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Abstract – Fine-grained geographic 

localization of nodes is essential for an extensive 
range of distributed sensor applications. To 
compute geographic coordinates, localization 
algorithms commonly use pair-wise distance 
estimates between nodes. In this paper we 
present a noise tolerant acoustic ranging 
mechanism for wireless sensors that employs 
digital signal processing techniques on standard 
MICA hardware. We describe how noise 
canceling, digital filtering and peak detection 
can be applied to meet the severe resource 
constraints of the platform, yet yielding average 
range estimation errors below 10cm 
independently from the actual node-to-node 
distances. 

Keywords – Sensor Networks, Acoustic 
Ranging, Digital Signal Processing 

1. Introduction 
Wireless sensor networks consisting of small, 

low-power nodes equipped with different 
sensors and actuators have been gaining 
attention among researchers in the past few 
years. The fields of their possible applications 
range from military surveillance to precision 
agriculture. It is not uncommon that tolerance to 
severe environmental conditions, such as 
significant background noise or extreme 
temperatures, is a requirement. The 
inconvenience or infeasibility of human 
interaction in these scenarios raises a need for 
ad-hoc deployment and unattended operation.  

As geographic location of nodes is required 
by a number of sensor applications and 
middleware services, such as positioning 
systems, collaborative sensing and signaling 
applications, and location-aware routing 

services, it is imperative that the sensor network 
be able to conduct self-localization. 

Wireless sensor networks are intrinsically 
different from traditional distributed systems due 
to the strict resource constraints on the sensor 
nodes. Resources are primarily constrained by 
energy consumption, hardware size and cost. 
System lifetime should be in the order of weeks 
or months, requiring low-power hardware as 
well as power-aware software solutions. The 
cumulative hardware cost of the system needs to 
stay low, even though the number of nodes 
employed in a particular real-world application 
can be large. Furthermore, application-specific 
hardware tends to be expensive due to the 
relatively high costs of design and 
manufacturing necessitating the usage of COTS 
hardware in large-scale sensor networks. 

Localization in sensor networks is most 
commonly accomplished using range 
estimations between sensor nodes.1 An extensive 
amount of research has been done into various 
ranging techniques in the past few years. If high 
accuracy was not considered the primary design 
criterion, received RF signal strength 
information (RSSI) and RF proximity based 
methods provide sufficient results  [1]  [2]  [3]. 
The most effective techniques, which yield 
results sufficient enough to carry out fine-
grained localization, however, are based on time 
of flight (TOF) measurements of signals. 

Purely RF time of flight based techniques, 
such as GPS, have limited applicability in sensor 
networks, since they demand high precision 
measurements and synchronization. Acoustic 
signals have many advantages over RF based 
approaches. Since the sound propagates much 

                                                      
1 Research has been done to investigating range-free 

localization approaches as well. See  [17] for details. 



slower in air than RF signals, TOF can be 
precisely estimated from the time difference of 
arrival (TDOA) of simultaneously emitted 
acoustic and radio signals. As opposed to RF 
based TOF measurement techniques, clocks on 
the nodes need not be explicitly synchronized, 
post-facto synchronization  [4] suffices. 
Ultrasonic ranging techniques, such as described 
in  [5] and  [6] can attain higher precision than the 
ones using audible sound, however, they provide 
shorter effective range and require more 
expensive hardware. 

The ranging mechanism presented in this 
paper uses acoustics and leverages the 
advantages described above. Unlike other 
implementations on the same hardware, which 
make use of the analog tone detector on the 
MICA sensor board, in our approach we sample 
the acoustic signals then digitally process it to 
estimate the time of flight. Processing includes 
reduction of Gaussian noise using multiple 
sampling, digital filtering, and detecting the 
offset of maximum energy in the resulting 
signal. Though this implementation is 
significantly more expensive than the ones using 
the tone detector with regards to memory 
requirements and computational costs, it is much 
less sensitive to background noise and has a 
longer effective range. 

Though acoustic ranging augmented with 
digital signal processing has already been the 
subject of research within the scope of sensor 
networks, existing implementations target more 
heavyweight hardware (i.e. sensor nodes with 
PC-class capabilities). Our prototype is unique 
in a way that it targets severely resource 
constrained devices, equipped with 4 to 8 MHz 
microcontrollers and 4 kb RAM.  

After specifying the hardware requirements 
of the application in section  2, section  3 
introduces our acoustic ranging approach. We 
present the digital signal processing techniques 
suitable for severely constrained hardware to 
carry out amplification and filtering, and explain 
how range estimates are computed from the 
recorded samples. Temperature dependence 
issues and calibration is discussed in section  4. 
Section  5 evaluates our experimental results; and 
Section  6 discusses the issues and limitations of 
our approach. Finally, we give a brief 
comparison between our approach and two 

existing acoustic ranging implementations in 
section  7. 

2. Hardware 
Our acoustic ranging application targets the 

MICA/MICA2 motes developed at UC Berkeley 
as a research platform for low-power wireless 
sensor networks  [7]. 

The MICA mote is equipped with a 4 MHz 
RISC microcontroller, 4 kb RAM and a 916 
MHz wireless transceiver capable of data 
transfer at 19.2 kbps with the radio range of 200 
feet, and is powered by two AA batteries. The 
microcontroller has no support for floating point 
arithmetic or integer multiplications. 

The MICA2 mote has a more advanced 
microcontroller running at 7.3 MHz and its 
transceiver supports transfer rates up to 38.4 
kbps with an increased radio range of 500 feet. 

The basic sensor boards, compatible with 
both MICA and MICA2 motes, are equipped 
with a number of sensors and actuators. Among 
them, the microphone and the fixed-frequency 
sounder are utilized by the application 
introduced in this paper. The maximum 
attainable sampling rate is around 18 kHz; the 
nominal frequency of the sounder is 4.4 kHz. 

3. Approach 
The concept of acoustic ranging is based on 

measuring the time of flight of the sound signal 
between the signal source (also referred as the 
acoustic actuator, or simply actuator) and the 
acoustic sensor. The range estimate can be 
trivially calculated from the time measurement, 
assuming the speed of sound is known and is 
constant. 

Employing a sophisticated synchronization 
mechanism is essential to accurately measure the 
time of flight. The most common approach is 
having the actuator notify the sensor via a radio 
message at the same time when the signal is 
emitted. Since the propagation speed of the radio 
signal is approximately 106 times higher than the 
speed of sound, the difference of the arrival 
times of the sound and radio signals is a good 
estimate of the time of flight in question.  

However, there is a problem with the 
practical application of this approach, namely 



that it is the start of the signal that needs to be 
detected, which is cumbersome for the following 
reasons: 

a. Generating a sound signal with a sharp 
rising envelope is infeasible with the available 
hardware. 

b. Accurate detection of the start of a noisy 
signal is difficult. 

To satisfactorily address this issue our 
ranging solution first computes the sample-wise 
sum of multiple sampled signals. This way the 
Gaussian noise in the original samples will 
cancel out, and the summed signal will have a 
better signal-to-noise ratio. Then, we apply a 
digital band-pass filter, and finally we detect the 
first peek in the filtered samples that will be 
used to estimate the start of the original signal. 

1. Increasing the signal-to-noise ratio 
To adequately address the problem of 

locating the beginning of the chirp, first we need 
to increase the signal-to-noise ratio of the 
samples. 

In our approach, the acoustic signal consists 
of a series of chirps, all of the same length, with 
variable-length intervals of silence in between. 
Delays between the consecutive chirps are 
known to the sensor. Since the sensor knows the 
emission time of the series of signals (the sensor 
is notified via a radio message as discussed 
before) and the exact pattern as well, it can 
calculate the emission time of each chirp. The 
chirps are sampled one by one, then added 
together and processed as a single sampled 
signal. 

 

 

 
Since disturbances such as ambient and 

electronic noise are of Gaussian nature, they are 
independent for each chirp, whereas the useful 
signal content will be identical. Adding together 

the series of samples improves the SNR by 
10lg(N) dB, where N is the number of chirps 
used. Our prototype uses 16 consecutive chirps 
in an acoustic ranging signal, thus the SNR is 
improved by 12 dB. 

Delays between consecutive chirps are varied 
to avoid a situation when multiple samples have 
the same noise pattern at the same offset, which 
is a common phenomenon caused by acoustic 
multi-path effects. Hence the independent nature 
of the disturbances is preserved. 

To keep the memory requirements at a 
minimum, our implementation uses an 
accumulator buffer for the sampled signals, 
where the additions are done on the fly. 

2. Filtering 
The acoustic signals are of a fixed frequency 

with slight variations between distinct actuator 
nodes, probably due to manufacturing 
differences. Lower and upper bounds for the 
frequencies were measured to be 4000 and 4500 
Hz respectively; the sensors were, thus, tuned to 
search for the acoustic signals in that frequency 
range. 

1. Designing the filter 

To improve the SNR further, a digital 
bandpass filter is employed in our acoustic 
ranging mechanism. Since the ambient noise in 
our test recordings was found to be colored 
(with amplitude decreasing by 20 dB per decade 
below 2 kHz and approximately flat above) a 
matched bandpass filter was used. 

The design criterion was primarily to 
increase the signal-to-noise ratio while keeping 
the integer filter coefficients in the [-4,4] 
interval and the tap number small to keep 
hardware requirements at a minimum. This way, 
calculation of a filtered sample can be 
accomplished using 4 accumulator variables, 
without multiplications, that would be compiled 
into additions on a processor that has no support 
for that. 

The first accumulator variable is assigned to 
coefficients 1 and -1, the second to 2 and -2 and 
so on. In our prototype, for each tap, if the 
coefficient is positive we add the sampled value 
to the accumulator variable that corresponds to 
the filter coefficient. If the filter coefficient is 
negative, we do subtraction instead of addition. 

Figure 1. Sampling of multiple signals. The length of 
the signals (ls) and the delays between the consecutive 
chirps (d1, d2,…, dN) are known to the sensor, this way 
the start times of the sampling intervals can easily 
computed. 

Signal at 

Signal at 

Sampling 

t1 = t2 = t3 = 



The total number of the above additions and 
subtractions is less than the tap number of the 
filter, since we do not have to do anything at the 
taps with 0 coefficients. Finally, we take the 
weighted sum of the accumulator variables2 and 
then scale the result back with a binary shift. 

2. Genetic search for the integer coefficients 

There was a lot of research done to explore 
the applicability of evolutionary algorithms in 
digital filter design in the late nineties. The 
essential idea behind these approaches was to 
use evolutionary algorithms to optimize filter 
coefficients  [8]  [9]  [10]. Though they were 
predominantly addressing hardware design 
issues, as  [8] and  [10], their problem domain has 
a lot in common with digital filter design for 
resource-constrained sensor network nodes. 
Consequently, the integer coefficients of the 
bandpass filter employed in our acoustic sensor 
application were calculated by a genetic 
algorithm. 

In order to construct the fitness function for 
the genetic optimization algorithm, we recorded 
several windows containing both chirps and 
silence then applied the filtering to the signals in 
the way described before. The fitness function 
chosen was the signal-noise ratio, which can 
easily be estimated from the training signals, 
assuming that the positions of the chirps and the 
silence within the recordings are known. 

The output of the genetic search was a 35-tap 
FIR filter with integer coefficients in the [-4,4] 
interval, which has a suppression of at least 12 
dB below 3800 Hz and above 4500 Hz, and has 
a roll-off rate of approximately 20 dB per 
decade below 3800 Hz. 

With the resulting tap number and 
coefficients we can calculate one filtered sample 
with 34 additions and subtractions and two shift 
operations. 

3. Range estimation 
The power of the filtered samples has a local 

maximum in the interval where a chirp is 
recorded. By detecting the peek of the signal 
power it is possible to give an estimate of the 
start of the signal. 

                                                      
2 This can be done by 5 additions and a binary shift: 

weighted_sum = (a1 + a3) + ((a2 + a3 + a4 + 
a4) << 1 

Since calculation of power requires taking 
the squares of the samples, which is an 
expensive operation on a platform that does not 
support multiplication, we approximate the local 
maxima of the power function as follows. First 
we define a moving average function over the 
absolute value of the samples. Then we find the 
global average of the absolute value of the 
amplitude, so that later it will be possible to 
differentiate between signal and silence based on 
whether the value of the moving average 
function or the global average is higher at the 
given offset. Filtering, taking the absolute value, 
and averaging are carried out in the same loop 
in-place to minimize time and memory 
requirements. 

Due to disturbances, even though the sample 
is filtered, it is possible that multiple local 
maxima of the moving average function are 
above the global average. We should, however 
find the local maximum that corresponds to the 
chirp, and discard all other noise patterns of 
significant energy that fall into the same 
frequency range. 

For this reason, we examined the moving 
averages of the test samples around the positions 
of the chirps, and found that the moving 
averages of valid chirp patterns have segments 
with length of 200 to 350 samples above the 
average amplitude. Thus, we implemented the 
peek detection so that it returns the first local 
maximum that satisfies the above constraint. All 
other peeks are discarded. 

4. Calibration 
The distance between the actuator and the 

sensor is proportional to the time of flight of the 
acoustic signal. The peak detected, however, 
does not exactly reflect the time of flight, since 
it is obviously not the same offset that 
corresponds to the start of the acoustic signal, 
but some arbitrary one following that. The 
difference between the peak and the beginning 
of the signal is the result of the unknown rise 
time of the signal and the delay of the filter. 

Consequently, before scaling the offset of the 
peak with a suitable constant (which is the 
number of distance units the sound travels 
during the time represented by one sample) to 
yield the range estimate, we need to compensate 



for this delay of various causes by an additive 
constant.  

Since the latency in question is unknown, we 
chose to solve the problem statistically. A 
number of measurements were made with 
varying distances between sensor and actuator 
nodes then a linear regression was applied to the 
measured offsets of maximum energy and the 
actual distances. The additive and the 
multiplicative regression constants thus 
corresponded to the offset caused by the latency 
and the speed of sound respectively. 

  

5. Results 
We tested the acoustic ranging prototype 

with 50 MICA2 motes equipped with standard 
sensor boards. The test application consisted of 
the acoustic ranging component, a time slot 
negotiation component (to prevent two motes 
within each other’s acoustic range from chirping 
at the same time), and middleware services such 
as routing and remote control. The application 

used only 3332 bytes of RAM. The ranging 
experiment was controlled from a PC, using a 
Java application that recorded the incoming rage 
estimates and could optionally carry out 
localization using a basic linear spring model. 

 The experiment was carried out in a parking 
lot. The air temperature at ground level was 
approximately 35˚ C with relative humidity of 
60%. The motes were evenly distributed on a 15 
by 30-meter area with no obstructions between 
any sensor pairs to assure direct line of sight. 
The actual distances were measured between the 

motes with an ultrasonic ranging device to 
enable the evaluation of the accuracy of the 
ranging approach. 

The acoustic ranging measurements were 
repeated ten times. Figure 2 shows the 
correspondence between the range estimates and 
the actual distances. As we can see, the 
relationship between them is approximately 
linear, with some random outliers. Analysis of 
the range estimates showed that most of the 
outliers were generated by a single, 
malfunctioning mote, so the corresponding 
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Histogram - Acoustic Ranging Measurement Errors
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Histogram - Acoustic Ranging Measurement Errors after Speed of 
Sound Compensation
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Figure 3. Acoustic range estimates vs. the actual 
distances after removing outliers. 

Figure 2. Acoustic range estimates vs. the actual 
distances. Outliers present due to a hardware problem of a 
single node. 

Figure 5. Histogram of acoustic measurement errors after 
compensating the difference between the calibrated and the 
actual speed of sound. Average error is -8.18 cm. 

Figure 4. Histogram of acoustic measurement errors. Due 
to higher air temperature than the reference value the nodes 
underestimated the distances by 27.68 cm. 



measurements were removed not to disturb the 
further evaluation of the acoustic ranging and 
localization technique. Figure 3 shows the range 
estimates vs. the actual distances without the 
range estimates of the mote in question. Note 
that automatic elimination of these kinds of 
errors would be relatively simple. 

As the histogram of the ranging errors 
(Figure 4) shows, the mean of the errors was 
around -28cm, that is, the motes underestimated 
the distances. This can be explained by the 
difference between the reference speed of sound 
used in the range estimator algorithm and the 
high actual speed of sound resulting from the 
relatively high air temperature. After adjusting 
the ranging estimates using the actual speed of 
sound, the average error is decreased to -8.18cm. 

6. Issues and limitations 
Fine-grained localization of low-powered, 

cheap nodes still eludes us after years of 
research in the domain of wireless sensor 
networks. There are inherent problems with 
acoustic ranging, such as their relatively limited 
range and the need to compensate measurement 
errors due to non-line-of-sight conditions. 

1. Acoustic ranging errors 
Generally, the error of acoustic distance 

estimation can be expressed as the sum of a 
Gaussian and a non-Gaussian component. The 
Gaussian component is the result of noisy 
measurements, the non-Gaussian part, on the 
other hand, is caused by multi-path effects. 

While Gaussian measurement errors can be 
compensated successfully by averaging a series 
of consistent range estimates, the effects of 
echoes and obstructions cannot be adequately 
handled.  

If the line of sight between the actuator and 
the sensor is obstructed, the sensor will 
consistently report a longer range estimate than 
the actual distance. In a purely acoustic 
localization system, the overall error caused by 
non-line-of-sight conditions can be mitigated 
through various heuristics (e.g. geometric 
consistency checks as described in  [13]). 
However, building an entirely error-tolerant 
purely acoustic solution appears to be infeasible. 
As a possible way to improve the reliability of 

the self-localization,  [14] suggests using 
multiple sensor modalities. A good example of 
such a technique is presented in  [14], where the 
acoustic ranging mechanism is augmented with 
infrared LEDs and cameras to detect non-line-
of-sight conditions. 

2. Hardware limitations 
The most serious hardware constraint of our 

acoustic ranging implementation is the limited 
availability of RAM. One sampled acoustic 
signal needs to fit into the buffer allocated for 
the acoustic ranging component. 

7. Comparison with existing 
acoustic ranging solutions 

In the last few years there has been an 
abundance of publications on localization in 
sensor networks. However, they discuss mostly 
theoretical results; and only a fraction of them 
describe working prototypes. Below we contrast 
our solution with the acoustic ranging approach 
described in  [13] and in  [14], and the acoustic 
ranging mechanism underlying Calamari, the 
localization system presented in  [16]. 
 [13] and  [14] present an acoustic ranging 

system implemented on PC-class nodes 
equipped with a PC sound card. The acoustic 
signal emitted by the transmitter is formed by 
modulating a binary code using binary phase 
shift keying (BPSK) at a 12 KHz chip rate. The 
binary code is known to the detector, so it can 
compute the correlation between the 
reconstructed reference signal and the received 
signal at every possible offset to determine the 
position of the chirp. While this approach 
performs robustly, yielding distance estimates 
with sub-centimeter errors, it has a considerable 
computational complexity. In contrast, when 
designing our solution we were constrained by a 
fixed-frequency buzzer, a maximum sampling 
rate one third of that of a PC sound card and 4 
kilobytes of precious RAM. The resource 
constraints forced us to apply simplified, less 
sophisticated signal processing mechanisms 
tailored to the given hardware; and as an 
agreeable tradeoff we were able to keep the 
average error of distance estimation below 
10cm. 



Calamari, the localization system introduced 
in  [16], uses acoustic TOF-based distance 
estimations as the underlying ranging 
mechanism. The implementation targets the 
MICA platform; the motes are equipped with the 
standard MICA sensor board. Unlike our 
solution, Calamari uses the tone detector of the 
sensor board to identify the acoustic signal. 
Though using the analog hardware is cheaper 
than sampling and signal processing in all 
regards, its effective range is under 3 meters, 
and the uncalibrated distance estimates are very 
poor ( [16] reports an average error of 74.6%). 
Applying sophisticated calibration methods in 
Calamari reduces the average error to 10.1%, 
however, the error, due to the use of the tone 
detector, is distance dependent. Our approach, 
though it consumes precious RAM and has some 
computational overhead, provides more accurate 
results with uniform errors within the effective 
range. 

8. Conclusions 
We have presented an acoustic ranging 

mechanism augmented by simple digital signal 
processing techniques that targets severely 
resource-constrained devices. We have increased 
the effective range of the acoustic distance 
measurements to nine meters with the average 
accuracy of 8cm on the MICA/MICA2 motes, 
which is a significant improvement over a 
ranging solution that relies purely on the analog 
tone detector of the sensor board. Even though 
digital signal processing usually implies 
computationally intensive tasks, which may 
seem rather expensive if used in low-power, 
resource-constrained sensors, our prototype 
implementation proved the viability of our 
approach. 

9. Acknowledgements 
The DARPA/IXO NEST program (F33615-

01-C-1903) has supported the research described 
in this paper. 

10. References 
[1] N. Bulusu, J. Heidemann, D. Estrin, Gps-less low cost 

outdoor localization for very small devices. IEEE Personal 
Communications Magazine, Vol. 7, No. 5, p. 28-34, 2000 

[2] N. Bulusu, V. Bychkovskiy, D. Estrin, J. Heidemann, 
Scalable, Ad Hoc Deployable RF-based Localization. 
Grace Hopper Celebration of Women in Computing 
Conference 2002, Vancouver, British Columbia, Canada, 
2000 

[3] P. Bergamo, G. Mazzini, Localization in Sensor Networks 
with Fading and Mobility. IEEE PIMRC, 2002. 

[4] J. Elson, D. Estrin, Time Synchronization for Wireless 
Sensor Networks. Proceedings of the 2001 International 
Parallel and Distributed Processing Symposium (IPDPS), 
Workshop on Parallel and Distributed Computing Issues 
in Wireless and Mobile Computing, San Francisco, 
California, USA. April 2001. 

[5] A. Ward, A. Jones, A. Hopper,A New Location Technique 
for the Active Office. IEEE Personal Communications, 
Vol. 4, No. 5, October 1997, pp 42-47. 

[6] N. Priyantha, A. Chakraborty, H. Balakrishnan, The 
Cricket Location-Support System. 6th ACM International 
Conference on Mobile Computing and Networking, 2000. 

[7] J. Hill, D. Culler, Mica: A Wireless Platform for Deeply 
Embedded Networks. IEEE Micro, Vol 22(6), (2002) 12-
24. 

[8] Wade G., Roberts A., and Williams G., Multiplier-less 
FIR filter design using a genetic algorithm. IEE 
Proceedings in Vision, Image and Signal Processing, Vol. 
141, No. 3, pp. 175180, 1994 

[9] D.J. Xu, M.L. Daley, Design of optimal digital filter using 
a parallel genetic algorithm. IEEE Transactions on 
Circuits and Systems II: Analog and Digital Signal 
Processing, Vol. 42 , No. 10, p. 673-675, 1995 

[10] D. Quagliarella, J. Periaux, C. Poloni, G. Winter, Genetic 
Algorithms and Evolution Strategy in Engineering and 
Computer Science: Recent Advances and Industrial 
Applications. John Wiley & Sons, 1998 

[11] J. F. Miller, Digital Filter Design at Gate-level using 
Evolutionary Algorithms. Proceedings of the Genetic and 
Evolutionary Computation Conference, p. 1127-1134, 
1999 

[12] O. Cramer, The variation of the specific heat ratio and the 
speed of sound in air with temperature, pressure, humidity, 
and CO2 concentration. Journal of the Acoustical Society 
of America, 93(5) p. 2510-2616, formula at p. 2514 

[13] L. Girod, D. Estrin, Robust Range Estimation for 
Localization in Ad-hoc Sensor Networks. 2000 

[14] L. Girod, D. Estrin, Robust Range Estimation Using 
Acoustic and Multimodal Sensing. International 
Conference on Intelligent Robots and Systems, 2001 

[15] TinyOS, web site at http://webs.cs.berkeley.edu/ 
[16] K. Whitehouse, D. Culler, Calibration as Parameter 

Estimation in Sensor Networks. Proceedings of the 1st 
ACM international workshop on Wireless sensor networks 
and applications, 2002 

[17] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. 
Abdelzaher. Range-Free Localization Schemes in Large 
Scale Sensor Networks, MobiCom 2003. 


