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Tame congruence theory is not an easy subject and it takes a consid-
erable amount of effort to understand it. When I started this project,
I believed that this theory can be better explained than the standard
text: D. Hobby and R. McKenzie’s “The Structure of Finite Algebras.”
I followed a more gradual approach in introducing new concepts and
immediatelly describing the structure of finite algebras at that level.
The reader is encouraged to consult the book (TCT references) while
reading this guide.

1. Minimal algebras

In this section we characterize the minimal algebras, up to polyno-
mial equivalence. It will turn out that they can be nicely split into 5
distinct types.

Definition 1.1. [TCT 2.14] An algebra M is minimal if it is finite,
|M | ≥ 2, and

Pol1 M ⊆ { constants } ∪ { permutations on M }.
Note that by “constants” here we mean unary operations whose

ranges are one element subsets of M .

Excercise 1.2. Prove the following statements:

(1) every two-element algebra is minimal;
(2) every finite nontrivial vectorspace is minimal;
(3) a group G is minimal iff G ∼= Zn

p for some prime p and n ≥ 1;
(4) an algebra with a semilattice operation is minimal iff it has only

two elements.

Definition 1.3. [TCT 4.3] Let f be an n-ary operation and i < n. We
define an operation fk(i) by induction on k ≥ 0. Put f 0

(i)(x0, . . . , xn−1) =
xi, and

fk+1
(i) (x0, . . . , xn−1) = f(x0, . . . , xi−1, f

k
(i)(x0, . . . , xn−1), xi+1, . . . , xn−1).

This process is called iterating f in its i-th coordinate.
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Lemma 1.4. [TCT 4.4] Let A be a finite set. Then there exists k > 0
such that for all operation f : An → A, elements a0, . . . , an−1 ∈ A, and
i < n the following hold.

(1) fk(i)(x̄) = fk(i)(x0, . . . , xi−1, f
k
(i)(x̄), xi+1, . . . , xn−1).

(2) If the unary polynomial g(x) = f(a0, . . . , ai−1, x, ai+1, . . . an−1)
is a permutation, then fk(i)(a0, . . . , ai−1, x, ai+1, . . . , an−1) = x.

Proof. Put k = |A|!. By the definition of fk(i), g
k(x) = g(gk−1(x)) =

fk(i)(a0, . . . , ai−1, x, ai+1, . . . , an−1). Since A is finite, the sequence ai,

g(ai), g
2(ai), . . . , g

k(ai) must contain a repetition, a cycle, whose order
divides k. Therefore, gk(ai) = g2k(ai) = gk(gk(ai)). This holds for
arbitrary elements a0, . . . , an−1 ∈ A, which proves (1). Finally, if g is a
permutation, then gk = id, which proves (2). �

Definition 1.5. Let f : A0 × · · · × An−1 → A be a function. We say
that f depends on its i-th coordinate (i < n) if there exists aj ∈ Aj for
all j 6= i such that the unary function f(a0, . . . , ai−1, xi, ai+1, . . . , an−1)
is not constant.

Lemma 1.6 (A. Salomaa). [TCT 4.1] Let f : A0 × · · · × An−1 → A
depends on all its variables, where n ≥ 2. Then there exist i, j < n,
i 6= j, and ai ∈ Ai, aj ∈ Aj such that f(x0, . . . , xi−1, ai, xi+1, . . . , xn−1)
and f(x0, . . . , xj−1, aj, xj+1, . . . , xn−1) depend on all their variables.

Proof. For any i < n and a ∈ Ai, let D(a, i) denote the set of indices
of the variables which f(x0, . . . , xi−1, a, xi+1, . . . , xn−1) depends on.

Claim. If j 6= i and j 6∈ D(a, i) then D(a, i) ⊂ D(b, j) for some b ∈ Aj.
Since f depends on all its variables, there exists b ∈ Aj such that

i ∈ D(b, j). For this choice, it is easy to see that D(a, i) ⊂ D(b, j).

We can choose i < n and a ∈ Ai such that D(a, i) is maximal under
inclusion. By the claim, |D(a, i)| = n − 1. Since f depends on the
ith coordinate, there is k < n and c ∈ Ak such that i ∈ D(c, k). By
choosing D(b, j) maximal above D(c, k) we get that |D(b, j)| = n − 1
and i ∈ D(b, j). Therefore i 6= j. �

Corollary 1.7. [TCT 4.2] Let A be an algebra, and suppose that A
has a polynomial that depends on at least n variables. Then for all
k ≤ n, A has a polynomial of k variables that depends on all of its
variables. �

Definition 1.8. Two algebras are polynomially equivalent if they have
the same universe and the same clone of polynomial operations.



A GUIDE FOR MORTALS TO TAME CONGRUENCE THEORY 3

Theorem 1.9 (P.P. Pálfy). [TCT 4.7, 4.6] Every minimal algebra M
with |M | ≥ 3 and having a polynomial operation which depends on
more than one variable, is polynomially equivalent with a vector space.

Proof. First we explore the consequences of M being minimal and hav-
ing at least 3 elements.

Claim 1. Every binary polynomial p satisfies the term-condition:

p(u, a) = p(u, b) =⇒ p(v, a) = p(v, b).

Assume that p(u, a) = p(u, b) and p(v, a) 6= p(v, b), and we want
to get a contradiction. Clearly u 6= v and a 6= b. By Lemma 1.4 we
can choose k > 0 such that q(x, y) = pk(1)(x, y) satisfies q(x, q(x, y)) =

q(x, y). Since p(v, a) 6= p(v, b), the unary polynomial p(v, y) in y is a
permutation. Therefore q(v, y) = y. Since p(u, a) = p(u, b), the unary
polynomial p(u, y) in y is a constant. Therefore q(u, y) = c for some
element c ∈ M . Since q(u, c) = q(v, c) = c, the unary polynomial
q(x, c) in x is constant and equal to c. Now take w ∈ M − {u, v}
and d ∈ M − {c}. If p(w, y) in y is a permutation then q(w, y) =
y. Thus q(u, d) = c and q(v, d) = q(w, d) = d. Hence the unary
polynomial q(x, d) in x is neither a permutation nor a constant, which
is a contradiction. On the other hand if p(w, y) in y is a constant then
q(w, y) is constant and equal to q(w, c) = c. Thus q(u, d) = q(w, d) = c
and q(v, d) = d. Hence the unary polynomial q(x, d) in x is neither a
permutation nor a constant, which is a contradiction once again.

Now we extend the previous claim to polynomials of higher arity.
Note that this implication is still not the term condition.

Claim 2. If p ∈ Poln+1 M, ū, v̄ ∈Mn, and a, b ∈M then

p(ū, a) = p(ū, b) =⇒ p(v̄, a) = p(v̄, b).

This is a standard argument. By the previous claim we can replace
each variable of ū by the corresponding variable of v̄ one by one, and
keep the sides equal.

Now we are ready to use the hypothesis that M has a polynomial
which depends on more than one variables.

Claim 3. M has a Mal’cev polynomial d.

Let p ∈ Pol M be a polynomial which depends on more than one
variables. By Corollary 1.7 we can assume that p is binary. Now we
show that p(x, y) is a guasigroup operation. Since p(x, y) depends on
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y, there exist v, a, b ∈M such that p(v, a) 6= p(v, b). Then by Claim 1,
p(u, a) 6= p(u, b) for all u ∈ M . Hence p(u, y), as a function of y, is
a permutation for each u. Similarly, p(x, u), as a function of x, is a
permutation for each u ∈M .

Now by Lemma 1.4 (2) we have polynomials f(x, y) = pk−1
(0) (x, y) and

g(x, y) = pk−1
(1) (x, y) such that p(f(x, y), y) = x and p(x, g(x, y)) = y.

Put

d(x, y, z) = p(f(x, g(y, y)), g(y, z)).

Since p(y, g(y, y)) = y and p(f(y, g(y, y)), g(y, y)) = y, and p(x, g(y, y)),
as a function of x, is a permutation, we have that y = f(y, g(y, y)).
Thus d(y, y, z) = p(y, g(y, z)) = z. On the other hand, d(x, y, y) =
p(f(x, g(y, y)), g(y, y)) = x.

We are going to define a vector space on M using the Mal’cev oper-
ation d(x, y, z), which will turn out to be the same as x− y + z. Pick
an arbitrary element of M , call it 0, and define x + y = d(x, 0, y) and
−x = d(0, x, 0).

Claim 4. The algebra 〈M ; +,−, 0〉 is an Abelian group.

To prove the claim we define the following polynomials and apply
Claim 2 to them:

d1(x, y, z, a) = d(d(x, 0, a), 0, d(y, a, z)),

d2(x, a) = d(x, a, d(a, x, 0)),

d3(x, y, a) = d(a, 0, d(x, a, y)).

Notice that d1(0, y, 0, 0) = y = d1(0, y, 0, y), hence x + (y + z) =
d1(x, y, z, 0) = d1(x, y, z, y) = (x+y) + z. Similarly, d2(0, 0) = d2(0, x),
hence x + (−x) = d2(x, 0) = d2(x, x) = 0. And again, d3(0, 0, 0) =
d3(0, 0, y), hence x + y = d3(x, y, 0) = d3(x, y, y) = y + x. Finally,
x+ 0 = d(x, 0, 0) = x, which concludes the proof of the claim.

Claim 5. For each p ∈ Poln M,

p(x0, . . . , xn−1) =
n−1∑
i=0

pi(xi)− (n− 1)p(0, . . . , 0),

where pi(xi) = p(0, . . . , 0, xi, 0, . . . , 0).

We prove it by induction. For n = 1 the statement is trivial. For
n = 2, consider the polynomial f(x, y) = p(x, y) − p(0, y). Notice
that f(0, y) = f(0, 0), hence p(x, y) − p(0, y) = f(x, y) = f(x, 0) =
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p(x, 0)−p(0, 0). Now let us assume that the claim holds for n ≥ 2, and
prove it for n+ 1. Our assumption gives

p(x0, . . . , xn−1, y) =

p(x0, 0, . . . , 0, y) + · · ·+ p(0, . . . , 0, xn−1, y)− (n− 1)p(0, . . . , 0, y).

Now using the equation

p(0, . . . , 0, xi, 0, . . . , 0, y) =

p(0, . . . , 0, xi, 0, . . . , 0, 0) + p(0, . . . , 0, y)− p(0, . . . , 0)

we get the desired conclusion.

Claim 6. Let F = {α ∈ Pol1 M : α(0) = 0 }. Then 〈F ; +, ◦〉 is a field
where (α + β)(x) = α(x) + β(x) and ◦ is the composition operation.

Clearly, 〈F ; ◦, id〉 is a monoid and 〈F ; +, 0〉 is an Abelian group where
0 is the constant 0-valued function. By applying Claim 5 to α(x + y)
we see that α(x+ y) = α(x+ 0) + α(0 + y)− α(0 + 0), that is, α(x+
y) = α(x) + α(y). This shows that α ◦ (β + γ) = α ◦ β + α ◦ γ and
(β+ γ) ◦α = β ◦α+ γ ◦α, hence 〈F ; +, ◦〉 is a ring. By the minimality
of M if α 6= 0 then αk = id for some k > 0, hence 〈F ; +, ◦〉 is a division
ring. Since M is finite, F is finite, and therefore 〈F ; +, ◦〉 is a finite
field.

By defining α · x = α(x) for α ∈ F and x ∈ M , we clearly have a
vector space V = 〈M ; +, α · x (α ∈ F )〉. The operations of V belong
to Pol M. On the other hand, Claim 5 shows that each polynomial
operation p ∈ Poln M is expressible as

p(x0, . . . , xn−1) =
n−1∑
i=0

αi · xi + c,

where αi(x) = pi(x) − pi(0) and c = p(0, . . . , 0). This concludes our
proof. �

By Pálfy’s theorem we can easily characterize the minimal algebras
of at least three elements. On the one hand we have the algebras
polynomially equivalent with finite vector spaces, and on the other
the algebras in which each operation depends on at most one variable.
If M is such an algebra then each p ∈ Poln M is either a constant or
p(x0, . . . , xn−1) = α(xi) for some permutation α and variable xi. Hence
M is polynomially equivalent to a G-set, a permutation group acting
on a set. What remains to be described are the two element minimal
algebras.
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Lemma 1.10. [TCT 4.8] Every algebra M on a two element set {0, 1}
is polynomially equivalent with one of the following:

E0 = 〈{0, 1}〉, E1 = 〈{0, 1}; ′ 〉, E2 = 〈{0, 1}; +〉,
E3 = 〈{0, 1};∨,∧, ′ 〉, E4 = 〈{0, 1};∨,∧〉,

E5 = 〈{0, 1};∨〉, E6 = 〈{0, 1};∧〉,

where x ∨ y = max{x, y}, x ∧ y = min{x, y}, x + y = (x + y) mod 2,
and x′ = 1− x.

Proof. If every operation is essentially unary (does not depend on more
than one variable) then M is polynomially equivalent to either E0 or
E1.

In Pálfy’s proof we needed that |M | ≥ 3 only to show Claim 1. Thus
if all binary polynomials of M satisfy the term-condition then M is
polynomially equivalent with a two element vector space, i.e., with E2.

So pick f ∈ Pol2 M which does not satisfy the term-condition. This
essentially rules out that there are two 0’s and two 1’s in the operation
table of f . Indeed, if the two 1’s are in the same row or column, then f
is essentially unary. If the two 1’s are in diagonal then f(x, y) = x+ y
or f(x, y) = (x + y)′. In either case f satisfies the term-condition. So
either there are three 1’s or a single 1 in the operation table of f .

If the operation ′ is a polynomial of M, then an appropriate com-
bination of f(x, y) and ′ gives us ∨ and ∧. Hence M is polynomially
equivalent with E3, the full clone on {0, 1}.

So assume that the operation ′ is not a polynomial of M. This means
that each operation of M is monotone. This essentially gives us only
two possibilities for f , one is ∨ and the other is ∧. Without loss of
generality we can assume that f = ∧.

Assume that M is not polynomially equivalent with E6. thus we
can take g ∈ Poln M − Poln〈{0, 1};∧〉. Consider the inverse image
G = g−1({1}) ⊆ 2n. Since g is order preserving, G is a filter of the
lattice 2n. Note that if G has a least element a ∈ 2n, then g(x̄) =∧
{xi : ai = 1 } ∈ Poln〈{0, 1};∧〉. So G must have at least two minimal

elements a and b. Clearly, g(a ∧ b) = 0. Now take the polynomial
g(z0, . . . , zn−1) and replace zi by 1 if ai = bi = 1, by x if ai = 1 and
bi = 0, by y if ai = 0 and bi = 1, and by 0 if ai = bi = 0. The
result is a binary polynomial h(x, y) for which h(0, 0) = g(a ∧ b) = 0,
h(1, 0) = g(a) = 1, h(0, 1) = g(b) = 1, and h(1, 1) = g(a∨ b) = 1. This
shows that h = ∨, hence Pol M ⊇ Pol E4.
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Finally, it is easy to see that every order preserving operation on
{0, 1} is a polynomial of 〈{0, 1},∨,∧〉. Thus Pol M = Pol E4. �

Now we can fully characterize the minimal algebras. The algebras
E0, E1 are G-sets, and E2 is a vector space. They nicely extend the
previous two classes of minimal algebras of at least three elements. The
algebras E3,E4, and E5 will represent new classes. Note that although
E6 is isomorphic to E5, they are not polynomially equivalent.

Definition 1.11. [TCT 4.10] Let M be a finite algebra.

(1) M is of type 1, or unary type, if polynomially equivalent to a
G-set.

(2) M is of type 2, or affine type, if polynomially equivalent to a
vector space.

(3) M is of type 3, or boolean type, if polynomially equivalent to a
two element Boolean algebra.

(4) M is of type 4, or lattice type, if polynomially equivalent to a
two element lattice.

(5) M is of type 5, or semilattice type, if polynomially equivalent
to a two element semilattice.

Corollary 1.12. [TCT 4.11] An algebra M is minimal iff it is of one
of the types 1–5. �

2. 〈δ, ϑ〉-minimal algebras

In this section we extend our five-fold classification to a broader class
of algebras. As you can recall, an algebra M is minimal if every unary
polynomial p of M is either a permutation or a constant. One can see
that p being a constant is equivalent to the—unnatural—condition that
p(1M) ⊆ 0M, where 0M, 1M ∈ Con M. But this condition naturally
extends to other congruence quotients.

By a congruence quotient in an algebra C we simply mean a pair
〈δ, ϑ〉 of congruences of C with δ < ϑ.

Definition 2.1. [TCT 2.13] Let 〈δ, ϑ〉 be a congruence quotient in an
algebra C. We say that a polynomial p ∈ Pol1 C collapses ϑ into δ
if p(ϑ) ⊆ δ. The algebra C is called minimal relative to 〈δ, ϑ〉, or
〈δ, ϑ〉-minimal, if it is finite, |C| ≥ 2, and

Pol1 C ⊆ { operations collapsing ϑ into δ } ∪ { permutations on C }.
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Definition 2.2. [TCT 2.15] Let C be an 〈δ, ϑ〉-minimal algebra. By a
〈δ, ϑ〉-trace we mean a ϑ-class, as a subset of C, which contains at least
two δ-classes. The set of 〈δ, ϑ〉-traces is denoted by NC(δ, ϑ). The body
of C with respect to 〈δ, ϑ〉 is defined to be the union of traces. The tail
of C with respect to 〈δ, ϑ〉 is the complement of the body in C.

Lemma 2.3. Let 〈δ, ϑ〉 be a congruence pair in an algebra C. If C
is 〈δ, ϑ〉-minimal, then C/δ is 〈0, ϑ/δ〉-minimal. Moreover, if they are
minimal then

NC/δ(0, ϑ/δ) = {N/δ|N : N ∈ NC(δ, ϑ) }.

Excercise 2.4. Show that the converse of Lemma 2.3 does not hold,
that is, construct an algebra C and a congruence pair 〈δ, ϑ〉 such that
C/δ is 〈0, ϑ/δ〉-minimal but C is not 〈δ, ϑ〉-minimal.

The following lemma gives us the connection between 〈δ, ϑ〉-minimal
and minimal algebras.

Lemma 2.5. Let C be an 〈δ, ϑ〉-minimal algebra, and N be a 〈δ, ϑ〉-
trace. Then the algebra C|N/δ|N is minimal.

Proof. Note that

Pol C|N/δ|N = { p|N/δ|N : p ∈ Poln C and p(Nn) ⊆ N }.
So take an arbitrary unary polynomial p|N/δ|N ∈ Pol1 C|N/δ|N . If p
is a permutation of C, then since p(N) ⊆ N , p|N is a permutation
of N and p|N/δ|N is a permutation of N/δ|N . On the other hand, if
p collapses ϑ into δ, then p(N) is contained in a single block of δ|N ,
hence p|N/δ|N is constant on N/δ|N . �

Notice that the minimal algebra C|N/δ|N , which corresponds to the
〈δ, ϑ〉-trace N , is the same as the minimal algebra (C/δ)|N/δ, which
corresponds to the 〈0, ϑ/δ〉-trace N/δ|N . By the type of N we simply
mean the type of the corresponding minimal algebra.

Lemma 2.6. [TCT 4.12, 4.15] Let C be a 〈δ, ϑ〉-minimal algebra, and
N be a 〈δ, ϑ〉-trace of type 3, 4 or 5. Then

(1) N is the disjoint union of two δ-classes I and O, one of which,
say I, contains only a single element 1 ∈ C.

(2) There is a binary polynomial h such that h(x, x) = h(1, x) =
h(x, 1) = x, h(O,O) ⊆ O, and h(x, h(x, y)) = h(x, y).

(3) N is the only 〈δ, ϑ〉-trace in C.

(4) If x ∈ C − {1} and c ∈ O then h(x, c)
δ≡ h(c, x)

δ≡ x.
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Proof. We know that N is a (disjoint) union of two δ-classes I and O,
and C|N/δ|N has a semilattice operation p|N/δ|N . We can assume that
p(O, I) ⊆ O, hence p(I, O) ⊆ O, p(I, I) ⊆ I, and p(O,O) ⊆ O.

Since p(I, I) ⊆ I and p(O,O) ⊆ O, the polynomial f(x) = p(x, x)
cannot collapse ϑ into δ, hence it is a permutation on C. Choose
k > 0 such that fk(x) = x, and define q(x, y) = fk−1p(x, y). Clearly
q(x, x) = x, and q behaves the same way as p with respect to I and O.

By Lemma 1.4 there exists l > 0 such that the function g(x, y) =
ql(0)(x, y) satisfies g(g(x, y), y) = g(x, y). Note that g(x, x) = x, and g
behaves the same way as p with respect to I and O. If a ∈ I, then
q(a, I) ⊆ I and q(a,O) ⊆ O. Therefore q(a, y) is a permutation, and
g(a, y) = y.

Applying Lemma 1.4 once more we can choose m > 0 such that the
function h(x, y) = gm(1)(x, y) satisfies h(x, h(x, y)) = h(x, y). Note that

h(x, x) = x, and h behaves the same way as p with respect to I and
O. If a ∈ I, then g(I, a) ⊆ I and g(O, a) ⊆ O. Therefore g(x, a) is a
permutation, and h(x, a) = x. On the other hand h(a, y) = y because
g(a, y) is a permutation. Now if a, b ∈ I, then a = h(a, b) = b, which
proves (1). Applying our knowledge of I = {1} shows (2).

To prove (3) take a pair 〈a, b〉 ∈ ϑ − δ, and an element c ∈ O.
Since h(I ∪ O,O) ⊆ O, the polynomial h(x, c) collapses ϑ into δ, thus
〈h(a, c), h(b, c)〉 ∈ δ. We can assume that 〈a, h(a, c)〉 6∈ δ. But a =
h(a, 1), thus 〈h(a, 1), h(a, c)〉 6∈ δ and therefore the polynomial h(a, x)
is a permutation. Since h(a, a) = h(a, 1), we conclude that a = 1 and
a, b ∈ N .

Statement (4) is a consequence of the previous ones. If x ∈ O, then
it is clear from h(O,O) ⊆ O. If x 6∈ O, then x is in the tail, and
h(x, c) ϑ h(x, 1) = x implies that h(x, c) δ x. �

Corollary 2.7. [TCT 4.17] Let C be a 〈δ, ϑ〉-minimal algebra, and N
be a 〈δ, ϑ〉-trace of type 3 or 4. Then

(1) N = {0, 1} for some pair 〈0, 1〉 ∈ ϑ− δ.
(2) There are binary polynomials f, g such that f(x, x) = f(1, x) =

f(x, 1) = g(x, x) = g(0, x) = g(x, 0) = x for all x ∈ C. More-
over, f(x, f(x, y)) = f(x, y), and g(x, g(x, y)) = g(x, y).

(3) N is the only 〈δ, ϑ〉-trace in C.

(4) For all x ∈ C−{0, 1}, f(x, 0)
δ≡ f(0, x)

δ≡ g(x, 1)
δ≡ g(1, x)

δ≡ x.

Proof. Notice that in the proof of Lemma 2.6 we have constructed the
binary polynomial h starting from a semilattice operation of C|N/δ|N .
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In our case C|N/δ|N has two semilattice operations, which yields two
polynomials f, g with the described properties. �

Definition 2.8. [TCT 2.7] Let A be an algebra, and B,C be non-void
subsets of A. We say that B and C are polynomially isomorphic if
there are polynomials f, g ∈ Pol1 A such that f(B) = C, g(C) = B
and fg|C = idC , gf |B = idB.

Lemma 2.9. [TCT 4.20] Let C be a 〈δ, ϑ〉-minimal algebra, B be the
body of C, and N be a 〈δ, ϑ〉-trace of type 2. Then C has a 3-ary
polynomial d satisfying:

(1) d(x, x, x) = x, for all x ∈ C.
(2) d(b, b, x) = x = d(x, b, b), for all b ∈ B and x ∈ C.
(3) For every a, b ∈ B, the unary polynomials d(x, a, b), d(a, x, b)

and d(a, b, x) are permutations of C.
(4) B is closed under d.
(5) Any two 〈δ, ϑ〉-traces of C are polynomially isomorphic.

Moreover, every 3-ary polynomial of C satisfying (1) and (2) also sat-
isfies (3) and (4).

Proof. First we construct a polynomial d that satisfies (1) and (2).
Throughout this proof let k be the integer asserted by Lemma 1.4 for
C.

Claim 1. There exists p ∈ Pol3 C such that for all a ∈ N the functions
p(x, a, a), p(a, a, x) are permutations of C, and p(x, x, x) = x for all
x ∈ C.

Since N is of type 2, there exists f ∈ Pol3 C so that N is closed un-
der f , and f(x/δ, y/δ, z/δ) = x/δ − y/δ + z/δ, that is, f/δ is the
Mal’cev operation x − y + z of the vectorspace C|N/δ|N . Clearly,
f(x, a, a) ≡ f(a, a, x) ≡ f(x, x, x) ≡ x (mod δ) for all a, x ∈ N .
So none of these functions collapse ϑ into δ, therefore they are per-
mutations of C. Put g(x) = f(x, x, x). By Lemma 1.4, gk(x) = x
for all x ∈ C. Finally, define p(x, y, z) = gk−1f(x, y, z). Clearly,
p(x, x, x) = x. Finally, p(a, a, x) and p(x, a, a) are permutations, be-
cause gk−1 is a permutation of C.

Claim 2. For all b ∈ B, the functions p(x, b, b) and p(b, b, x) are per-
mutations of C.

If b ∈ N then the assertion is true by the previous claim. Now
assume that b 6∈ N , and fix an element a ∈ N . Then p(x, a, a) is
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a permutation of C, therefore pk(0)(x, a, a) = x. Take an element c

such that 〈c, b〉 ∈ ϑ − δ. Clearly, pk(0)(c, a, a) = c. On the other

hand pk(0)(c, c, c) = c, as p(c, c, c) = c. This shows that the function

pk(0)(c, x, x) is not a permutation, therefore it collapses ϑ into δ. In

particular, pk(0)(c, b, b) ≡ pk(0)(c, c, c) = c 6≡ b = pk(0)(b, b, b) (mod δ).

Therefore the function pk(0)(x, b, b) is a permutation of C, hence so is

p(x, b, b). A similar argument works for the other function.

Claim 3. There exists q ∈ Pol3 C such that q(x, x, x) = x = q(x, b, b)
for all x ∈ C, and q(b, b, x) is a permutation of C, for all b ∈ B.

Since the function p(x, b, b) is a permutation of C, pk(0)(x, b, b) = x for

all b ∈ B. Define q(x, y, z) = pk−1
(0) (p(x, y, z), y, y). Clearly, q(x, x, x) =

x = q(x, b, b) for all b ∈ B. Finally the function q(b, b, x) is a permuta-
tion of C because both p(b, b, x) and pk−1

(0) (x, b) are permutations.

Claim 4. There exists d ∈ Pol3 C satisfying (1) and (2).

Define d(x, y, z) = qk−1
(2) (x, x, q(x, y, z)). For all b ∈ B, the func-

tion q(b, b, x) is a permutation of C, therefore d(b, b, x) = x. Clearly,
d(x, x, x) = x. Finally, d(x, b, b) = qk−1

(2) (x, x, q(x, b, b)) = qk−1
(2) (x, x, x) =

x, for all b ∈ B.

In the rest of the proof let d be any 3-ary polynomial satisfying (1)
and (2). We shall prove (3) and (4) for this d.

Claim 5. For every a, b ∈ B, the functions d(a, b, x), d(a, x, b) and
d(x, a, b) are premutations of C.

Let us fix the elements a, b ∈ B. First assume that N = C, that is,
C/δ is a vector space over a field F . Then (d/δ)(x1, x2, x3) = α1x1 +
α2x2 + α3x3 + α4 for some constants αi ∈ F . Since d satisfies (2), d/δ
must depend on all of its three variables. Therefore α1 6= 0, α2 6= 0
and α3 6= 0. This shows that none of the three functions in the claim
can collapse ϑ into δ, hence they are all permutations.

Now assume that N 6= C. Pick an element c such that 〈c, b〉 ∈
ϑ− δ. Then d(a, b, x) ∈ SymC iff d(a, b, c) 6≡ d(a, b, b) = a = d(a, c, c)
(mod δ) iff d(a, x, c) ∈ SymC. Clearly, d(a, x, c) ≡ d(a, x, b) (mod ϑ)
for all x ∈ C. Since ϑ has at least two distinct classes, d(a, x, c) ∈
SymC iff d(a, x, b) ∈ SymC. Hence we can conclude that d(a, b, x) ∈
SymC iff d(a, x, b) ∈ SymC. A dual argument yields that this happens
if and only if d(x, a, b) ∈ SymC.
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Suppose that they all fail to be permutations. Consider the polyno-
mial h(x) = d(a, d(a, x, b), x). Clearly, h(b) = b. On the other hand
h(c) = d(a, d(a, c, b), c) ≡ d(a, a, c) = c (mod δ) because d(a, c, b) ≡
d(a, b, b) = a (mod δ). This shows that h ∈ SymC. If x ∈ N , then
d(a, x, b) ≡ d(a, a, b) = b (mod δ), and h(x) ≡ d(a, b, x) ≡ d(a, b, a)
(mod δ). This shows that h collapses N ×N into δ, which is a contra-
diction to that h ∈ SymC.

Claim 6. B is closed under d.

Take elements a, b, c ∈ B. Then the polynomial d(a, b, x) is a permu-
tation of C, therefore for each congruence γ of C, it maps γ-classes onto
γ-classes. In particular, it must map 〈δ, ϑ〉-traces onto 〈δ, ϑ〉-traces,
hence d(a, b, c) ∈ B.

Claim 7. Any two 〈δ, ϑ〉-traces N and K are polynomially isomorphic.

Take a ∈ N and b ∈ K. Then the polynomial s(x) = d(b, a, x) maps
a to b, hence N onto K. Clearly, its inverse sk−1 is also a polynomial.

�

Corollary 2.10. Let C be a 〈δ, ϑ〉-minimal algebra. Then all 〈δ, ϑ〉-
traces of C have the same type. �

Definition 2.11. [TCT 4.21] Let C be a 〈δ, ϑ〉-minimal algebra. We
say that C is of type 1,2,3,4 or 5 relative to 〈δ, ϑ〉 iff each (or any)
〈δ, ϑ〉-trace of C is of type 1,2,3,4 or 5, respectively.

Definition 2.12. [TCT 4.16, 4.18, 4.22] If C is a 〈δ, ϑ〉-minimal alge-
bra of type 5, then any binary polynomial satisfying the statement of
Lemma 2.6 will be called pseudo-meet operation of C with respect to
〈δ, ϑ〉. Similarly, if C is of type 3 or 4, then operations satisfying the
statement of Corollary 2.7 are called pseudo-meet and pseudo-join op-
erations. If C is of type 2, then any 3-ary polynomial d satisfying the
statement of Lemma 2.9 will be called pseudo-Mal’cev operation of C
with respect to 〈δ, ϑ〉.

One interesting consequence of Lemma 2.6 is that if C is 〈δ, ϑ〉-
minimal and of type 3,4 or 5, then δ must be covered by ϑ. This is
not necessarily true for types 1 and 2.

We know that if C is of type 2,3,4 or 5 then all 〈δ, ϑ〉-traces are
polynomially isomorphic. This does not necessarily hold for type 1.
However it is true when δ is covered by ϑ.
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Lemma 2.13. Let C be a 〈δ, ϑ〉-minimal algebra, and δ ≺ ϑ be a
congruence cover. Then the 〈δ, ϑ〉-traces are pairwise polynomially iso-
morphic.

Proof. Let N and K be 〈δ, ϑ〉-traces, and take 〈a, b〉 ∈ ϑ|N − δ. Since
ϑ covers δ, δ ∨CgC(〈a, b〉) = ϑ. Since K is a ϑ-class, it is contained in
δ ∨ CgC(〈a, b〉). Therefore, there exists a polynomial p ∈ Pol1 C such
that 〈p(a), p(b)〉 ∈ ϑ|K−δ. Since C is 〈δ, ϑ〉-minimal, p is a permutation
on C. Each permutation maps traces onto traces, hence p(N) = K.

Similarly, there exists a permutation q ∈ Pol1 C such that q(K) = N .
Now qp is a permutation on C, hence (qp)k = id for some k > 0. The
polynomials p(qp)k−1 and q have the required properties. �

Lemma 2.14. [TCT 2.4] Let C be a 〈δ, ϑ〉-minimal algebra, and N be
a 〈δ, ϑ〉-trace of C. Then the map α 7→ (α|N)/δ|N is a lattice homomor-
phism of the interval [δ, ϑ] onto the congruence lattice of the minimal
algebra C|N/δ|N .

Proof. We will prove more, that the restriction map |N : α 7→ α|N is
a lattice homomosphism of [0C, ϑ] onto Con C|N . This clearly implies
the assertion of the lemma. Recall that an equivalence relation is a
congruence iff it is closed under all unary polynomials. It is obvious
that α|N ∈ Con C|N whenever α ∈ Con C, and that |N preserves meets
of congruences. Since N is a ϑ-block, |N also preserves joins of pairs of
elements in [0C, ϑ]. To see that |N is onto, take β ∈ Con C|N , and put

β̂ = { 〈x, y〉 ∈ ϑ : for all p ∈ Pol1 C

if {p(x), p(y)} ⊆ N then 〈p(x), p(y)〉 ∈ β }.

It is easy to see that β̂ ∈ Con C, β̂ ≤ ϑ, and that β̂|N ≤ β. Now take
a pair 〈x, y〉 ∈ β. Clearly, 〈x, y〉 ∈ ϑ, since β ⊆ N2 ⊆ ϑ. If p(x) ∈ N
for some p ∈ Pol1 C, then p(N) ⊆ N and p|N ∈ Pol1 C|N . Therefore

〈p(x), p(y)〉 ∈ β. This shows that 〈x, y〉 ∈ β̂|N , hence β̂|N = β. �

Lemma 2.15. Let C be a 〈δ, ϑ〉-minimal algebra, N be a 〈δ, ϑ〉-trace. If
the 〈δ, ϑ〉-traces are pairwise polynomially isomorphic, then the interval
[δ, ϑ] of Con C is isomorphic to the congruence lattice of C|N/δ|N .

Proof. Consider the map α 7→ (α|N)/δ|N . By the previous lemma it is
enough to show that it is injective. Take congruences δ ≤ α < β ≤ ϑ,
and a pair 〈x, y〉 ∈ β − α. Clearly, 〈x, y〉 ∈ ϑ− δ. Let K be the 〈δ, ϑ〉-
trace containing x and y. Since K is polynomially isomorphic to N , we
have a permutation q ∈ Pol1 C so that q(K) = N and 〈q(x), q(y)〉 ∈
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ϑ− δ. All congruences of C are invariant under q, hence 〈q(x), q(y)〉 ∈
β|N − α|N . This proves that (α|N)/δ|N < (β|N)/δ|N . �

3. Tame quotients and 〈δ, ϑ〉-minimal sets

Definition 3.1. [TCT 2.5] Let 〈δ, ϑ〉 be a congruence quotient in a
finite algebra A. We define MA(δ, ϑ) to be the minimal members of

{ p(A) : p ∈ Pol1 A and p(ϑ) 6⊆ δ }.
The members of MA(δ, ϑ) are called 〈δ, ϑ〉-minimal sets of A.

Observe that the set MA(δ, ϑ) is always non-empty, and for each
〈δ, ϑ〉-minimal set U , we have ϑ|U 6⊆ δ|U .

Definition 3.2. A congruence quotient 〈δ, ϑ〉 is tame, if there exists
a minimal set U ∈ MA(δ, ϑ) such that restriction map |U : α 7→ α|U
is a 0, 1-separating lattice homomorphism of the interval [δ, ϑ] onto
[δ|U , ϑ|U ] ⊆ Con A|U .

Lemma 3.3. Let 〈δ, ϑ〉 be a tame congruence quotient of a finite algebra
A. Then for all V ∈MA(δ, ϑ) the following hold.

(1) A|V is a 〈δ|V , ϑ|V 〉-minimal algebra.
(2) There exists e ∈ E(A) such that V = e(A).
(3) δ ∨ CgA(ϑ|V ) = ϑ.
(4) The restriction map |V : α 7→ α|V is a 0, 1-separating lattice

homomorphism of the interval [δ, ϑ] onto [δ|V , ϑ|V ] ⊆ Con A|V .
(5) The 〈δ, ϑ〉-minimal sets of A are pairwise polynomially isomor-

phic.

4. Abelian algebras

Definition 4.1. [TCT 3.3] Let α, β, γ be congruences of an algebra A.
We say that α centralizes β modulo γ, and use the formula C(α, β; γ),
if for every n ≥ 1, for every p ∈ Poln+1 A, and for all pairs 〈u, v〉 ∈ α,
and 〈a1, b1〉, . . . , 〈an, bn〉 ∈ β the following equivalence holds:

p(u, a1, . . . , an)
γ
≡ p(u, b1, . . . , bn)

m

p(v, a1, . . . , an)
γ
≡ p(v, b1, . . . , bn).

Definition 4.2. [TCT 3.6] Let 〈α, β〉 be a congruence quotient in an
algebra A. We say that β is Abelian over α in A if C(β, β;α), and
that A is Abelian if C(1A, 1A, 0A).
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It is not hard to see that β is Abelian over α in A if and only if β/α
is Abelian over 0A/α in A/α.

Lemma 4.3. [TCT 4.13, 4.14] Let C be 〈δ, ϑ〉-minimal. Then ϑ is
Abelian over δ in C iff the minimal algebras C|N/δ|N are Abelian for
all 〈δ, ϑ〉-traces N of C.

Proof. One direction is trivial. Conversely, assume that C(ϑ, ϑ; δ) fails
in C for some polynomial p ∈ Poln+1 C and elements u ≡ v, a1 ≡
b1, . . . , an ≡ bn (mod ϑ). We can assume that δ = 0C, since by taking
the quotient by δ we do not change Abelian-ness and the set of minimal
algebras that correspond to traces. So we have the following failure:
p(u, ā) = p(u, b̄) and p(v, ā) 6= p(v, b̄).

We can also assume that p is of minimal arity. Clearly, u 6= v, and
by the minimality of p, ai 6= bi for each i. Thus the classes N0 = v/ϑ,
Ni = ai/ϑ (1 ≤ i ≤ n), and K = p(v, ā)/ϑ are 〈0, ϑ〉-traces of C. It
follows that p(N0, N1, . . . , Nn) ⊆ K.

Since p(u, ā) 6= p(v, ā) or p(u, b̄) 6= p(v, b̄), the mapping p : N0 ×
N1 × · · · × Nn → K depends on its first variable. Since p is of
minimal arity, this mapping depends on its other variables. Thus
for each 0 ≤ i ≤ n there exists c̄ ∈ N0 × N1 × · · · × Nn such that
αi(x) = p(c0, c1, . . . , ci−1, x, ci+1, . . . , cn) is non-constant and αi(Ni) ⊆
K. Therefore αi is a permutation which maps Ni onto K. Now
α−1
i ∈ Pol1 C and α−1

i (K) = Ni.
Put f(x0, x1, . . . , xn) = p(α−1

0 (x0), . . . , α
−1
n (xn)). Now f(Kn+1) =

K, and f |K exhibits the failure of C(1C|N , 1C|N ; 0C|N ) in C|N with the
elements α0(u), α0(v) and αi(ai), αi(bi) (1 ≤ i ≤ n). �
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