The Collection Tree Protocol

Authors: Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, Sukun Kim, Philip Levis and Alec Woo

Presenter: Zoltán Kincses

Introduction

- The Collection Tree Protocol (CTP) is a tree based protocol with some tree root nodes
- CTP is address free
- Nodes generate routes to root using rooting gradient
- CTP assumes that the data link layer provides:
 - efficient local broadcast address
 - synchronous acks for unicast packets
 - protocol dispatch field (support higher-level protocols)
 - single-hop source and destination fields

- CTP assumes that it has link quality estimates of some number of nearby neighbors
- CTP has several mechanisms in order to improve delivery reliability (not promise 100%)
- CTP designed for relatively low traffic

Collection and CTP

- CTP uses Expected Transmissions (ETX) as a routing metric
- ETX_{root}=0 and ETX_{node}=ETX_{parent}+ETX_{linktoparent}
- CTP should choose the route with the lowest ETX
- CTP represents ETX as 16-bit fix-point real number with precision of hundredths
- Two main problem
 - Rooting loops
 - Packet duplication

Rooting Loops

- Occur when a node choose a new route with higher ETX than its old one
- Two mechanisms to address this problem
 - CTP packet contains a node's current gradient value
 - the data frame with lower gradient value indicates inconsistency
 - try to solve inconsistency by broadcasting a beacon frame
 - not consider routes with an ETX higher than a reasonable constant

Packet Duplication

- Occurs when a node receives a packet successfully but the ack is not received by the sender
- The sender retransmits the packet and the receiver receives it a second time
- The duplication is exponential
- CTP data frames have Time Has Lived (THL) field which was incremented by routing layer

CTP Data Frame

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 P C reserved THL THL ETX THL Image: seqno in the seque in the seq

P (Routing Pull)

- allows nodes to request routing information
- □ if P is set the node should transmit a routing frame

C (Congestion notification)

- if a node drops a CTP data frame it must set the C bit field on the next data frame
- THL (Time Has Lived)
 - if a node generates a CTP data frame, it must set THL to 0
 - if a node receives a CTP data frame must increment the THL

ETX (Expected Transmissions)

- □ the ETX is the routing metric of the single-hop sender
- node send a CTX data frame must put the ETX of its routes
- node receives a packet with lower gradient must schedule a routing frame
- Seqno
 - origin sequence number
- Collect_id
 - Higher-level protocol identifier
- Data
 - the data payload, of zero or more bytes

CTP Routing Frame

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
															1

Ρ	C	reserved	parent				
		parent	ETX				
		ETX					

P (Routing Pull)

same as data frame

C (Congestion Notification)

same as data frame

Parent

the node's current parent

Metric

the node's current routing metric value

- After a node hears a routing frame, it must update its routing table
- If a node ETX value changes significantly, should transmit broadcast frame to notify other nodes
- The parent can detect when a child ETX is significantly below its own
 - parent must schedule a routing frame

Implementation

Three major subcomponents

- link estimator
 - responsible for estimating the single-hop ETX of communication with single hop neighbors
- routing engine
 - uses link estimates to decide which neighbor is the next hop routing hop
- forwarding engine
 - maintains queue of packets to send
 - decides when and if to send them

Link Estimation

Two mechanism to estimate the link quality

- periodic Link Estimation Extension Protocol (LEEP) packets
 - sends routing beacons as LEEP
 - seeds the neighbor table
 - similar to Trickle based dissemination
- data packets
 - direct measure of ETX
 - estimator produces ETX estimate after 5 successfully acknowledged packet transmission

Routing Engine

Picking the next hop for data transmission

- Keeps track of the path ETX of the subset of the nodes
- The minimum cost route has the smallest sum
 - the path ETX from that node
 - the link ETX of that node

Forwarding Engine

- Transmitting, retransmitting packets to the next hop and passing ack based information to the link estimator
- Deciding when to transmit packets to the next hop
- Detecting routing inconsistencies and informing the routing engine
- Maintaining a queue of packets to transmit (local and forwarded)
- Detection singe-hop transmission duplicates

SubReceive.receive()

- decides whether or not the node should forward a packet
- calls the forwarding functions
- forward()
 - formats the packet for forwarding
 - checks if there is a possibly loop in the network
 - checks if there is space in the queue
 - □ if not C bit is set
 - □ if yes post send task

sendTask()

- examines the packet in the send queue, formats it and submits it to the AM layer
- sendDone()
 - examines the packet to see the results
 - if ack received pulls of the packet from the queue
 - if packet was locally generated is signals sendDone()
 - if there are packets remaining in the queue it starts a randomized timer that reposts this task

Thank you for your kind attention!