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Abstract

We (hopefully) proved the result in the title.

1 Notation

By a we understand a tuple (a, . . . , a) and by a −→a the tuple (a0, . . . , an). By an
abuse of the notation we sometimes identify a graph with the set of its edges. By
a weak near unanimity operation we understand an operation w(x0, . . . , xh−1)
such that

• w(x, . . . , x) ≈ x and

• w(y, x, . . . , x) ≈ w(x, y, . . . , x) ≈ · · · ≈ w(x, x, . . . , y).

A polymorphism of a relational structure is an operation compatible with all
the relations.

2 Some graph notation

Let G = (V,E) be a (directed) graph. Given a graph G its set of edges is
denoted by E(G) and the set of its vertices by V (G). A vertex is called a
source (resp. a sink), if it has no incoming (resp. outgoing) edge. A cycle is a
closed path, while a circle is a cycle with no subcycles.

For a fixed graph G = (V,E) we introduce the following notation. We denote

(a, b) ∈ E by a→ b, and we use a
k
−→ b to say that there is a directed path from

a to b of length exactly k. More generally for any oriented path p with endpoints

c, d we write a
p
−→ b if there exists a homomorphism φ from p into G such that

φ(c) = a and φ(d) = b. For any W ⊆ V we define

W+n = {v ∈ V |∃w ∈W such that w
n
−→ v}

and similarly
W−n = {v ∈ V |∃w ∈W such that v

n
−→ w}.
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We write a+n instead {a}
+n

for any a ∈ V . More generally, for any oriented
path p we write

W p = {v ∈ V |∃w ∈W such that w
p
−→ v}.

As before we use ap for {a}
p
. Sometimes we use a notation a

p,q
−−→ b to denote

a
p
−→ b and a

q
−→ b.

Further, we extend the notation a to the sets in the following way. For a
set W let W be an appropriate cartesian power of W . Thus for example a+n

contains all the tuples (of a fixed length) of the elements reachable by an n-path
from a.

3 Graph gadget powers

Let G = (V,E) be a graph and p be an oriented path. We define a gadget graph
power of the graph Gp in the following way: the vertices of the power are the
vertices of the graph G and a pair (c, d) ∈ V 2 is an edge in Gp if and only if

c
p
−→ d in G. For a directed path p of length n we put G+n = Gp.

Note that if f : V m → V is a polymorphism of G then it is also a poly-
morphism of any gadget power of this graph. Graph gadget powers can also be
defined for general graphs instead of oriented paths, but we will not need this
in our paper.

4 Basic facts about graphs

The first notion to be introduced is a notion of an algebraic length of a path.
For any oriented path p we define the algebraic length al(p) to be

al(p) = #{edges going forward in p} −#{edges going backward in p}.

For a graph G = (V,E) we put

al(G) = min{i > 0| (∃v ∈ V ) (∃p a path ) such that v
p
−→ v and al(p) = i},

whenever the set on the right hand side is non-empty and ∞ otherwise. We
note that for graphs with no sources and no sinks (or with a directed cycle) the
algebraic length of graph is always a natural number and that, for a connected
graph G, the graph retracts to a directed circle if and only if there exists a
directed cycle (equivalently circle) of length al(G) in G.

The following lemma describes a connection between algebraic lengths of
graphs and their powers.

Lemma 4.1. Let p be a path of algebraic length k, let a
p
−→ b in G with no

sources and no sinks. Then a
q
−→ b in G+k, where q is a path of algebraic length

one.

Proof. Any path a
l1−→ a1

l2←− a2
l3−→ . . . alk = b, l1 − l2 + · · · = k can be made

into a path, where all of the numbers li are divisible by k. This should be clear

from the following example. Consider the path a
1
−→

6
←−

8
−→ of algebraic length 3.

We can also write (using no sources and no sinks) a
3
−→

8
←−

8
−→ and then a

3
−→

9
←−

9
−→.

Now a
l1/k
−−−→ a1

l2/k
←−−− . . . b is a path of algebraic length one in G+k.
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We leave a proof of the following easy lemma to the reader.

Lemma 4.2. If, for strongly connected graph G = (V,E), the GCD of the all
the lengths of the cycles in this graph is equal to one then there exists m such
that for any a, b ∈ V and for any n ≥ m there is a directed path of length n

connecting a to b.

The following easy corollary follows.

Corollary 4.3. For a strongly connected graph G with GCD of the cycles equal
to one, and for any number n the graph G+n is strongly connected.

There is a direct connection between the greatest common diviser of the length
of all the cycles and the algebraic length of the graph, for strongly connected
graphs.

Corollary 4.4. For a strongly connected graph the GCD of lengths of all the
cycles is equall to the algebraic length of the graph.

Proof. Let us fix a graph G and denote by n the greatest common divisor of
the lengths of the cycles in G. In the graph G+n (by reasoning similar to
the proof of Lemma 4.1) we can find a strongly connected component with the
GCD of its cycles equall to one. Applying Lemma 4.2 to this graph we obtain

a, b ∈ V (G+n) such that a
m,m+1
−−−−−→ b in G+n. Thus a

nm,nm+n
−−−−−−−→ b in G and

further a
nm
−−→ b

nm+n
←−−−− a proving al(G) ≤ n.

Conversely let a = a0
l0−→ b0

k0←− a1
l1−→ · · ·

km−1

←−−− am = a be the path of

algebraic length al(G). Let k′
i be such that bi

ki←− ai+1
k′

i←− bi for all i. Note that
n divides ki + k′

i and
∑

i<m li +
∑

i<m k′
i. Thus n divides

∑
i<m li−

∑
i<m ki =

al(G) which shows that n ≤ al(G) and the lemma is proved.

Finally we remark that if p is a path of algebraic length one and G has no
sources and no sinks, then E(Gp) ⊇ E(G). In particular, if al(G) = 1, then
al(Gp) = 1.

5 A connection between graphs and algebra

Let G = (V,E) be a graph admiting a weak near unanimity polymorphism
w(x0, . . . , xh−1) (we denote by wσ(x0, . . . , xh−1) = w(xσ(0), . . . , wσ(h−1)) for
each permutation σ).

For such a graph we define an algebra A = (V,w(x0, . . . , xh−1)). In the
remaining part of this section we investigate some trivial connection between
the structure of a graph and the properties of the algebra connected to it. Note
that using this notation we can say that E is a subuniverse of A2. Moreover for
any subuniverse of A say W we can define a graph H = (W,E ∩W ×W ) (or
(W,E|W )) which admits a weak near unanimity polymorphism and its algebra
is exactly the subalgebra of A with a universe equal to W .

The first lemma describes the influence of the structure of the graph on the
subuniverses of the algebra.

Lemma 5.1. For any subuniverse W of an algebra A the sets W+ and W−

are subuniverses of A as well.

3



Proof. Take any elements a0, . . . , ah−1 from W+ let b0, . . . , bh−1 ∈W such that
bi → ai. Then w(b0, . . . , bh−1) → w(a0, . . . , ah−1) showing w(a0, . . . , ah−1) ∈
W+ which proves the claim.

Since the weak near unanimity operation is idempotent all the one element
subsets of V are subuniverses of A. Using previous lemma the following result
follows trivially.

Corollary 5.2. For any a ∈ V and for any path p and for any number n the
sets a+n and ap are subuniverses of A.

Subuniverses of A can also be obtained in a more complicated way.

Lemma 5.3. Every strongly connected component of G with the GCD of its
cycles equal to one is a subuniverse of A.

Proof. Fix a vertex a in a strongly connected component of G satisfying the
assumptions of the lemma. Using Lemma 4.2 we find a number n0 such that
there is path of length n0 from a to any element of the strongly connected
component. Using the same lemma for G with arrows reversed we get n1 such
that there is a path of length n1 from each element of the component to a. Then
a+n0 ∩ a−n1 is the subuniverse in question.

We present another construction leading to a subuniverse of the algebra.

Lemma 5.4. Let H = (W,F ) be a maximal subgraph of G having no sources
and no sinks. Then W is a subuniverse of A.

Proof. Clearly, the vertices of H can be described as those having arbitrarily
long path from them and to them. Since our graphs are finite, there exists a
natural number k such that

W = {w | (∃v, v′ ∈ V ) v
k
−→ w and w

k
−→ v′}.

Thus W = V +k ∩ V −k and we are done, since both sets on the right hand side
are subuniverses.

6 Strongly connected graphs

In this section we work with the notion of the greatest common divisor of the
lengths of the cycles instead of the algebraic length, which seems more natural in
case of the strongly connected graphs. We note that, for a connected graph G,
the graph retracts to a directed circle if and only if there exists a directed cycle
(or equivalently circle) of length al(G) in G. We prove the following theorem.

Theorem 6.1. If a strongly connected G admits a weak near unanimity poly-
morphism and the GCD of all the lengths of the cycles in this graph is equal to
one, then the graph contains a loop.

We start the proof by choosing a graph G = (V,E) to be a minimal (with
respect to the number of vertices) counterexample to Theorem 6.1.

Claim 6.2. We can assume that graph G has a 2-cycle.
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Proof. By Lemma 4.2 we can find a minimal number k such that the graph

G contains a 2k-cycle. Then the graph gadget power G+2k−1

has a 2-cycle

and admits a weak near unanimity polymorphism. The graph G+2k−1

does not
contain a loop since G didn’t and k was chosen to be minimal. Moreover, by
Corrolary 4.3, it is strongly connected. Finally if m0, . . . ,ml are the lengths
of the cycles witnessing the divisibility condition, then by following the cycles
multiple times we can find cycles (in G) of lengths 2k−1m0, . . . , 2

k−1ml which

witness the GCD condition for G+2k−1

.

Let a, b ∈ V be any vertices in the 2-cycle in G. The following claim requires
no proof.

Claim 6.3. For any n the intersection a+n ∩ {a, b} is not empty.

Moreover the following fact can be easily proved.

Claim 6.4. For any m ≤ n either a+m ⊆ a+n or a+m ⊆ b+n.

Proof. Since a is in a 2-cycle, we obviously have a+n ⊇ a+n−2 ⊇ a+n−4 . . . . If
m ∈ {n − 1, n − 3, . . . } we have b+n ⊇ a+n−1 ⊇ a+n−3 . . . . This proves the
claim.

The following claim is an easy consequence of the fact that w(x0, . . . , xh−1) is
a polymporphism of G.

Claim 6.5. There are vertices a, b ∈ V in a 2-cycle and a binary term t such
that a = t(w(a, b), w(b, a)).

Proof. Let M ⊆ V be a minimal (wrt. inclusion) subuniverse of A containing a
2-cycle. Let a, b ∈M be vertices in a 2-cycle. Since vertices w(a, b), w(b, a) ∈M

form a 2-cycle, the set {w(a, b), w(b, a)} generates M (due to the minimality of
M). Therefore there exists a term t such that t(w(a, b), w(b, a)) = a.

Let t be a term satisfying a = t(w(a, b), w(b, a)). Then, for any permutations
σ, σ′, we obtain a = t(wσ(a, b), wσ′(b, a)).

Claim 6.6. For any n, any m ≤ n and for any permutations σ, σ′ the following
inclusion holds

t(wσ(a+n, a+m), wσ′(a+m, a+n)) ⊆ a+n

Proof. Note that a = t(wσ(a, b), wσ′(b, a)) implies

a+n ⊇ t(wσ(a+n, b+n), wσ′(b+n, a+n)).

Similarly a = t(wσ(a, a), wσ′(a, a)) implies

a+n ⊇ t(wσ(a+n, a+n), wσ′(a+n, a+n)).

Now the claim follows directly from Claim 6.4.

The following fact is crucial for the proof of the main theorem of this section.
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Claim 6.7. Let c ∈ a+n and c
l−1
−−→ cl−1 → a such that all of the elements of

the path, except possibly a, are in a+n. Then for any
−→
d , e,

−→
d′ , e′, f,−→g ∈ a+n if

−→
d

l+n
−−→

−→
d′ and e

l+n
−−→ e′

then
t(w(
−→
d , c), w(c, e))

l+n
−−→ t(w(

−→
d′ , f), w(−→g , e′))

where all the paths are in a+n. Moreover the same claim holds for w’s replaced
with wσ and wσ′ respectively for any permutations σ, σ′.

Proof. Note that di
n+l
−−→ d′i, e

n+l
−−→ e′, c

l−1
−−→ cl−1 in a+n, and denote the k-th

element (starting from 0) of the first path dk
i and the rest analogously. Thus

t(w(
−→
d , c), w(c, e))

l−1
−−→ t(w(

−−→
dl−1, cl−1), w(cl−1, el−1)) in a+n

Moreover

t(w(
−−→
dl−1, cl−1), w(cl−1, el−1))→ t(w(

−→
dl , a), w(a, el))

and t(w(
−→
dl , a), w(a, el)) ∈ a+n by Claim 6.6 used with m = 0. Denote by

a = g0
i → g1

i · · · → gn
i = gi (and similarly for f) paths of length n from a to −→g

and f . Note that

t(w(
−−−→
dl+m, fm), w(

−→
gm, el+m))→ t(w(

−−−−→
dl+m+1, fm+1), w(

−−−→
gm+1, el+m+1))

for any 0 ≤ m ≤ n − 1, and that both elements belong to a+n (by Claim 6.6).
This proves the claim.

Let n be minimal such that a+(n+1) = V . The existence of such a number
follows from Lemma 4.2.

Claim 6.8. There exists a cycle in a+n and a path (in a+n) connecting the
cycle to either a or b.

Proof. Either a or b is in a+n. Assume the first possibility a ∈ a+n. Since
a+(n+1) = V there is a1 such that a

n
−→ a1 → a. Similarly, there exists a2 such

that a
n
−→ a2 → a1. By repeating this procedure, we get both statements of the

claim. The case b ∈ a+n is similar.

Claim 6.9. There exists an element c ∈ a+n and a number k such that:

1. c
k
−→ c in a+n,

2. c
k−n
−−−→ a with all the elements of the path, except possibly a, in a+n.

Proof. Let l be the length of a cycle inside a+n. Take a sufficiently big multi-
plicity k of l so that there is a path of length k − n from some element in the
cycle to a (with all the elements of the path, except possibly a, are in a+n) and
call this element c.

Claim 6.10. The element c from Claim 6.9 is in two cycles of coprime lengths
in (a+n, E|a+n).
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Proof. Let d be such that c → d
k−1
−−→ c. Claim 6.7 applied to the elements

t(w(c, c), w(c, c)) and t(w(c, d), w(c, c)) shows that these element can be con-
nected by a path of length k in a+n. Apply the same claim (choosing an
appropriate permutation) to t(w(c, c, d), w(c, c)) and t(w(c, d, d), w(c, c)). Re-
peat this procedure to connect, in a+n, c to t(w(c, c, d), w(c, c)) by a path
of length equal to the some multiplicity of k. Again apply Claim 6.7 to the
pair of elements t(w(c, c, d), w(c, c, c)) and t(w(c, d, d), w(d, c, c)) and finally to
t(w(c, d, d), w(d, c, c)) and t(w(d, d, d), w(d, d, d)) to prove the claim.

Thus restricting to graph (a+n, E|a+n) and further to a strongly connected
component of c we obtain a graph strictly smaller than G (by the choice of
n + 1) admiting a weak near unanimity polymorphism, having GCD of cycle
equal to one and without loops – this contradicts the minimality of G. The
proof of Theorem 6.1 is concluded.

Corollary 6.11. If a strongly connected G admits a weak near unanimity poly-
morphism and the GCD of all the lengths of the cycles in this graph is equal
to k, then the graph contains a cycle (and circle) of length k (and thus retracts
onto it).

Proof. The graph gadget power G+k is strongly connected and GCD of length
of cycles equal to one. According to the Theorem 6.1 it contains a loop. This
simply means that there is a cycle of length k in G.

It is easy to notice (using Corrolary 4.4) that a strongly connected graph G

retracts to a circle if and only if G contains a al(G)-circle. Whence we have:

Corollary 6.12. Let G be a strongly connected graph. CSP (G) is tractable, if
G retracts to a circle. Otherwise it is NP-complete.

The above corollary is a special case of Corollary 7.16.

7 No sources and no sinks

The main result of this section is the following theorem.

Theorem 7.1. Let G be a graph with no sources and no sinks. If al(G) = 1
and G admits a weak near unanimity polymorphism then it contains a loop.

The following corollary proves very usefull.

Corollary 7.2. Every strongly connected component of a counterexample to the
Theorem 7.1 has a GCD of lengths of cycles different than one.

Proof. If there is a strongly connected component in G with the GCD of lengths
of the cycles equal to one, then, by Lemma 5.3 it is a subalgebra of an algebra
asssociated with G and, by Theorem 6.1, it contains a loop – a contradiction.

Let G = (V,E) be a minimal counterexample to the Theorem 7.1. Let vl denote

the oriented path a
l
−→

l−1
←−− b.

Claim 7.3. We can assume that there exist d, u ∈ V such that d
1,2
−−→ u.
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Proof. First we show that there exists d ∈ V such that d
k,k+1
−−−−→ u for some d ∈ V

and a natural number k. We suppose otherwise and will prove, for sufficiently
large k, that the graph Gvk is strongly connected. Then al(Gvk) = 1 (since
this gadget power preserves the edges of the original graph) and such a graph
contradicts Corollary 7.2. To prove strong connectivity let d, u be elements
of strongly connected components of G each containing a cycle and such that

d
l
−→ u. We can choose an element d′ in the strongly connected component of

d such that d′
l−1
−−→ d. Then u → d′ in Gvl and thus d and u are in the same

strongly connected component of the power. Choosing sufficiently large l allows
us to obtain a strongly connected graph.

Now let k be minimal with the property that there exist d, u such that

d
k,k+1
−−−−→ u, namely d→ c

k
−→ u and d→ b

k−1
−−→ u. According to the minimality

of k, the gadget power Gvk−1 does not contain a loop and thus we can choose
Gvk−1 to be a new G (the algebraic length remains one, see the note above

again). In this power d
1,2
−−→ b, that is d → b and d → c → b, where the last

arrow follows from c
k
−→ u

k−1
←−− b.

A pair (D = {d0, . . . , dn−1}, U = {u0, . . . , un−1}) is called an n-tambourine,
if di → di+1, ui → ui+1, di → ui, di → ui+1 for all i ∈ {0, . . . , n− 1}, where the
subscripts are computed modulo n.

Claim 7.4. We can assume that G contains an n-tambourine (D,U).

Proof. Compute the GCD of length of the cycles for every strongly component.
Multiply these numbers and call the product k. For any natural number l,
al(G+(kl+1)) = 1 (see Lemma 4.1), G+(kl+1) contains no loop otherwise we
contradict Corollary 7.2 in some strongly connected component.

Pick vertices d, u from Claim 7.3, vertices d0 and u0 and a number n such
that

• u0 is contained a cycle and d0 is a contained in a cycle (and the lengths
of the cycles divide n),

• d0
kn
−−→ d→ u

kn−1
−−−→ u0.

We denote by d0, d1, . . . , dn−1 and u0, u1, . . . , un−1 the elements of n-cycles con-

taining d0 and u0. Now, di
3kn+1
−−−−→ di+1 and ui

3kn+1
−−−−→ ui+1. Moreover

di
kn−i
−−−→ d0

kn
−−→ d

1,2
−−→ u

kn−1
−−−→ u0

i
−→ ui → ui+1

which implies di
3kn+1
−−−−→ ui and di

3kn+1
−−−−→ ui+1. Now (D = {d0, . . . , dn−1}, U =

{u0, . . . , un−1}) is an n-tambourine in G+(3kn+1). Since, by the first paragraph,
the graph G+(3kn+1) contains no loop, it can be taken to replace G.

Now fix n and assume that (D,U) is an n-tambourine in G.

Claim 7.5. Every element is in an n-cycle.
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Proof. Since the graph induced by D ∪U has neither sources nor sinks and has
algebraic length one, D∪U generates the whole algebra A according to Lemma
5.4. Therefore every vertex is of the form t(d0, . . . , dn−1, u0, . . . , un−1) for some
term t. Then vertices t(di, . . . , di+n−1, ui, . . . , ui+n−1), for 0 ≤ i < n form an
n-cycle.

Claim 7.6. We can assume G+(mn+1) = G for any natural number m.

Proof. The graph G+(mn+1) contains no loop – otherwise we have a vertex in
both n-cycle (Claim 7.5) and (mn + 1)-cycle – contradiction to Corollary 7.2.

From Claim 7.5 it follows that E(G+(mn+1)) ⊇ E(G) for any m, hence if
we replace G by G+(mn+1) sufficiently many times, we obtain the sought after
G.

An application of the claim above produces G+(n+1) = G and we can easily
deduce the following claim.

Claim 7.7. Let (a0, a1) and (b0, b1) be edges in n-cycles. If a0 → b0, then
a1 → b1.

Proof. a1
n−1
−−−→ a0 → b0 → b1, thus a1

n+1
−−−→ b1 and finally, by Claim 7.6,

a1 → b1.

Repeated application of Claim 7.7 gives us:

Claim 7.8. Let p be an oriented path and (a0, a1) and (b0, b1) be edges in n-

cycles. If a0
p
−→ b0, then a1

p
−→ b1.

Claim 7.9. There is an n-tambourine (D = {d0, . . . , dn−1}, U) and a term
t(x0, . . . , xn−1) such that

t(w(di, di+1), w(di+1, di+2), . . . , w(di+n−1di+n)) = di

for every i ∈ {0, . . . , n− 1}.

Proof. It is easy to see that if (D,U) is an n-tambourine, then the pair (D′, U ′),
where

D′ = {w(d0, d1), w(d1, d2), . . . , w(dn−1d0)}

U ′ = {w(u0, u1), w(u1, u2), . . . , w(un−1u0)}

is an n-tambourine as well. By continuing this process we eventually get into
an n-tambourine we already constructed. Call this n-tambourine (D,U), thus
we have (D,U) = (D

′′...′ , U
′′...′) and the statement follows.

Let fz denote the oriented path a = a0 → a1 ← a2 → a3 ← . . . az = b. Let

z be minimal such that d
fz+1

0 = V . Such a z exists since, for big enough z′, we

have D ∪ U ⊆ d
f

z′

0 which implies d
f

z′

0 = V . Put

P =

n−1⋂

i=0

d
fz

i .

The set P is a proper subset of V . It will serve us as the smaller counterexample
for the theorem.

The following claim is crucial.
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Claim 7.10. There is a term q, satisfying

q(P, P, . . . , P,

n−1⋃

i=0

d
fz

i , P, . . . , P ) ⊆ P,

where the union is at arbitrary coordinate.

Proof. Recall that h denotes the arity of our weak near unanimity operation.
Let

s(x0, x1, . . . , xhn−1) =

= t(w(x0, x1, xh−1), w(xh, xh+1, . . . , x2h−1), . . . , w(x(n−1)h, . . . , xhn−1))

For a natural number j we define the j-th power of s(x0, . . . , xhn−1) (to be
a (hn)j-th ary term) in a recursive way:

• s1(x0, . . . , xhn−1) = s(x0, . . . , xhn−1) and

• for bigger k

sk(x0, . . . , x(hn)k−1) =

= sk−1(s(x0, . . . , xhn−1), . . . , s(xhn((hn)k−1−1), . . . , x(hn)k−1)).

We will proof by induction on k that for every coordinate j in sk and every
i ∈ {0, . . . , n− 1} there is a number l ∈ {0, . . . , n− 1} such that

sk(P, . . . , P, d
fz

l ∪ d
fz

l+1 ∪ . . . d
fz

l+k, P, . . . , P ) ⊆ d
fz

i ,

where the union is on the j-th coordinate. Then we can put q = sn to satisfy
the claim.

In the first step (k = 1), we prove more: For every coordinate j, there exists

l such that for all i, s(P, . . . , P, d
fz

i+l ∪ d
fz

i+l+1, P . . . , P ) ⊆ d
fz

i . Claim 7.9 tells us
that

t(wσ(di, di+1), wσ(di+1, di+2), . . . , wσ(di+n−1di+n)) = di,

therefore

t(wσ(dfz

i , d
fz

i+1), wσ(dfz

i+1, d
fz

i+2), . . . , wσ(dfz

i+n−1d
fz

i+n)) ⊆ d
fz

i ,

thus l can be taken as j ÷ h (integer division of j by h), since we can have d
fz

i+l

or d
fz

i+l+1 at the l-th coordinate (by choosing appropriate σ) and the set at any
coordinate is a subset of P .

To prove the induction step, let i ∈ {0, . . . , n− 1} and j be a coordinate of
sk+1

sk+1(x0, . . . , xj , . . . ) = sk(. . . , . . . , s(. . . , xj , . . . ), . . . ),

where the inner s which contains xj is at coordinate j′ in sk and xj is at coor-
dinate j′′ in the inner s. More precisely j′ = j ÷ (hn)k and j′′ = j mod (hn)k.
From the induction step, we have l′ such that

sk(P, . . . , P, d
fz

l′ ∪ d
fz

l′+1 ∪ . . . d
fz

l′+k, P, . . . , P ) ⊆ d
fz

i .
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From the first step, we get l′′ such that for all i′

s(P, . . . , P, d
fz

i′+l′′ ∪ di′+l′′+1, P . . . , P ) ⊆ d
fz

i′ .

Now we can put l = l′ + l′′, since

sk(P, . . . , P, s(P, . . . , d
fz

l′+l′′ ∪ · · · ∪ d
fz

l′+l′′+k+1, P, . . . , P ), P . . . , P ) ⊆

⊆ sk(P, . . . , P, d
fz

l′ ∪ · · · ∪ d
fz

l′+k, P, . . . , P ) ⊆ d
fz

i .

Claim 7.11. Every element of P is in an n-cycle inside P . In particular P

has neither sources nor sinks.

Proof. It follows from Claim 7.8.

Now we need to distinguish two possibilities – whether z is odd or even. Let
us finish the proof assuming z is odd, the second possibility being similar.

Claim 7.12. Let u0
i
−→ u′ for some i. Then there exists a set U ′ containing u′

such that (D,U ′) is an n-tambourine.

Proof. It is a straightforward application of Claim 7.6.

Claim 7.13. There exists a set U ′ such that (D,U ′) is an n-tambourine and
U ′ ⊆ P .

Proof. Let u′ be arbitrary vertex such that u0
i
−→ u′ for some i and for any u′′ s.t.

u′ → u′′, u′′ is in the same strongly connected component as u′ (In other words,
u′ is in a maximal strongly connected component above u0.) Due to Claim
7.12, there is an n-tambourine (D,U ′ = {u′

0, . . . , u
′
n−1}), where U ′ contains

u′. Let i ∈ {0, . . . , n − 1}. Since d
fz+1

0 = V , we have d0
fz+1

−−−→ di−1, hence

d0
fz−1

−−−→ a→ b← u′
i−1. Because b is in the same strongly connected component

as u′
i−1, there is a path b

k
−→ u′

i−1. Now a→ b
k
−→ u′

i−1

(k+1)(n−1)
−−−−−−−→ u′

i−1 → u′
i, i.e.

a
(k+1)n+1
−−−−−−→ u′

i and thus a → u′
i due to Claim 7.6. Therefore d0

fz−1

−−−→ a → u′
i,

i.e. d0
fz

−→ u′
i. We have proved that d

fz

0 ⊇ U ′. The rest follows from Claim
7.8.

Claim 7.14. al(P,E|P ) = 1.

Proof. The path

u′
1 = q(u′

1, u
′
1, . . . , u

′
1)← q(d1, u

′
0, . . . , u

′
0)→ q(u′

2, u
′
1, u

′
1, . . . , u

′
1)←

q(u′
1, d1, u

′
0, . . . , u

′
0)→ q(u′

2, u
′
2, u

′
1, . . . , u

′
1)← · · · → q(u′

2, . . . , u
′
2) = u′

2 ← u′
1

has algebraic length 1 and lies inside P according to the previous claim and
Claim 7.10.

P is a proper subuniverse of A, has no sources and no sinks and al(P,E|P ) =
1 – a contradiction with minimality of V . This finishes the proof of Theorem
7.1.

As an easy collorary, we have
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Corollary 7.15. Let G be a graph with no sources and no sinks. If a
p
−→ a,

where p is a path of algebraic length k, and G has a weak near unanimity
polymorphism, then it contains a k-cycle.

Proof. The gadget power G+k has no sources and no sinks and has algebraic
length equal to one (Lemma 4.1). Hence there is a loop in G+k, thus a k-cycle
in G.

And finally:

Corollary 7.16. Let G be a graph with no sources and no sinks. If G retracts
to a disjoint union of circles, then CSP (G) is tractable. Otherwise it is NP-
complete.

Proof. Assume that G has a weak near unanimity polymorphism. Let M be
the set of algebraic length of all components of G and N be the set of minimal
elements of M with respect to divisibility. According to the previous corollary,
we have cycle Cn of length n for every n ∈ N . By minimality it follows that
Cn is a circle for each n ∈ N and that Cn, Cn′ are disjoint for n, n′ ∈ N ,
n 6= n′. Now G retracts onto the disjoint union ∪n∈NCn and clearly CSP (G)
is tractable.

If G has no weak near unanimity polymorphism and is a core, then it is
NP-complete.
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