THERE ARE NO PURE RELATIONAL WIDTH 2 CONSTRAINT SATISFACTION PROBLEMS

VÍCTOR DALMAU

Departament de tecnologies de la informació i les comunicacions, Universitat Pompeu Fabra, Estació de França, Passeig de la circumval.laci 8, 08003, Barcelona (Spain) victor.dalmau@upf.edu

Abstract

In this note, we show that every constraint satisfaction problem that has relational width 2 has also relational width 1 . This is achieved by means of an obstruction-like characterization of relational width which we believe to be of independent interest.

Keywords: Computational Complexity, Constraint Satisfaction Problems.

1. Introduction

Let \mathbf{B} be a relational structure. In a constraint satisfaction problem with template $\mathbf{B}, \operatorname{CSP}(\mathbf{B})$, we are given a relational structure \mathbf{A} and the goal is to decide whether \mathbf{A} is homomorphic to \mathbf{B}. Motivated by the Feder-Vardi dichotomy conjecture [9] stating that for each $\mathbf{B}, \operatorname{CSP}(\mathbf{B})$ is either solvable in polynomial time or NPcomplete, there has been a good wealth of research aimed to distinguish those templates \mathbf{B} that give rise to tractable (i.e., solvable in polynomial time) CSPs from those that do not. The length of the list of tractable cases known so far (see [5, 7] for recent surveys) contrasts sharply with the number of algorithmic principles which is very limited. Indeed, all known tractable cases are solvable either by the query language Datalog [9], via the "few subpowers" property [10], or by a combination (sometimes very non-trivial) of the two. Whereas the few subpowers properly is well understood [10], the reach of Datalog Programs as a tool to solve CSPs has not yet been precisely delineated, despite considerable effort (see [6] for a survey on the topic). Datalog Programs have been parameterized in several ways (number of variables per rule, arity of the IDBs) giving rise to different notions of width. Among them, the relational width, introduced by Bulatov [4], has received considerable interest (see $[4,1,2,3,13,11]$). An interesting feature of relational width is its independence on the arity of the relations of \mathbf{B}, which makes it particularly appealing for the so-called algebraic approach to the CSP [5]. The class of problems with relational width 1 corresponds, in artificial intelligence terminology, to those solvable by the arc-consistency algorithm [8]. Feder and Vardi [9] gave a complete characterization leading to a decision procedure for deciding if a structure \mathbf{B} gives rise to a constraint satisfaction problem, $\operatorname{CSP}(\mathbf{B})$ of relational width 1. Little is known for higher levels of relational width. For $k=2$ or $k \geq 4$ we do not possess examples of pure relational width k problems, i.e, structures \mathbf{B} that have relational width k but not $k-1$. In this note we adress and solve the case $k=2$ showing
that there are not pure relational width 2 problems. This is achieved by providing an obstruction-like characterization of relational width.

2. Preliminaires and Statement of the Main Result

Most of the terminology introduced in this section is fairly standard. A vocabulary is a finite set of relation symbols or predicates. In what follows, τ always denotes a vocabulary. Every relation symbol P in τ has an arity $r=\rho(P) \geq 0$ associated to it. We also say that P is an r-ary relation symbol.

A τ-structure \mathbf{A} consists of a set A, called the universe of \mathbf{A}, and a relation $P^{\mathbf{A}} \subseteq A^{r}$ for every relation symbol $P \in \tau$ where r is the arity of P. For ease of notation, we shall say that $P\left(a_{1}, \ldots, a_{r}\right)$ holds in \mathbf{A} to indicate that $\left(a_{1}, \ldots, a_{r}\right) \in$ $P^{\mathbf{A}}$. All structures in this paper are assumed to be finite, i.e., structures with a finite universe. Throughout the paper we use the same boldface and slanted capital letters to denote a structure and its universe, respectively.

A homomorphism from a τ-structure \mathbf{A} to a τ-structure \mathbf{B} is a mapping h : $A \rightarrow B$ such that for every r-ary $P \in \tau$ and every $\left(a_{1}, \ldots, a_{r}\right) \in P^{\mathbf{A}}$, we have $\left(h\left(a_{1}\right), \ldots, h\left(a_{r}\right)\right) \in P^{\mathbf{B}}$. We say that \mathbf{A} is homomorphic to \mathbf{B} and denote this by $\mathbf{A} \rightarrow \mathbf{B}$ if there exists a homomorphism from \mathbf{A} to \mathbf{B}.

If \mathbf{A} is a τ-structure and $f: A \rightarrow B$ a mapping with domain the universe of A and image a finite set B, we define the homomorphic image of \mathbf{A} by $f, f(\mathbf{A})$, to be the τ-structure with domain $f(A)$, and such that for every $P \in \tau$ of arity, say r,

$$
P^{f(\mathbf{A})}=\left\{\left(f\left(a_{1}\right), \ldots, f\left(a_{r}\right)\right) \mid\left(a_{1}, \ldots, a_{r}\right) \in P^{\mathbf{A}}\right\}
$$

We define the union $\mathbf{A} \cup \mathbf{B}$ of τ-structures \mathbf{A} and \mathbf{B} to be the τ-structure with universe $A \cup B$ and such that $P^{\mathbf{A} \cup \mathbf{B}}=P^{\mathbf{A}} \cup P^{\mathbf{B}}$ for every $P \in \tau$.

The concept of relational width was introduced initially by Bulatov in [4]. The presentation given here follows [6].

For any mapping f and $I \subseteq \operatorname{dom}(f)$ we denote by f_{I} the restriction of f to I, . For every f, g partial mappings from A to B, we write $f \subseteq g$ to indicate that $\operatorname{dom}(f) \subseteq \operatorname{dom}(g)$ and that $g_{\operatorname{dom}(f)}=f$. We also say that g is an extension of f or alternatively that f is a restriction of g.

Definition 1. Let \mathbf{A}, \mathbf{B} be τ-structures and let $k \geq 1$. A k-minimal family for (\mathbf{A}, \mathbf{B}) is nonemtpy set H of partial mappings from A to B such that for every $h \in H:$
(i) for every tuple $P\left(a_{1}, \ldots, a_{m}\right)$ in \mathbf{A} there exists some tuple $P\left(b_{1}, \ldots, b_{m}\right)$ in \mathbf{B} such that $h\left(a_{i}\right)=b_{i}$ for every $a_{i} \in \operatorname{dom}(h)$ and such that for every subset I of $\left\{a_{1}, \ldots, a_{n}\right\}$ with $|I| \leq k$, there exits a mapping h^{\prime} in H such that $h^{\prime}\left(a_{i}\right)=b_{i}$ for every $a_{i} \in I$.
(ii) $h^{\prime} \in H$ for every $h^{\prime} \subseteq h$.
(iii) if $\operatorname{dom}(h)<k$ then for every $a \in A$, there exists some $h^{\prime} \in H$ with $a \in$ $\operatorname{dom}\left(h^{\prime}\right)$ and $h \subseteq h^{\prime}$

There exists a very simple procedure, called k-minimal test, that decides, given two relational structures \mathbf{A} and \mathbf{B}, whether there exists a k-minimal family for (\mathbf{A}, \mathbf{B}) (and actually finds one). The k-minimal test starts by placing in the hypothetical k-minimal family H all partial mappings from A to B of domain size at most k. Then in an interative fashion it removes from H all mappings that do not satisfy any of conditions (1-3) of k-minimal family until the process stabilizes. Since
the number of partial mappings from A to B with domain size k is bounded by $|A \| B|^{k}$ the k-minimal test runs in polynomial time. We say that (\mathbf{A}, \mathbf{B}) passes the k-minimal test if the resulting H is nonempty and that fails otherwise. A structure \mathbf{B} has relational width k if $\mathbf{A} \rightarrow \mathbf{B}$ for every structure \mathbf{A} such that (\mathbf{A}, \mathbf{B}) passes the k-minimal test.

The main result of this paper is the following
Theorem 1. Every structure with relational width 2 has also relational width 1.

3. Proof of Theorem 1

The proof has two ingredients: The first one is an obstruction-like characterization of relational width (Theorem 3). The second ingredient is the Sparse Incomparability Lemma [12].

Let $m \geq 1$. A cycle in a τ-structure \mathbf{A} of length m is a collection of m different tuples $P_{0}\left(a_{1}^{0}, \ldots, a_{r_{0}}^{0}\right), \ldots, P_{m-1}\left(a_{1}^{m-1}, \ldots, a_{r_{m-1}}^{m-1}\right)$ that hold in A such that the cardinality of the set $\left\{a_{j}^{i} \mid 0 \leq i \leq m-1,1 \leq j \leq r_{i}\right\}$ is less than $1+\sum_{1 \leq i \leq m-1}\left(r_{i}-\right.$ $1)$. The girth of a τ-structure is the length of its shortest cycle.

Theorem 2. (Sparse Incomparability Lemma) Let k, l be positive integers and let \mathbf{A} be a structure. Then there exists a structure \mathbf{G} with the following properties:
(1) \mathbf{G} is homomorphic to \mathbf{A}
(2) For every structure \mathbf{B} with at most k elements, \mathbf{A} is homomorphic to \mathbf{B} iff \mathbf{G} is homomorphic to \mathbf{B}
(3) \mathbf{G} has girth $\geq l$.

Tree-like structures are usually defined by means of tree-decompositions.
Definition 2. Let \mathbf{A} be a τ-structure. A tree-decomposition of \mathbf{A} is a pair (T, φ) where T is a tree and $\varphi: V(T) \rightarrow \mathcal{P}(A)$ is a mapping that assigns to every node of T a set of elements of A, satisfying the following conditions:
(1) nodes containing any given element of A form a subtree,
(2) for any tuple in any relation of \mathbf{A}, there is a node in T containing all elements from that tuple.

Note: for ease of notation we say that a node $v \in V(T)$ contains an element $a \in A$ if $a \in \varphi(v)$.

Definition 3. $A \tau$-structure \mathbf{A} is a k-relational tree (or k-reltree) if there exists a tree-decomposition (T, φ) of \mathbf{A} such that:

- (i) two different nodes of T share at most k elements
- (ii) for every node t of T there exists a tuple of \mathbf{A} that contains every element of t or t has size at most k.

Generally, a relational structure \mathbf{A} is called a tree if its incidence multigraph is a tree in the usual graph-theoretic sense (see [6] for example). In our terminology, trees are precisely 1-relational trees. Observe also that if all predicates in τ have arity at most k then a τ-structure is a k-relational tree iff its Gaiffman graph has treewidth at most $k-1$.

In our proofs it will be more convenient to use an alternative but equivalent inductive definition of k-reltrees.

Definition 4. Let \mathbf{T} be a relational structure and let I be a subset of nodes of \mathbf{T} with $|I| \leq k$. The pair (\mathbf{T}, I) is called a k-reltree if
(1) \mathbf{T} contains only one tuple, or
(2) there is a finite collection $\left(\mathbf{T}_{j}, I_{j}\right), j \in J$ of k-reltrees and (not necessarily distinct) $e_{1}, \ldots, e_{n} \in T, n \geq 0$ such that for all $j \in J T_{j} \cap\left\{e_{1}, \ldots, e_{n}\right\} \subseteq I_{j}$ and for all $i, j \in J, T_{i} \cap T_{j} \subseteq\left\{e_{1}, \ldots, e_{n}\right\}$, and
(a) \mathbf{T} is the union of tuple $P\left(e_{1}, \ldots, e_{n}\right)$ (for some n-ary $P \in \tau$) and $\bigcup_{j \in J} \mathbf{T}_{j}$, and $I \subseteq\left\{e_{1}, \ldots, e_{n}\right\}$ or
(b) $\mathbf{T}=\bigcup_{j \in J} \mathbf{T}_{j}$ and $I=\left\{e_{1}, \ldots, e_{n}\right\}$, or
(3) there is a k-reltree $\left(\mathbf{T}, I^{\prime}\right)$ with $I \subseteq I^{\prime}$.

Finally, a structure \mathbf{T} is a k-reltree if (\mathbf{T}, \emptyset) is a k-reltree.
The proof of the equivalence between the two definitions of k-reltree is very simple and omitted.

Theorem 3. Let \mathbf{A}, \mathbf{B} be structures and let $k \geq 1$. T.f.a.e:
(a) (\mathbf{A}, \mathbf{B}) passes the k-minimal test
(b) there is a k-minimal family for (\mathbf{A}, \mathbf{B})
(c) every k-reltree homomorphic to \mathbf{A} is homomorphic to \mathbf{B}

Proof.

$[(a) \Leftrightarrow(b)]$. This is precisely the proof of the correctness of the k-minimal test, which is straightforward.
$[(b) \Rightarrow(c)]$ Let H be a k-minimal family for (\mathbf{A}, \mathbf{B}). We shall prove that if (\mathbf{T}, I) is a k-reltree, f an homomorphism from \mathbf{T} to \mathbf{A} and h is a mapping in H with $\operatorname{dom}(h)=f(I)$ then there exists a homomorphism g from \mathbf{T} to \mathbf{B} such that $g_{I}=$ ($h \circ f_{I}$). The proof is by estructural induction on (\mathbf{T}, I).
(1) \mathbf{T} is simply a tuple $P\left(e_{1}, \ldots, e_{n}\right)$ and I is any subset of $\left\{e_{1}, \ldots, e_{n}\right\}$ with $|I| \leq k$. Let $P\left(a_{1}, \ldots, a_{n}\right)$ be the image of $P\left(e_{1}, \ldots, e_{n}\right)$ according to f. Let $P\left(b_{1}, \ldots, b_{n}\right)$ be the tuple in \mathbf{B} guaranteed to exist because h satisfies condition (i) of k-minimal family. The mapping $g:\left\{e_{1}, \ldots, e_{n}\right\} \rightarrow B$, $g\left(e_{i}\right)=b_{i}, 1 \leq i \leq n$ satisfies the required conditions.
(2a) Let $P\left(a_{1}, \ldots, a_{n}\right)$ be the image of $P\left(e_{1}, \ldots, e_{n}\right)$ according to f. Let $P\left(b_{1}, \ldots, b_{n}\right)$ be the tuple in \mathbf{B} that guaranteed to exist because h satisfies condition (i) of k-minimal family. Set $g\left(e_{i}\right)=b_{i}$ for $1 \leq i \leq n$. In order to define g over the rest of T do the following:

For $j \in J$, consider the the mapping $h_{j}^{\prime}: f\left(I_{j}\right) \cap\left\{a_{1}, \ldots, a_{n}\right\} \rightarrow B$ defined by $h_{j}^{\prime}\left(a_{i}\right)=b_{i}, a_{i} \in \operatorname{dom}\left(h_{j}\right)$. Condition (ii) of k-minimal family guarantees that $h_{j}^{\prime} \in H$. Furthermore, by condition (iii) of k-minimal family, H contains an extension h_{j} of h_{j}^{\prime} with domain $f\left(I_{j}\right)$. By induction hypothesis there exists a homomorphism g_{j} from \mathbf{T}_{j} to \mathbf{B} such that $g_{j}(e)=$ $h_{j}(f(e))$ for every $e \in I_{j}$. Define $g(e)=g_{j}(e)$ for every $j \in J$ and every $e \in T_{j}$. Mapping g satisfies the required conditions.
(2b) ($\mathbf{T}, I)$ is obtained by rule (2b). Define $g(e)=h(f(e))$ for all $e \in I$ and extend g over the rest of T as in the previous case.
(3) ($\mathbf{T}, I)$ is obtained by rule (3) from (\mathbf{T}, I^{\prime}) with $I \subseteq I^{\prime}$. By property (iii) of H there exists h^{\prime} defined over $f\left(I^{\prime}\right)$ that extends h. The mapping g guaranteed to exist for $\left(\mathbf{T}, I^{\prime}\right), f$ and h^{\prime} satisfies the required conditions.
$[(c) \Rightarrow(a)]$ We shall show that for every mapping h removed from H by the k minimal test there exists a k-reltree (\mathbf{T}, I), some homomorphism f from \mathbf{T} to A, with f_{I} one-to-one, $f(I)=\operatorname{dom}(h)$, and such that for every homomorphism $g: \mathbf{T} \rightarrow \mathbf{B}, g_{I} \neq\left(h \circ f_{I}\right)$. We shall prove it by induction on the elimination order of h.

If h is removed in the first iteration, then necessarily condition (i) of k-minimal family is falsified by h. Set \mathbf{T} be the structure containing only the tuple $P\left(a_{1}, \ldots, a_{n}\right)$ given by the condition, define f to be the identity mapping, and let $I=\operatorname{dom}(h)$.

Assume now that h is removed in some subsequent iteration. We do a case analisis depending on which condition of k-minimal family is falsified by h
(i) Let $P\left(a_{1}, \ldots, a_{n}\right)$ be the tuple that forces h to be eliminated and let h_{j}, $j \in J$ be the set of mappings with domain entirely contained in $\left\{a_{1}, \ldots, a_{n}\right\}$ that have been previously removed from H. For each $j \in J$, let (\mathbf{T}_{j}, I_{j}) and f_{j} be the k-reltree and mapping respectively for h_{j}. By renaming adequately the nodes of \mathbf{T}_{j} we can assume that f_{j} restricted to I_{j} is the identity and that all the other variables are new, i.e., $I_{j}=T_{j} \cap\left\{a_{1}, \ldots, a_{n}\right\}$. We can also assume that apart from the elements in $\left\{a_{1}, \ldots, a_{n}\right\}$ any two of these structures do not share any other element, i.e, for every $i \neq j \in J$, $T_{i} \cap T_{j} \subseteq\left\{a_{1}, \ldots, a_{n}\right\}$. We are now in a situation to define (\mathbf{T}, I) and f. ($\mathbf{T}, I)$ is constructed by rule $(2 b)$ from $\left(\mathbf{T}_{j}, I_{j}\right), j \in J$, tuple $P\left(a_{1}, \ldots, a_{m}\right)$, and $I=\operatorname{dom}(h) . f(x)$ is defined to be the identity if $x \in\left\{a_{1}, \ldots, a_{n}\right\}$ and $f_{j}(x)$ if $x \in T_{j}$, otherwise. It is easy to verify that ($\left.\mathbf{T}, I\right)$ and f satisfy the required conditions.
(ii) There exists some $h \subseteq h^{\prime}$ such that h^{\prime} was previously removed from H. Let ($\mathbf{T}^{\prime}, I^{\prime}$) and f^{\prime} be guaranteed by the hypothesis condition. In this case we only need to set $\mathbf{T}=\mathbf{T}^{\prime}, I=\operatorname{dom}(h)$, and $f=f^{\prime}$.
(iii) Hence h is eliminated because $|\operatorname{dom}(h)|=n<k$ and there exists some a such that H does not contain any extension of h defined over a. Hence, every possible every extension $h_{j}: \operatorname{dom}(h) \cup\{a\}, j \in J$ of h has been previously removed from H. For every $j \in J$, there exists suitable $\left(\mathbf{T}_{j}, I_{j}\right)$, and f_{j}. Let $\operatorname{dom}(h)=\left\{a_{1}, \ldots, a_{n}\right\}$ and rename the variables of the structures $\mathbf{T}_{j}, j \in J$ so that for every $j \in J, T_{j} \cap\left\{a_{1}, \ldots, a_{n}\right\} \subseteq I_{j}, f_{j}$ is the identity on $T_{j} \cap\left\{a_{1}, \ldots, a_{n}\right\}$, and for all $i \neq j \in J, T_{i} \cap T_{j} \subseteq\left\{a_{1}, \ldots, a_{n}\right\}$. We set \mathbf{T} to be $\bigcup_{j \in J} \mathbf{T}_{j}, I=\left\{a_{1}, \ldots, a_{n}\right\}$, and set $f(x)$ to be the identity if $x \in\left\{a_{1}, \ldots, a_{n}\right\}$ and $f_{j}(x)$ where $x \in T_{j}$, otherwise. ($\left.\mathbf{T}, I\right)$ and f satisfy the required conditions.

Finally the prove the contrapositive of the implication. If the k-minimal test fails then the mapping h with empty domain is removed. This implies that condition (c) is false.

As a corollary of Theorem 3 we obtain an obstruction-like characterization of relational width.

Definition 5. Let \mathbf{B} be a τ-structure. A set \mathcal{O} of τ-structures is an obstruction set of \mathbf{B} if for every τ-structure \mathbf{A}

$$
\mathbf{A} \rightarrow \mathbf{B} \quad \text { iff } \forall \mathbf{O} \in \mathcal{O}, \mathbf{O} \nrightarrow \mathbf{A}
$$

Corollary 1. An structure has relational width k iff it has an obstruction set consisting of k-reltrees.
Lemma 1. Every 2-reltree with girth at least 3 is a tree
Proof. We shall prove the stronger claim that every 2-reltree \mathbf{A} is cycle-free. We shall prove it by contradiction. Let $P_{1}\left(a_{1}^{1}, \ldots, a_{r_{1}}^{1}\right), \ldots, P_{m-1}\left(a_{1}^{m-1}, \ldots, a_{r_{m-1}}^{m-1}\right)$ be a cycle in \mathbf{A} and let us assume that m is minimal. Hence $r_{i} \geq 2$ for $i=1, \ldots, m-1$. Furthermore, by the minimality of m we we can assume that there exists different elements $a_{0}, \ldots, a_{m-1} \in A$ such that for every $0 \leq i \neq j \leq m-1$, the i th and the j th tuple share only element a_{i} if $i+1=j(\bmod m)$ and none otherwise.

Let (T, φ) be a suitable tree-decomposition of \mathbf{A} that certifies that \mathbf{A} is a 2 reltree. By the definition of tree-decomposition, for every $0 \leq i \leq m-1, T$ contains a node, let us call it n_{i}, that contains $\left\{a_{1}^{i}, \ldots, a_{r_{i}}^{i}\right\}$. Since $r_{i} \geq 2$ then, by definition $3, n_{i}$ should be precisely $\left\{a_{1}^{i}, \ldots, a_{r_{i}}^{i}\right\}$, since we cannot have two different tuples containing $\left\{a_{1}^{i}, \ldots, a_{r_{i}}^{i}\right\}$ as this would be a cycle of length 2 . Consider the following walk in T : Start in n_{0} and follow the unique path from n_{0} to n_{1}, then continue following the unique path from n_{1} to n_{2}, and proceed in the same way until by crossing the path from n_{m-1} to n_{0} the walk returns to n_{0}. Let us start by showing that after reaching node n_{1} for the first time, the walk must reverse direction. Indeed, let $i \geq 1$ such that n_{1} is crossed back later when following the path from n_{i} to $n_{i+1}(\bmod m)$. By the definition of tree-decomposition every node in the path from n_{i} to n_{i+1} contains a_{i} and hence a_{i} belongs to n_{1}. But this is only possible if $i=1$ and hence the walk must reverse direction.

The walk then proceeds by following the path from n_{1} to n_{2}. Every node in this segment contains a_{1} and hence by the same type of reasonning it cannot cross n_{0}. Hence there is some node u at which this path stops going towards n_{0} and branches off in a different direction. Necessarily $\left\{a_{0}, a_{1}\right\} \subseteq u$ as u participates both in the path going from n_{0} to n_{1} and the path going from n_{1} to n_{2}. Later on during the walk, u must be necessarily crossed back, say, when walking the path from node n_{i} to $n_{i+1}(\bmod m)$ for some $i \geq 2$. Hence u contains a_{i} as well. Since u has cardinality at least 3 there exists a tuple in \mathbf{A} containing $\left\{a_{0}, a_{1}, a_{i}\right\}$. This tuple jointly with tuple $P_{1}\left(a_{1}^{1}, \ldots, a_{r_{1}}^{1}\right)$ constitutes a cycle of length 2 , which is impossible.

Proof. (of Theorem 1)
Let \mathbf{B} be an τ-structure with relational width 2 . We shall show that if \mathbf{A} is a structure not homomorphic to \mathbf{B} then (\mathbf{A}, \mathbf{B}) fails the 1-minimal test. By the Sparse Incomparability Lemma, if \mathbf{A} is not homomorphic to \mathbf{B} there exists some structure \mathbf{G} with girth at least 3 that is homomorphic to \mathbf{A} and not homomorphic to \mathbf{B}. Hence (\mathbf{G}, \mathbf{B}) fails the 2-minimal test and by Theorem 3 there exists some 2-reltree \mathbf{C} that is homomorphic to \mathbf{G} but not to \mathbf{B}. Pick such \mathbf{C} with minimum number of nodes. We shall see that the girth of \mathbf{C} is at least 3 , and hence, by Lemma 1, \mathbf{C} is a tree. By composition of homomorphisms \mathbf{C} is homormorphic to \mathbf{A} but not to \mathbf{B}. Therefore by Theorem 3, (A,B) fails the 1-minimal test.

It only remains to check that if \mathbf{C} is a 2 -reltree with minimum number of nodes homorphic to \mathbf{G} but not to \mathbf{B} then \mathbf{C} does not have cycles of length at most 2 . Clearly, if \mathbf{C} has a cycle of length 1 then its image in \mathbf{G} is, as well, a cycle of lenght 1 which is impossible. The same reasonning does not always apply to cycles of length 2. Indeed, if $P_{0}\left(a_{1}^{0}, \ldots, a_{r_{0}}^{0}\right), P_{1}\left(a_{1}^{1}, \ldots, a_{r_{1}}^{1}\right)$ is a cycle of \mathbf{C} and h is a
homomorphism from \mathbf{C} to \mathbf{G} then it is possible that the image $P_{0}\left(h\left(a_{1}^{0}\right), \ldots, h\left(a_{r_{0}}^{0}\right)\right)$ $P_{1}\left(\left(a_{1}^{1}\right), \ldots,\left(a_{r_{1}}^{1}\right)\right)$ is not a cycle of \mathbf{G} if the two tuples of the image are the same. Hence we can assume that the two predicates are the same and for ease of notation we write $P=P_{0}=P_{1}$ and $r=r_{0}=r_{1}$.

Define the mapping $f: C \rightarrow C$ with $f\left(a_{i}^{1}\right)=a_{i}^{0}$ for all $i=1, \ldots, r$ and f acting as the identity in all other cases. Mapping f cannot be exhaustive, since otherwise tuples $P\left(a_{1}^{0}, \ldots, a_{r}^{0}\right), P\left(a_{1}^{1}, \ldots, a_{r}^{1}\right)$ would be identical, and hence $f(\mathbf{C})$ has less nodes than C. Clearly $f(\mathbf{C})$ is homomorphic to \mathbf{G}-because $h\left(a_{i}^{0}\right)=h\left(a_{i}^{1}\right)$ for all $i=1, \ldots, r$ - and not homomorphic to \mathbf{B}. We shall show that $f(\mathbf{C})$ is a 2-reltree contradicting the minimality of \mathbf{C}. Tuples $P\left(a_{1}^{0}, \ldots, a_{r}^{0}\right)$ and $P\left(a_{1}^{1}, \ldots, a_{r}^{1}\right)$ share at least 2 vertices because they constitute a cycle and at most 2 because otherwise \mathbf{C} would not be a 2 -reltree. We can assume for ease of notation that the shared elements are precisely the first two and write $a_{1}=a_{1}^{0}=a_{1}^{1}$ and $a_{2}=a_{2}^{0}=a_{2}^{1}$. Let (T, φ) be a suitable tree-decomposition of \mathbf{C}.

The set $V(T)$ can be partitioned in two sets of nodes V_{0} and V_{1} such that:

- V_{0} and V_{1} are connected in T,
- $\bigcup_{v \in V_{0}} \varphi(v) \cap \bigcup_{v \in V_{1}} \varphi(v)=\left\{a_{0}, a_{1}\right\}$, and
- $a_{i}^{j} \in \bigcup_{v \in V_{j}} \varphi(v)$ for all $i=1, \ldots, r$.

The partition can be obtained in the following way: let u_{0} (u_{1} resp.) be a node of $V(T)$ that contains all elements of the first (resp. second tuple) of the cycle. Define V_{0} to be the set of all elements reachable from u_{0} without crossing u_{1} and V_{1} to be the rest of nodes. It is clear that V_{0} and V_{1} satisfy all the requiered conditions.

For $i=0,1$, let \mathbf{C}_{i} be the substructure of \mathbf{C} induced by $\bigcup_{v \in V_{i}} \varphi(v)$. Then $f(\mathbf{C})=\mathbf{C}_{0} \cup f\left(\mathbf{C}_{1}\right)$. Since f is injective over C_{1}, both \mathbf{C}_{0} and $f\left(\mathbf{C}_{1}\right)$ are 2-reltrees. Let $\left(T_{0}, \varphi_{0}\right)$ and $\left(T_{1}, \varphi_{1}\right)$ be suitable tree-decompositions of \mathbf{C}_{0} and $f\left(\mathbf{C}_{1}\right)$. Finally, let u_{0} be an element of $V\left(T_{0}\right)$ containing all the elements of the first tuple. Indeed, by Definition 3, $\varphi_{0}\left(u_{0}\right)$ is precisely $\left\{a_{1}^{0}, a_{2}^{0}, \ldots, a_{r}^{0}\right\}$. By an identical reasonning there is an element u_{1} of $V\left(T_{1}\right)$ with $\varphi_{1}\left(u_{1}\right)=\left\{a_{1}^{0}, a_{2}^{0}, \ldots, a_{r}^{0}\right\}$. Define T^{\prime} to be the tree obtained by making the disjoint union of T_{0} and T_{1} and glying toghether u_{0} and u_{1}. Define $\varphi^{\prime}: V\left(T^{\prime}\right) \rightarrow f(C)$ to be $\varphi_{0}(v)$ if $v \in T_{0}$ and $\varphi_{1}(v)$ if $v \in T$. The pair $\left(T^{\prime}, \varphi^{\prime}\right)$ is a suitable tree-decomposition of $f(\mathbf{C})$.

Acknowledgements

We are grateful to Miklos Maroti for pointing out a mistake in a previous version of this paper and to Hubie Chen for several comments on a previous version of this paper

References

[1] A. Bulatov. Tractable Conservative Constraint Satisfaction Problems. In Proceedings of the 18th Annual IEEE Simposium on Logic in Computer Science, (LICS'03), pages 321-330, 2003.
[2] A. Bulatov. A Graph of a Relational Structure and Constraint Satisfaction Problems. In Proceedings of the 19th IEEE Annual Symposium on Logic in Computer Science, (LICS'04), pages 448-457, 2004.
[3] A. Bulatov. A Dichotomy Theorem for Constraints on a Three-element Set. Journal of the ACM, 53(1):66-120, 2006.
[4] A. Bulatov. Combinatorial problems raised from 2-semilattices. Journal of Algebra, 298(2):321-339, 2006.
[5] A. Bulatov, A. Krokhin, and P. Jeavons. The Complexity of Constraint Satisfaction: An Algebraic Approach. In Structural Theory of Automata, Semigroups and Universal Algebra (Montreal, 2003), NATO Science Series II: Mathematics, Physics, Chemistry, pages 181-213, 2005.
[6] A. Bulatov, A. Krokhin, and B. Larose. Dualities for Constraint Satisfaction Problems. Submitted for publication.
[7] A. Bulatov and M. Valeriote. Results on the Algebraic Approach to the CSP. In Proceedings of the Dagstuhl Seminar on the Complexity of Constraints. To appear.
[8] V. Dalmau and J. Pearson. Set Functions and Width 1. In 5th International Conference on Principles and Practice of Constraint Programming, (CP'99), volume 1713 of Lecture Notes in Computer Science, pages 159-173, Berlin/New York, 1999. Springer-Verlag.
[9] T. Feder and M.Y. Vardi. The Computational Structure of Monotone Monadic SNP and Contraint Satisfaction: A Study through Datalog and Group Theory. SIAM J. Computing, 28(1):57-104, 1998.
[10] P. Idziak, P. Markovic, R. MacKenzie, and M. Valeriote. Tractability and learnability arising from algebras with few subpowers. In 22nd IEEE Symposium on Logic in Computer Science (LICS'07), pages 213-224, 2007.
[11] E. Kiss and M. Valeriote. On Tractability and Congruence Distributivity. Logical Methods in Computer Science, 3(2), 2006.
[12] J. Nes̆etr̆il and V. Rödl. Chormatically Optimal Rigid Graphs. J. Comb. Theory, Series B, 46:122-141, 1989.
[13] M. Valeriote. A Subalgebra Intersection Property for Congruence Distributive Lattices. Canadian Journal of Mathematics. To appear.

