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Abstract The Domingos-Richardson model, along with several other infec-
tion models, has a wide range of applications in prediction. In most of these,
a fundamental problem arises: the edge infection probabilities are not known.
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Sixtep Ltd.
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authors have published the Generalized Cascade Model as a general infec-
tion framework, and a learning-based method for the solution of the Inverse
Infection Problem.

In this paper, we will present a case-study of the Inverse Infection Problem.
Bankruptcy forecasting, more precisely the prediction of company defaults
is an important aspect of banking. We will use our model to predict these
bankruptcies that can occur within a three months time frame. The network
itself is built from the bank’s existing clientele for credit monitoring issues.

We have found that using network models for short term prediction, we get
much more accurate results than traditional scorecards can provide. We have
also improved existing network models by using inverse infection methods for
finding the best edge attribute parameters. This improved model was already
implemented in August 2013 to OTP Banks credit monitoring process, and
since then it has proven its usefulness.

Keywords Graph theory · Information diffusion · Inverse Infection Problem

1 Introduction

The study of infection processes has roots in epidemics and sociology. In the
latter, Granovetter [12] created the Linear Threshold model to describe in-
formation diffusion processes in social interactions. The first application of
infection models in economics was published by P. Domingos and M. Richard-
son [10]. In their paper, they proposed the Independent Cascade model (IC)
for the purpose of modeling virus marketing, and described the influence max-
imization problem, that is finding the set of individuals yielding the largest
expected infection. Kempe et al. [14,15] proved, that the influence maximiza-
tion problem was NP-hard, proposed a greedy algorithm for it, and also showed
that the generalization of the IC model is in fact an equivalent of the Linear
Threshold model. A review on infection models in economics can be found in
[17].

The computation of the above models requires the edge infection probabil-
ities of the given network to be known beforehand. This information is usually
not known in applications. In their place, intuition-guided estimations are
used. Recently, several papers have been published, each aiming to develop a
systematic approach to estimate or learn the edge infection probabilities. This
is usually done by using additional information, like the previous behavior of
the network, or some other property. In [11,16] the infection process is known
to some degree, while in [4], the authors assume that the result of the infection
process can be observed several times.

To answer the demand for the prediction of edge infection probabilities,
the authors have published the Generalized Cascade (GC) model [4] and the
Inverse Infection Problem (IIP)[3]. The former describes a probabilistic ex-
tension of the Independent Cascade model: Both the initial infectors and the
result of the infection are represented as probability distributions: a priori and
a posteriori distributions respectively. The infection event itself is a transition
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between these distributions. The formulation of the Inverse Infection Prob-
lem builds upon this; it describes the a priori and a posteriori distributions
as inputs to compute the edge infection probabilities. We have given a learn-
ing method to compute this process in [3]. This method considers the edge
infection probabilities as the result of some unknown polynomial function of
available attributes. This way only the coefficients of this function have to
be estimated. Starting from some initial coefficients randomly chosen within
reasonable bounds, the a posteriori distribution is computed and compared
with a reference distribution given as an input of our method. The difference
between these distribution is minimized with the help of a Particle Swarm
Optimization method.

Some of the ideas of these methods, like representing initial and final infec-
tions as distributions and the idea of computing infection probabilities from
attributes, came from experience from a previous joint work with the OTP
Bank of Hungary on a different project. Existing models did not allow us to
go deeper into this problem, therefore we decided to develop our own method.
During the development of our method we have used various artificial bench-
marks for testing purposes [3], but we have always kept in mind the require-
ments of a real application. Only after properly developing our method were
we able to handle real applications. Recently, when an opportunity presented
itself to work with the bank again, we have taken it.

In this paper, we will describe an application of the Inverse Infection Prob-
lem on a transaction database of the OTP Bank of Hungary. Our goal is to
improve current methods for the prediction of credit defaults. We will first de-
scribe the methods published in [4,3,2]. Then we will move on to the case-study
itself: we will give a detailed description of the bank transaction database and
the goals of our paper. Then we will present the application of our method,
and its results.

2 Preliminaries and previous works

For the sake of completeness we will give a short introduction to the Gen-
eralized Cascade model and its applications, the Inverse Infection model and
a Particle Swarm based estimation of the edge infection probabilities in this
section. For further reference see [4,3,2].

2.1 Infection models

The process of infection can be represented as a method, which has two inputs
and one output. The first input is the network upon which the process takes
place. This network is a weighted one; more precisely the weights on the edges
are probabilities. Formally consider a graph G = (V,E), where each e ∈ E
has a weight we, 0 ≤ we ≤ 1. The second input is the set of initially active
vertices A0, and the output is the set of vertices Af infected during the process.
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The process itself takes place in discrete time-steps: in each iteration, newly
infected nodes try to infect their inactive neighbors according to the predefined
rules of the specific infection model.

In the Independent Cascade model the nodes of the network have three
states: infected, active (newly infected) and susceptible. Other infection models
have more states than this, and the transitions between them may be more
complex. The transition between the states of the IC model is governed by the
following process [10,15]:

Starting from the initially active set of nodes A0 ⊂ V (G), let Ai ⊆ V (G)
be the set of nodes activated in iteration i. In iteration i + 1, every node
u ∈ Ai has one chance to activate each of its susceptible out-neighbors v ∈
V \ ∪0≤j≤iAj according to wu,v. If the attempt is successful, then v becomes
active in iteration i + 1. If more than one node is trying to activate v in the
same iteration, the attempts are made in an arbitrary order and independently
of each other still in iteration i + 1. Vertices infected in iterations k < i are
unable to infect other vertices. The process terminates at step t if At = ∅.
It is easy to see, that t exists i.e. the process is finite. Finally, Af =

⋃t−1
i=0 Ai

contains the set of vertices infected during the process.
We have chosen the Independent Cascade Model as the basis of our works,

because it has proven its effectiveness in modeling infection-like processes in
economics [10]. There are many other infection methods, for further reference
see [9].

2.2 Generalized Cascade Model

We can generalize this framework in the following way. In the Generalized
Cascade (GC) model [2] each vertex is assigned a real value pv between zero
and one, that represents the probability of infection before the beginning of
the process. We refer to these values as the a priori distribution. Vertices are
infected independently from each other before the beginning of the process
according to their a priori infection probability pv. This model is capable
of summarizing the effect of the a priori infections and the effect of these
infections transmitted through the network. Similarly to the input, the output
of the model is given as an a posteriori distribution, where values p′v indicate
the probability of being infected during the process for all v ∈ V . The actual
way a vertex infects another is the same as in the IC model, although it is
possible to use other infection models using the terms of the GC model. It
should be noted, that in this application the bank is able to give an accurate
estimation of the a priori infection probabilities, but they cannot take into
consideration the network effect.

Based on these remarks and formulations, we can define the Generalized
Cascade model [2]:

The Generalized Cascade Model: Given an appropriately weighted graph
G and the a priori infection distribution pv, the model computes the a posteriori
distribution p′v for all v ∈ V (G).
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The computation of the a posteriori infection probabilities in the IC model,
and therefore the GC model, is #P -complete [8]. However, there are several
existing heuristics to get approximate solutions [7,6]. In [2] three additional
heuristics were proposed for the GC model. We have tested these methods and
found, that Edge Simulation gives the best performance on this application.
All infection estimations in this paper were computed with this heuristic. For
a detailed description please see [2].

2.3 The Inverse Infection Problem

Following the framework described above, an infection model computes the
a posteriori infections given a weighted graph and the a priori infections as
inputs. In the inverse infection problem the a priori and a posteriori distri-
butions (and an unweighted network) are provided as inputs, and we want
to assign edge infection probabilities such that the infection model with the
input a priori distribution results in the given a posteriori distribution. Based
on this, the Inverse Infection Problem can be defined as in [3]:

Inverse Infection Problem: Given an unweighted graph G, the a priori and
the a posteriori probability distributions pv and p′v, compute the edge infection
probabilities we for all e ∈ E(G).

Independently estimating all edge weights of a network is both underdeter-
mined and computationally unfeasible, even if the number of edges is small.
Instead, we assume the edge probabilities can be expressed as (normalized)
functions of some properties of the edges or nodes that are available in the
form of attributes1. If there is only one attribute, this function can be ex-
pressed as f(a1(e)), where f is the attribute function and a1(e) represents
the attribute of edge e. We have used low-degree polynomials or simply a lin-
ear functions like c0 + c1a1(e), where c0 and c1 are unknown coefficients. If
there are multiple attributes it is necessary to summarize the effect of them,
and even in the case of a single one, normalization is required to get valid
probability values between zero and one. Therefore it is necessary to use two
functions, the attribute function is applied to the individual attributes on
each edge, then the results of these functions are summarized and normalized:
we = g(f(a1(e)), f(a2(e)), ..., f(an(e))), where we is the edge weight of e, g
is the summarizer-normalizer function, f denotes the attribute function and
ai(e) represents the i-th attribute of edge e. The attribute and the normalizer
function is the same for all edges, this way we only have to estimate the coeffi-
cients of these functions, and since the number of attributes and coefficients is
limited, the problem becomes tractable. For more details see section 4 or [3].

We proposed a learning method in [3] based on the inputs of the model: the
observed a posteriori distribution can be used as a reference or training set.
Then the initial coefficients for the edge attribute functions are chosen from
reasonable bounds. Given these attribute functions the coefficients and the a

1 Such attributes are readily available in banking applications.
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priori distribution we can compute an a posteriori distribution corresponding
to the chosen coefficients. An error function compares the results with the in-
put a posteriori distribution. The process aims to minimize this error function
by repeatedly adjusting the coefficients. This is a typical task for global opti-
mization, i. e. finding the minimum of an unknown multidimensional surface,
where the points of this surface can be accurately estimated.

During the initial phase of development we tried various optimization
strategies including grid search and several gradient based methods. In the end
we have settled on an implementation of the Fully Informed Particle Swarm
Optimization method of Kennedy et al. [13] using a von Neumann neighbor-
hood with 16 agents. The process gives satisfying results close to the global
minimum, and usually terminates with the number of iterations below 20. A
further description of the inverse infection problem and the learning method
can be found in [3].

3 Case-study: bank transaction networks

The development of the Inverse Infection Problem was heavily influenced by
our previous work with the OTP Bank of Hungary2 [5]. Recently the bank
has approached us again with the task of improving current methods for the
estimation of credit default of companies. The bank has information about the
properties of the companies and is able to give an estimation of the individ-
ual probability of default for them. The goal of this project was to improve
this estimation by taking into consideration the effect companies have on each
other. If one of the companies goes into default, how does this change the
probability of default of other companies, especially the ones with financial
ties to the original one? We can reach this goal by considering the network of
companies and the connections between them, and computing the edge infec-
tion probabilities between the vertices with the optimization method proposed
in [3].

We have seen in the previous section the requirements of the Inverse In-
fection Problem. In this section we are going to discuss the details of this
application. We will begin with the construction of the transaction network,
that represents the companies and their connections. Then we are going to
describe how to create the required probability distributions. Finally we will
review the available edge and vertex attributes.

It is important to emphasize, that this is an industrial application, therefore
many of the details of this case-study are not available to the public either
because of privacy reasons or because it is a part of the know-how of the
bank. The transaction network itself cannot be published, because the attached
attributes often contain information on the neighboring companies that are
not public. We were not allowed to release the transaction network even in an
anonymous manner. We were also not allowed to present the exact coefficients

2 We will refer to the OTP Bank of Hungary simply as bank from now on.
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representing the significance of the attributes. Only the results presented in
section 4 are public.

3.1 Network construction

In order to deeper understand the behavior of purchaser-supplier connections,
a transaction database was created by the bank over a large time period. We
can construct a network from this database, where vertices represent corporate
clients and edges represent financial connections between clients. Since there
are many transactions between the clients, we must decide how to define the
edges of the graph: a filtering process is required during the construction of
the network. We have used three criteria to decide whether two nodes should
be connected or not:

– Frequency of the transactions: the average number of transactions in a
month.

– Amount of transactions: the average transacted amount in a month.
– Relative amount: average incoming amount from one company divided by

the total income from all of the partners.

For each criterion above, we have assigned the transactions between the
companies into three categories3: high, medium and low. We have added an
edge between the companies if the transactions between them belong to the
high category for each criterion, that is two companies are connected if the
transactions between them have high frequency and they are also in the high
total and relative amount part of the database. The transactions also have a
natural direction to them: they go from the purchaser to the supplier, therefore
the graph is directed. Since the business partners of a company may change
dynamically, we have built the network considering edges from a one year
period: from April 2012 to March 2013. The resulting transaction graph has
approximately 68.000 vertices, and 106.000 edges.

3.2 Probability distributions

We have selected the time period of our estimations according to the currently
used practices of the bank. The task was to make short-time predictions. Which
corporate client will be in credit default in the near future? We have created the
a priori probabilities considering companies from a three month period starting
from January 2013 to March 2013. If the client was in default in this period,
it was given an a priori probability of 1, otherwise we have used an estimated
probability of default. This estimation was performed by the bank with logistic
regression based on a 6 months observation period of its behavioral variables.
The a posteriori infection or reference values were constructed from April 2013
to June 2013. Like before, the defaulted companies were given a value of 1.

3 Uniform 33% of the cases in each category.
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3.3 Attribute functions

The following attributes are available in the database. Some of these are not
edge attributes, but vertex attributes that are related to suppliers4, like its
age and type.

1. the number of transactions
2. the amount of the transaction
3. total incoming transactions of the client (supplier)
4. community information: if the edge belongs to a community5

5. relative traffic, that is the transfer of the edge divided by the sum of all
incoming transfers

6. the age of the supplier (how old is the company)
7. unpaid items on the accounts of the supplier
8. limit exceeded (for overdrafts)6

9. whether the supplier is a company or a municipality

In the inverse infection problem the edge weights are computed from edge
attributes by the means of attribute functions. In this application we had the
above introduced nine attributes : ai, i = 1, . . . , 9. We have tried several sim-
ple attribute functions including polynomials, but have found little difference
between them both in terms of accuracy and computational time. For the
sake of simplicity, we have chosen a weighted, normalized sum as the attribute
function. More formally:

w′e = f(ai(e)) =
∑
i

ciai(e), i = 1, ..., 9,

then the resulting values are normalized according to

norm(e) =
e−min(e)

(max(e)−min(e))
, (1)

where e stands for the unnormalized vector of edge weights. In this for-
mulation the algorithm computes a weighting of the attributes based on their
importance in the infection process.

4 Case-study: Evaluation

In the previous section we have discussed the application of the Inverse In-
fection Problem on a bank transaction network, now we are going to present
its results. As we have mentioned before, our goal was to improve currently
used methods by the bank. Therefore we will use two of these methods for
comparison. One of them is a simple logistic regression based on a 6 months

4 A vertex v is a supplier if it is at the end of a directed edge.
5 Here we used a N++ algorithm for community detection, see [1].
6 The actual outstanding is higher then the given credit-limit.
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observation period of the companies’ behavioral variables. The other one uses
the same network we have used for the IIP model, but instead of estimating
the edge weights it uses a uniform constant value for each edge. The focus of
this paper is the accuracy of the estimations: how well are we able to predict
short time default events. For this purpose we will use well-known performance
measurements like ROC evaluation, GINI and RMSE. We will discuss these
and the accuracy result in the next section. We will also present two other
points of interests in subsequent sections: the speed of the estimations and the
matter of initial coefficients. We will close the evaluation with some general
observations and remarks.

4.1 Accuracy of estimations

We have tried various measurements to evaluate the performance of our method.
The optimization algorithm itself uses the root mean squared error (RMSE)
function to guide the search,√√√√ 1

|V (G)|
∑

v∈V (G)

(p̂′v − p′v)2,

where p̂′v denotes the estimated a posteriori infection of vertex v. However this
value is not available for the other models.

The ROC curve was also used to measure performance. We can construct
it in the following way: We order the vertices of the graph in a monotone
decreasing way by their a posteriori infection values computed by the model.
Let t′1, . . . , t

′
n be the binary values of these vertices given in the reference set,

and the function

roc(x) =

∑
i≤x t

′
i∑n

i=1 t
′
i

.

Now the integral

AUC =

∫ n

x=1

roc(x)dx

should be maximized. We will also use GINI = (AUC − 0.5)/2 to measure
performance.

We have also compared the average new default events in the reference
period (excluding the ones defaulted before) with those TOP segments of the
ordering described above, where the model predicted high default probabilities:
these are companies, where default is the most probable. In banking the highest
concern is to identify the riskiest clients, and the ones with lower risks are far
less important. Therefore this approach is the most natural in this application.

As a general observation we have found, that the AUC and GINI measure-
ments were less effective, because the infection models are more powerful if
we consider only the high influence values, and less powerful when considering
the whole portfolio, where traditional methods are better.
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Table 1 Performance of the IIP solution compared to existing methods used by the bank.
The first column corresponds to logistic regression, the second stands for the network model
with constant weights, the third one for IIP.

TOP % default rate
Average default rate

Regression Constant IIP

TOP 1% 7.27 0.79 7.82
TOP 3% 8.11 2.17 8.77
TOP 5% 7.87 2.89 7.97
TOP 10% 4.97 3.16 4.99

Other measurements

AUC 72.4 % 65.39 % 72.5 %
AUC (lower bound) 69.9 % 62.97 % 70 %
AUC (upper bound) 74.9 % 67.81 % 75 %
GINI 11.2 % 7.69 % 11.24 %
RMSE 0.1661

In Table 1, we can see the results of the benchmark methods and the IIP
based estimation. The measurements TOP 1-2-5-10%, AUC, GINI and RMSE
can be seen. For example the TOP measurements, 7.77 in the first row means,
that in the highest one percentage the default rate is 7.77 times higher than
the average default rate.

We can see in the table that using IIP is far better than the network
model with constant edges. Compared to the regression, IIP did not improve
the ROC based measurements, but it was able to identify the most risky
clients with better precision than the regression. If we take a look at the 1-5%
riskiest companies, we can see that our model is able to improve prediction
by as much as 10%. Therefore using IIP estimations for short time predictions
clearly means an advantage.

4.2 Speed of the estimations

We have measured the running time of the algorithm using different number
of attributes. We have ordered the attributes by importance, and we have
assigned the top 9, 8, 6, 4, 2, 1 most important ones for different runs. Here
we found that the computational time of the algorithm can be reduced by
decreasing the number of attributes. The measured squared error remains
roughly the same during different runs. In Table 2 we can see the running
times and error for different attribute configurations.

4.3 Initial coefficients

The optimization algorithm starts from initially random coefficients, and the
bounds of these initial coefficients may affect the performance of our method.
We have tried several lower and upper bounds for the coefficients and found,



Applications of the Inverse Infection Problem on bank transaction networks 11

Table 2 Running time and error compared to the number of used attributes

No attributes Running time (sec) RMSE
9 166 0,1661
8 152 0,1661
6 140 0,1661
4 123 0,1662
2 107 0,1668
1 102 0,2324

Table 3 Function bounds

Coefficient bounds No. iterations Running time (sec) RMSE
(-100, 100) 10 323 0.1663

(-10, 10) 9 288 0.1672
(-1, 1) 7 235 0.1674

that the selection only effects the number of iterations the optimization algo-
rithm terminates in, while the measured error at the end of each run remains
roughly similar. Results can be seen on Table 3. In subsequent runs we have
used the initial bounds [−1, 1] for each coefficient.

4.4 Additional observations

We have experimented with omitting the direction of the edges in the network,
because our previous studies [5] showed that Basel II default spreads in both
directions. This seemingly paradoxical phenomenon comes from the different
stability of companies. When a big buyer has cash flow problems, it delays the
transfers causing cash flow problems for its supplier, who might go bankrupt.
Still the observer, who has no detailed information on the whole situation,
sees only that the suppliers bankruptcy spread to the buyer. In this model
however, omitting direction decreases performance. The direction of an edge
goes from the purchaser to the supplier, implying that the suppliers depend
on the purchasers, therefore the bank should estimate the vulnerability of the
supplier.

We have also experimented with increasing the number of edges by re-
ducing the criteria for relevant transactions, again this resulted in decreased
performance. A company can have many business partners, filtering out the
more relevant ones, where the mutual dependency is higher is very important.

The most significant attributes were community information and relative
traffic.

5 Conclusions

We have presented a case-study of the recently published Inverse Infection
Problem on a bank transaction network. The goal of this estimation was to
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improve the efficiency of existing models for the prediction of short-time credit
default events. Since the creation of IIP was heavily influenced by banking
applications, it was quite suited to handle this task. In this paper we gave an
overview to the Inverse Infection Problem and its preliminary, the GC model,
and we also presented an optimization method to estimate the edge infection
probabilities in these models. These models were previously published in [3,4,
2]. Then we presented the circumstances of the case-study: the construction
of the transaction network, the a priori and a posteriori infection probabilities
and the available edge and vertex attributes.

Concerning our results, Inverse Infection estimations allowed us to find
new ways to improve the efficiency of existing models for the prediction of
short-time credit default events. The new model has better predictive power
than traditional methods: our model can identify the companies where default
is most probable better than the previously used models of the bank. We were
able to predict the bankruptcies of the riskiest 5% clients 10% more accurately
than the regression model. Our model was implemented in August 2013 into
the OTP Bank of Hungary’s credit monitoring process.
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