operations $0, \star$ are polymorphisms of a relational structure $\mathbb{A}=(A ; \ldots)$. Let f be a ternary operation on A defined by $f(x, y, z)=(x \circ(y \star z)) \star x$. Is it always the case that f is a polymorphisms of \mathbb{A} ? Can you generalize this?
(c) Find all relations on a fixed set A which are compatible with all operations on the set A.

Problem 2. Find all polymorphisms of the following relational structures:
(a) $\left(\{0,1\} ;\{0\},\{1\}, R_{1}\right)$, where $R_{1}=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$
(b) $\left(\{0,1,2\} ;\{0\},\{1\}, R_{2}\right)$, where $R_{2}=\{0,1,2\}^{2} \backslash\{(0,0),(1,1),(2,2)\}$ (the inequality relation)
(c) $\left(\{0,1,2\} ; R_{2}\right)$ (the same R_{2} as above)

Problem 3. Let us call the polymorphisms from Problem 1, item (a) trivial. Consider the relational structure:
(a) $\mathbb{A}=(\{0,1\} ;\{0\},\{1\}, S)$, where $S=\{0,1\}^{3} \backslash\{(1,1,0)\}$
(b) $\mathbb{A}=\left(\{0,1\} ;\{0\},\{1\}, R_{1}, R_{2}, \ldots, R_{n}\right)$, where R_{1}, \ldots, R_{n} is a list of all binary relations on $\{0,1\}$ (what is the value of n, by the way?)
(c) $\mathbb{A}=(\{0,1\} ;\{0\},\{1\}, R)$, where $R=\{(0,0,1),(0,1,0),(1,0,0),(1,1,1)\}$.

Does \mathbb{A} admit any nontrivial polymorphism?
Is the answer different when we remove the unary relations $\{0\},\{1\}$ from \mathbb{A} ?.
Problem 4. Describe all relations compatible with the operation $f(x, y, z)=x+y+z$, where + is the addition modulo 2 on the set $\{0,1\}$.
Problem 5. Let us say that an operation f on the set $\{0,1\}$ is a min operation, if f can be written in the form $f\left(x_{1}, \ldots, x_{n}\right)=\min \left\{x_{i_{1}}, x_{i_{2}}, \ldots x_{i_{m}}\right\}$ for some natural number m and some $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n$.

Moreover, let us say that f is a max-min operation, if
$f\left(x_{1}, \ldots, x_{n}\right)=\max \left\{g_{1}\left(x_{1}, \ldots, x_{n}\right), g_{2}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{k}\left(x_{1}, \ldots, x_{n}\right)\right\}$, where g_{1}, \ldots, g_{k} are min operations.
(a) Show that the set of all min-max-max-min-max-min-max operations (defined in the obvious way) coincide with the set of all max-min operations.
(b) Find a relational structure $\mathbb{A}=\{\{0,1\}, \ldots\}$ such that polymorphisms of \mathbb{A} are precisely the max-min operations.

Problem 6. Let us call the polymorphisms from Problem 1, item (a) trivial (as in Problem 3). Find the smallest digraph \mathbb{A} such that \mathbb{A} has only trivial polymorphisms. Where "smallest" is
(a) with respect to the number of vertices,
(b) with respect to the number of edges.

Problem 7. Find an infinite sequence $\mathbb{A}_{1}, \mathbb{A}_{2}, \ldots$ of relational structures with universe $\{0,1\}$ such that, for all $i>j$, every polymorphism of \mathbb{A}_{i} is a polymorphism of \mathbb{A}_{j}, and there exists a polymorphism of \mathbb{A}_{j} which is not a polymorphism of \mathbb{A}_{i}.

