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On algebras with primitive positive clones
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Abstract. We determine the primitive positive clones F' on finite sets A with
at least three elements for which (4; F) is simple and idempotent, and the
primitive positive clones F having all constant operations for which (4;F)
either generates a congruence distributive variety or is a simple algebra that
is not strongly abelian.

In the investigation of the structure of algebras the analyses based on the
properties of ‘their related structures play an essential role. Several important
properties of an algebra are determined by one or more of its related structures:
group of automorphims, monoid of endomorphisms, lattice of congruences, etc.
The better we know the related sructures, the more effective these arguments are.

One of the notable related structures of an algebra is its centralizer clone which is

primitive positive. A clone is primitive positive if it contains all operations defined
by primitive positive formulas over the clone. A. I. Kuznecov proved in [5] (see
also [8]) that a set of operations F on a finite set A is a primitive positive clone
if and only if F = G* for a set of operations G, where G* (the centralizer of G)
consists of all operations on A which are homomorphisms from (A™; G) to (4;G)
for some n > 1. The set of primitive positive clones L4 on a set A forms a lattice

(La;V,A) where FVG = (FUG)* and FAG =FNG forall F,G € L4. The

mapping L4 — La, F — F* is a dual automorphism of £L4. S. Burris and R.
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Willard proved in (1] that there are finitely many primitive positive clones on any
finite set. If |[A] = 2 then |£4] = 25 (see [9]), and A. F. Danil’cenko proved that if
|Al =3 then |£4] = 2986 (see e.g. [2] and [3]).

The aim of this paper is to determine in some classes of algebras all finite
algebras whose clones are primitive positive. First we introduce some terminology
and notation. '

~ Let A be a nonempty set. For any positive integer n let OS’) denote the set
of all n-ary operations on A and let O4 = ;2 ; OXL). The full symmetric group
and the set of all unary constant operations on A will be denoted by S4 and Cy,
respectively. An operation f € O is trivial if it is a projection and f is idempotent
if f(a,...,a) = a for all a € A. By a clone we mean a subset of O4 which is closed
under superpositions and contains all projections. If F C O4 then [F] denotes the
clone generated by F.
Let f be an n-ary and g be an m-ary operation on a set A. We say that f
and g commute if

g(f(xlla---:l'ln) af(xmh 7xm’n.) =f(g(xlla”-axml)a--‘ag(xlm---axmn))

is an identity of the algebra (A; f,9). Clearly, f and g commute if and only if f

- . is a homomorphism from (A™; g) to (4;9) (g9 is a homomorphism from (4™; f) to

(45 f)). If Fis a set of operations on A then F* denotes the set of all operations
commuting with every operation in F. As we have mentioned above a set of
operations F on a finite set A is a primitive positive clone if and only if F = G* for
a set of operations G on A. It is easy to see that the latter condition is equlvalent
to requiring that £ = F™**.

The clone of all term operations and the clone of all polynomial operations of
an algebra A are denoted by Clo A and Pol A, respectlvely For every n > 1 we put
Clo, A =CloAnOY A ) and Pol, A = Pol AN O( Two algebras A and B with a

.common base set are called term equivalent (polynomiaﬂy equivalent) if Clo A =

CloB (PolA = Pol B). Two algebras A and B are also called term equivalent
(polynomially equivalent) if A is term equivalent (polynomially equivalent) to an
algebra isomorphic to B.

An algebra is trivial (idempotent) if it has only trivial (idempotent) fundamen-
tal operations. The set of all congruence relations and the set of all endomorphisms

 of an algebra A are denoted by Con A and End A, respectively. An algebra A is

semi-affine with respect to an elementary Abelian p-group A (p prime), if A and A
have a common base set A and every fundamental operation of A commutes with
the ternary operation x —y + z; if, in addition, z —y + z is a term operation of A
then A is said to be affine with respect to A.
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On algebras with primitive positive clones

By a diagonal algebra we mean an algebra of the form (A X -+
A1, ..., Ay are nonempty sets and d is the n-ary operation defined as follows:

d((a117 e 7aln)a (021, ...,G,gn), ey (a'n,ly--'y

for any (a11,---,01n), (@21, --->02n)s -+ 5 (Gn1y- -,

Unn)) = (a117 aé2, ceey

) € A1 X -+ X

465

x Ap;d) where

ann)

Ap.

First we determine all finite simple idempotent algebras with primitive posi-

tive clones:

Theorem 1. Let F be a primitive positive clone on a finite set A with at least three
elements. If (A; F) is a simple idempotent algebra then one of the followmg two

conditions holds:

(1.1) F = (GUC4)* for a permutation group G on A.

(1.2) There is a vector space g A = (A;+,—,0, K) over a finite ﬁeld K such that

F {mez m>1, ry,...,7m € Endx A, im:l}.

=1

i=1

Proof. Let F be a primitive positive clone on A, |A] > 3, and suppose that (4; F) is
a simple idempotent algebra. Consider the algebra (4; F*). Since every operation
in F is idempotent, we have C4 C F*. If f € F* is a unary operation then
Ker f € Con(A4; F) is the equality or the full relation on A. Therefore f € S4UC4.
If F* has no operation depending on at least two.variables then F* =
some permutation group G on A and F = F** = (GUCy4)*. If F* has an operation
depending on at least two variables then, by Pélfy’s theorem [6], there is & vector
space gk A = (4;+,—,0,K) over a ﬁnite field K such that

{anz—i-a m>1, ri,.
=1

Then we have

m
F:F**z_{z'rix@—l—a: m2>1,ry,...,

j=1

rmEK, aEA}.

rm € K, a GA}*

[GUC4] for

—{an m>1, r,...,"m € Endg A, Zn—l}

=1

For the last equality see e.g. [11, Exercise 2.11].

=1

1
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The next theorem describes, up to polynomial equivalence, all finite algebras
A in congruence distributive varieties for which Pol 4 is primitive positive. To
formulate the theorem we need a notation. For sets Ai, ..., A, and m-ary oper-

ations f; € O(AT), i =1,...,n, the n-tuple (f1,..., f,) denotes the operation on
Ay X -+ x A, defined as follows:

(f1s-- s Fo) (a1, = 101n)s -5 (Amy - -+, Gy )
= (f1(@11,- -, 8m1); -+, FrlG1ny - - s Gmn)

for all (all,...,al'n),...,(aml,...,amn) €A X - X A,

Theorem 2. Let F be a primitive positive clone on a finite set A containing all
constant operations. If (A; F) generates a congruence distributive variety then ei-
ther F = Og4 or (A; F*) is term eguivalent to a diagonal algebra (A1 X --- X Ap; d)
n 22, and (A; F) is term equivalent to the algebra

b

(AIXXAn,{(fl,,fn)mZJ., fzeo‘(A]T)’ Z=171n})

Proof. Let F' be a primitive positive clone on a finite set A containing all constant
operations, and suppose that (4; F) generates a congruence distributive variety.
Consider the algebra (4; F*). Since C4 C F we have that (A; F*) is an idempotent

 algebra. If (4; F*) is a trivial algebra then F — F** = O,,.

Now suppose that (4; F*) is nontrivial and let f € F* be an n-ary operation
depending on all of its variables. Then f is a homomorphism from the direct
power (A" F) to (A; F) and therefore Ker f € Con(A™; F). Since (4; F) generates
a congruence distributive variety, Ker f is a product congruence on A™. Thus there
are congruences ©,...,0,, of (A; F) such that

((al,...,c;n),(bl,...,bn)) € Ker f if and only if (a;,b;) €6;, i=1,...,n.

Let k and k; denote the numbers of classes of Ker fand ©;,i=1,...,n, respec;

‘tively. Since f depends on all of its variables we have k; > 2,i=1,...,n. Tt

follows that n
n< [[k=k=174"] < |41
=1

Hence (4; F*) is a nontrivial idempotent algebra such that every term operation
depends on at most |A| variables. Therefore, by [12, Theorem 3], (4; F*) is term

equivalent to a diagonal algebra (A1 x -+ x Ap;d). To complete the proof we have ‘

to prove that

F=F*={d}"={(f1,.... fa)im21, fic O, i=1,...,n}).
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Tt is easy to check that every operation of the form (f1,-. -, fa), i € O (m)a i=
1,...,n, belongs to {d}*. If f € {d}* is an m-ary operation then there are mn-ary
operations f1,-.., fn on A such that for any (all, 3 01n)s - e (@mls o Gmn) €
Ay x -+ X Ap, we have

f((a,]_]_, ceey aln), iy (am]_, N ,(Lmn)) = (fl(all, ey amn), e ,fn(all, I amn))
Since f and d commute

d(f(}—{llv"w}_{lm) 7f( Znls- 7}-§nm)) zf(d(}—(lla7}_{n1),,d(}_{1m,,}_inm))

for any x;; = (%5, T ")€A1X XAn71<’l<?'L,1<j < m. Comparing the
jth coordmates of both s1des we get that

fj(x;l,...,xg?l,...,myl»m,...,x?m) = fi(@I0 o s Tl -+ T )
j =1,...,n. This is equivalent to the fact that f; depends on the arguments
xf’?l, ., @), only, j =1,...,n. Hence there are m-ary operations g1,...,gn O0 A
such that
fj(all, N amn) = g(alj,r. .. ,Cbmj), j = 1, U
Summarizing the above computation we obtain that f € {d}" if and only iff=
(g1,--.,9n) for some m-ary operations gi,...,gn OR A. This completes the proof

Our last theorem describes, up to polynomial equivalence, all finite simple
algebras A such that Pol A is primitive positive, but A is not strongly abelian.
The proof will assume familiarity with the basic facts of tame congruence theory

4.

~ Theorem 3. Let F be a primitive positive clone on a finite set A containing all

constant operations. If (A; F) is a simple algebra then one of the following four

conditions holds:
(3.1) (4; F) is strongly abelian.

(3.2) F=0a4.
(3.3) There is a semilattice (A;V) such that F' = {V}.
(3.4) Thereisa vector space g A = (A;+,—,0, K) over a finite field K such that

F = {szn+a m>1, 7'1, .,"m € Endg A, aeA}.
i=1 R
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Proof. Let F be a primitive positive clone on a finite set A containing all constant
operations, and suppose that A = (4; F') is simple. Taking into consideration [4,
Theorem 5.7(1)], we have that A is tame. We define U to be the set of all sets of
the form f(A) where f € Pol; A and |f(A4)| > 2. Furthermore, M is the set of
minimal members of U. For any X C A by the non-indexed algebra induced by A
on X we mean the algebra A|x = (X; F|x) where

o

Flx ={flx:f€F, f(X,...,X)C X}.

Clearly, for any M € M the algebra Al is minimal, i.e. every unary polynomial
operation of A|y is a permutation or a constant operation. Moreover, since A is
simple, by [4, Lemma 2.3 and Theorem 2.8], Al is also simple.

Choose a set M from M. Then M is a subuniverse of (4; F*) since for some
unary operation f € F' we have f(A) = M and f is an endomorphism of (4; F™*).
Thus (M; F*|ar) coincides with the subalgebra (M; F*) of (A; F*).

Claim. (4; F™) is in the variety generated by (M; F*).

In order,to prove the claim it is enough to show that every identity of (M; F*)
holds in (4; F*). Let f = g be an identity of (M; F*). We can assume without loss
of generality that f and g have the same variables z1,...,z,. Suppose that f =g
doés not hold in (A4; F*). Then there are a;,...,a, € A such that

flai,...;an) =a#b=g(a,...,an).

Since A is a tame algebra therefore, by [4, Theorem 2.8(4)], there is a unary
operation h € F such that h(A) = M and h(a) # h(b). Then

f(h(ar); ..., hlan)) = A(f(a1, ..., an)) = h(a) # h(b)
= h(g(a1;---,an)) = g(h(ar), . -, h(an)) -

which shows that the identity f = g does not hold in (M;F*), contrary to our
assumption.

Now we are ready to complete the proof of Theorem 3. If (M; F*) is a trivial
“algebra then, by the claim, (4; F*) is also trivial and we have F = (F*)* = O,.
From now on suppose that (M;F*) is nontrivial. Since (M;F|u) is a simple
minimal algebra, by [4, Corollary 4.11], we have one of the following possibilities:
(1) (M; F|a) is term equivalent to the algebra (M; GUC)) for some permutation

. group G on M;

(2) the
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(2) there is a 1-dimensional vector space g M = (M .+, —,0, K) over a finite field
K such that

F‘M {Zrzmz'*'a m>1, ry,...,Tm €K, GEM}
i=1

(3) (M; Flar) is term equivalent to the algebra ({0,1};V,A/,0, 1);

(4) (M;F|p) is term equivalent to the algebra ({0,1}; V,A,0,1);

(5) (M;Flar) is term equivalent to the algebra ({0,1};V,0,1),
where z V y = max(z,y), ¢ Ay = min(z,y) and 2’ = 1 — 2. In case (1), by 4,
Theorem 5.7(3)], we have (3.1). It is easy to see that F*[y C (Fip)*. Using this
fact and the list of primitive positive clones on a two element set given in [9], in case
(3) or (4) we have that (M; F*) is a trivial algebra, contrary to our assumption.
And in case (5) (M; F*) is term equivalent to the algebra ({0,1}; V). In this case,
by the clalm we have that (4; F*) is term equlvalent to a sem.llattlce (A; v) and
F= = {V}*.

Fmally, suppose that there is a l-dimensional vector space KM

(M;+,—,0,K) over a finite field K such that

m
FIM={Z7'1'I¢+“: m>1, r1,...,7m € K, aeM}.
i=1

Then taking into consideration [11, Exercise 2.11] and the fact that for a 1-
dimensional vector space Endg M = K, we have

F[M {ZT‘zIE, m=>1, r,. T'mEK, i’f’z=1}
i=1

i=1

Taking into consideration [11, Proposition 2.9], in this case we have that every
nontrivial subclone of (F|ar)* contains the operation z —y + 2. Therefore since
(M; F*) is nontrivial and F*|y C (F|m)*, we obtain that the algebra (M;x —
y + 2) is a reduct of (M; F*). Taking into consideration the claim, it follows that
the algebra (A;x —y + 2) is a reduct of (4; F*) for some elementary abelian -
group (4;+). Thus (4;F) is a semi-affine algebra. One can easily check that
the restriction of the operation x —y + z to M commutes with all operations of
F*{3r C (F|a)*. Applying again the claim, we obtain that the operation z —y+2
commutes with all operations of F* and thus z —y+z € F = (F*)*. Hence (4; F)
is a simple affine algebra and therefore, by [11, Proposition 2.10] we have (3.4).

This completes the proof.
]
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