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Abstract

One of the most useful strategies for proving Breaker’s win in Maker-Breaker Positional
Games is to find a pairing strategy. In some cases there are no pairing strategies at all, in
some cases there are unique or almost unique strategies. For the k-in-a-row game, the case
k = 9 is the smallest (sharp) for which there exists a Breaker winning pairing (paving)
strategy. One pairing strategy for this game was given by Hales and Jewett.

In this paper we show that there are other winning pairings for the 9-in-a-row game,
all have a very symmetric torus structure. While describing these symmetries we prove
that there are only a finite number of non-isomorphic pairings for the game (around 200
thousand), which can be also listed up by a computer program. In addition, we prove that
there are no “irregular”, non-symmetric pairings. At the end of the paper we also show a
pairing strategy for a variant of the 3-dimensional k-in-a-row game.
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1 Introduction
5-in-a-row is one of the most well known positional games, and its study inspired several
deep results in this field. For a very thorough introduction of these, see Beck [2, 3]. In the
classical version two players take the squares of a gridpaper (integer lattice), alternately,
and the first who achieves five in a row, i.e. five consecutive squares in a vertical, horizon-
tal or diagonal direction, wins the game. John Nash [4] invented the “strategy stealing”
argument showing that in these type of games the first player either wins the game or it is
a draw. It explains the notion of the so-called Maker-Breaker (M-B) version of a game; in
these, Maker wins by achieving the original goal, while Breaker wins by preventing Maker
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to doing so. There is a connection between the normal (Maker-Maker) and the M-B ver-
sions of a game: If the first player wins the normal game, she wins the M-B one, as well. If
Breaker wins the M-B game, then the second player can draw the normal game. However,
the reverse statements are not true, see the Tic-Tac-Toe game. In summary, the M-B version
is easier for Maker because she does not need to act Breaker’s moves.

Allis et al. [1] solved the 5-in-a-row game for the 19× 19 and 15× 15 boards: the first
player wins. However, the case of infinite board is still open (in the normal version). It is
natural to ask then what happens in the k-in-a-row game, where the winning condition is
to get k consecutive squares in a row. The first result in that direction is due to C. Shannon
and H. Pollak [4] who showed that Breaker wins the 9-in-a-row. Later A. Hales and R. Jew-
ett even gave a winning pairing strategy for Breaker. A. Brouwer, under the pseudonym
T. G. L. Zetters published in [11] (as a solution to a problem by Guy and Selfridge [6])
that Breaker wins the 8-in-a-row on the infinite board. The cases k = 6, 7 are still open,
although it is widely believed that those are both draws. (Of course for k ≤ 4 Maker wins
easily.) On the other hand, it was shown that there are no pairing strategies for k ≤ 8,
see [5, 10].

The concept of pairing strategies were useful for other games, the best known are the
Harary games. Here Maker’s goal is to get a given polyomino on the infinite board; most
cases solved by A. Blass, see [4]. The notorious case of “Snaky” is still unsolved, although
there are partial results for it. Csernenszky et al. [5] proved a relative existence theorem
of pairing strategies for the Snaky: if a pairing is good for the Snaky, it is good for the
polyomino P5 that consists of five consecutive squares vertically or horizontally (but not
diagonally). They also managed to give all possible pairings for P5, there are two of those
and those are not appropriate for Snaky.

As we mentioned, there is a Hales-Jewett winning pairing strategy for Breaker in the
9-in-a-row, see [3, 4] and also in Figure 1. The easiest way to see that the Hales-Jewett
pairing blocks all lines of the board is that this pairing is an extension of a domino pairing
from the 8 × 8 torus to the whole board. The torus lines consist of not only the rows and
columns, but all diagonals, continuing on the opposite side when reaching the border of the
8× 8 board.

Since no one has published different pairings for the 9-in-a-row,1 the highly symmet-
ric structure of the Hales-Jewett pairing, and the other examples of uniqueness or quasi
uniqueness of pairings in similar problems; it is natural to think this is the only possible
solution.

It turned out that this belief is very far from reality, as we found lots of new ones and
will exhibit a few in the following sections. Another belief was that all pairings must be
torical extensions of their 8×8 section. Somehow surprisingly, this belief is not true either;
there are lot of solutions which are connected to the 16 × 16 torus, but are not extensions
of the pairings of a 8× 8 torus.

In the next sections, we define pairings precisely and give some conditions for their
existence and structure. We will show that all solutions are either the extension of the
pairings of a 8× 8 torus (there are 194 543 non-isomorphic ones) or some combinations of
those resulting in 16× 16 toric solutions.

At the end of the paper, we prove a special case of the conjecture of Kruczek and
Sundberg [8] about the existence of pairings in higher dimensions.

1According to [4], Selfridge also produced a Hales-Jewett pairing, but that pairing is either not different from
the known Hales-Jewett pairing or left unpublished.
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Since in our paper k-in-a-row type games play an important role, we define Hk, the
hypergraph of the k-in-a-row games.

Definition 1.1. The vertices of the k-in-a-row hypergraph Hk are the squares of the
infinite (chess)board, i.e., the infinite square grid. The edges of the hypergraph Hk are the
k-element sets of consecutive squares in a row horizontally, vertically or diagonally. We
refer to the whole infinite rows as lines.

2 Pairing strategies
Given a hypergraph H = (V,E), where V = V (H) and E = E(H) ⊆ P(H) = {S :
S ⊆ V } are the set of vertices and edges, respectively. A bijection ρ : X → Y , where
X,Y ⊂ V (H) and X ∩Y = ∅ is a pairing on the hypergraphH. An (x, ρ(x)) pair blocks
an A ∈ E(H) edge, if A contains both elements of the pair. If the pairs of ρ block all
edges, we say that ρ is a good pairing ofH.

Pairings are one way to show that Breaker has a winning strategy in hypergraph games.
A good pairing ρ for a hypergraph H can be turned to a winning strategy for Breaker in
the M-B game on H: following ρ on H in a M-B game, for every x ∈ X ∪ Y element
chosen by Maker, Breaker chooses ρ(x) or in case of x ∈ Y vice versa (if x /∈ X ∪ Y ,
then Breaker can choose an arbitrary vertex). Hence Breaker can block all edges and wins
the game. Since our main topic is the 9-in-a-row game, this will be the first illustration to
pairings and pairing strategies.

The following result is due to Hales and Jewett [4, 7]:

Theorem 2.1. Breaker wins the 9-in-a-row M-B game by a pairing strategy, i.e., there
exists a good pairing for the 9-in-a-row.

Proof. Figure 1 is an extension of a pairing of an 8×8 torus (framed), where the pairs have
a periodicity 8 in every line. Hence, the pairing blocks all 9-in-a-row edges.

Figure 1: Hales-Jewett pairing blocks the 9-in-a-row.
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A pairing is a domino pairing or rather a match(-stick) pairing on the square grid,
if all pairs consist of only neighboring cells (horizontally, vertically or diagonally), called
dominoes. Note that the pairing in Figure 1 is a domino pairing.

A counting type proposition [5] showed that there is no good pairing strategy for the
k-in-a-row hypergraph, if k < 9. We will use this proposition, so we formulate the exact
statement.

For a hypergraph H let d2(H) (briefly d2) be the greatest number of edges that can be
blocked by two vertices ofH, i.e., d2 is the maximal co-degree.

Proposition 2.2 ([5]). If there is a good pairing ρ for the hypergraph H = (V,E), then
d2|X|/2 ≥ |G| must hold for all X ⊂ V , where G = {A : A ∈ E,A ⊂ X}.

Proof. We will refer to X as a sub-board. The edges of G can be blocked only by pairs
coming from X . There are at most |X|/2 such pairs of ρ on the sub-board of size |X|.
Since a pair blocks maximum d2 edges, |X|/2 pairs block maximum d2|X|/2. So, if there
are more edges on the sub-board, there cannot be a good pairing.

With the help of Proposition 2.2, we can conclude that there is no pairing strategy for
Hk if k < 9. In the hypergraph Hk, d2 = k − 1 because a pair blocks at most k − 1
edges and this happens if and only if the pair is a domino. If X is an n × n sub-board for
sufficiently large n, then |G| = 4n2 + O(n) because four edges start from every square (a
vertical, a horizontal and two diagonal, except at the border). By Proposition 2.2 we get
(k−1)n2/2 ≥ 4n2+O(n); that is, k ≥ 9+O(1/n). One can even computeO(n) exactly:
O(n) = −48n+ 128.

Hales and Jewett gave a pairing for k = 9, see [4] or Figure 1. However, there are
neither different solutions nor claims of the uniqueness of the Hales-Jewett pairing in the
literature. Our main goal is to decide about these questions.

3 Conditions for good pairings of the 9-in-a-row
Consider an n × n square sub-board of the infinite board. Proposition 2.2 gives
(k− 1)n2/2 ≥ 4n2 +O(n) which implies k ≥ 9 +O(1/n). It suggests that one must use
the pairs “optimally” to block H9 that is a pair should block the maximum possible edges
ofH9. We make the notion of optimality more precise as follows.

Definition 3.1. A pairing is optimal if:

1. Every pair blocks exactly k − 1 edges.

2. There are no overblockings, i.e., every edge is blocked by exactly one pair.

3. There is no empty square, i.e., every square is contained in a pair.

Corollary 3.2. Let us consider an optimal good pairing for H9. This pairing is then a
domino pairing in which the dominoes are following each other by 8-periodicity in each
line and all squares are covered by a pair.

Proof. The first point of Definition 3.1 implies that the pairing is a domino pairing, while
the second gives the 8-periodicity since otherwise it would cause either overblocking or
resulting in an unblocked edge. The lack of empty squares is just the repetition of the third
condition.
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Definition 3.3. We call a square of a pairing anomaly where the 8-periodicity is violated,
a non-domino type pair or an empty square appears in the pairing.

Of course the Hales-Jewett pairing is anomaly-free.

Remark 3.4. Because of the O(n), there might be anomalies even in a good pairing of
H9.2 However, in Section 6 we will show that a good pairing of H9 is always anomaly-
free.

The first step towards this is the following lemma:

Lemma 3.5. For every good pairing of H9 there is an arbitrarily big, anomaly-free square
sub-board.

Proof. Let us take any n × n sub-board X and cut it up to smaller
√
n/100 ×

√
n/100

sub-boards. According to Proposition 2.2, there are at most 48n − 128 anomalies in X .
Hence, most of the 10000n sub-squares of X must be anomaly-free.

From now on we describe the structure of anomaly-free pairings of H9. Let us divide
a good pairing of H9 into 8× 8 sub-boards and designate one that we call Central square,
shortly C. We keep only the (domino) pairs touching C and examine where pairs should
be on the neighboring 8 × 8 sub-boards of C. In order to talk about these sub-boards we
call the 8 × 8 sub-boards Eastern (E), North-Eastern (NE) etc., while for the individual
squares of the sub-boards the usual algebraic chess notations (A1 to H8) are used, see
Figure 2.

Lemma 3.6. Suppose we have an anomaly-free good pairing of H9 and we have nine
8 × 8 squares, (C,E,NE, . . .) as above. The horizontal and vertical dominoes touching
the Central square C appear on the same places in all eight neighboring sub-boards of
C. The diagonal dominoes also must appear on the sub-boards NE,NW,SW,SE in the
same places. However, while the diagonal pattern of C may extend to the other four sub-
boards, namely the E,S,W,N , it cannot be guaranteed. That is: the whole plane is the
periodic copies either of the 8 × 8 sub-board C or the 16 × 16 square consisting of the
sub-boards C, S, SE,E.

Proof. It suffices to check the following five steps. We designate a general square in a 8×8
sub-board by Xi ∈ {A1, . . . ,H8} according to the chess notation. If a domino d covers
the same pair of squares e.g., in the C and E square, we say that d extends to E from C.

1. Because of the 8-periodicity of the domino pairs on horizontal (vertical) lines, the
pairs of C extend uniquely to the same places of W and E (N and S respectively).
The slope +1 diagonal dominoes extend similarly to SW and NE, while the slope
−1 diagonal dominoes to SE and NW .

2. To see the horizontal (vertical) extension of dominoes to N and S (W and E respec-
tively) we need a little case study. We have already seen that the vertical dominoes
of C extend to north and south. Suppose for example that there is a vertical domino
v at the Xi square of C. If the Xi square of W is covered by a slope +1 (or −1)

2A pairing with anomalies might be called “quasi-crystal” referring to the highly symmetric, crystal like
appearance of known anomaly-free examples such as the Hales-Jewett or the ones shown in [5].
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Figure 2: The extension of a pairing of C.

diagonal domino, then the 8-periodicity implies that the Xi square of N (or S) is
also covered by a diagonal domino. This is a contradiction because we know from
the previous point, that the Xi square of N is covered by a copy of the vertical
domino v. The same is true for the sub-board E. If the Xi square of W (or E) is
covered by a horizontal domino, then C should contain the copy of that horizontal
domino at Xi by 8-periodicity, which is also a contradiction. We get that the ver-
tical domino v in C extends to W and E, moreover, by 8-periodicity v extends to
SW,NW,NE, SE, too. So, we have seen that the vertical dominoes of C extend to
all its eight neighboring sub-boards. The same is true for the horizontal dominoes
of C.

3. Let us check the diagonal dominoes. At the first and second step all slope +1 di-
agonal dominoes of C extend to SW and NE. Since there are no empty squares
or overblockings, the remaining squares in SW and NE can be covered only by
−1 slope diagonal dominoes. The same is true for +1 slope diagonal dominoes in
SE and NW . That is so far, all dominoes of C extend to the SW,SE,NE,NW,
furthermore, the vertical and horizontal dominoes of C extend to S,E,N and W .

4. We can see that the diagonal dominoes of C do not necessarily extend to the sub-
boards S,E,N,W (colored by black in Figure 2). However, by 8-periodicity the
diagonal pairs of E extend to S,N and W , that is the black sub-boards S,E,N,W
have the exactly same structure of pairs.

Remark 3.7. The diagonal dominoes of C may extend to the sub-boards S,E,N,W, and
then all 8 × 8 sub-boards of the infinite board are the exact copy of C. However, it is
possible that there are two different diagonal structures on the whole board, one in the
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C,NW,NE, SE and SW types 8 × 8 sub-boards (colored by white in Figure 2) and a
different diagonal structure in the sub-boards S,E,N and W (black ones). We will see a
few examples in the next section.

Definition 3.8. A pairing of the infinite board (or of an anomaly-free sub-board) is k-toric
if it is an extension of a k × k torus, but not for a smaller value.

Now we can summarize the previous lemmas and remarks in one central theorem:

Theorem 3.9. Suppose we have an anomaly-free good pairing of H9. Then that pairing
is either 8-toric or 16-toric.

Proof. Lemma 3.6 and Remark 3.7 gives the proof of the Theorem.

Observation 3.10. There are 8-toric good pairings of H9 that are not isomorphic to the
Hales-Jewett pairing.

Figure 3: Some other pairings for 9-in-a-row.

Proof. The extensions of the 8× 8 pairings in Figure 3 to the infinite board result in three
different 8-toric pairings. Note that the pairings on the left have reflectional symmetry,
while the pairing on the right has rotational symmetry.

It is somehow surprising that there exist also some 16-toric pairings of H9. To under-
stand their structure we refine the argument of the proof of Lemma 3.9 in the next section.

4 Diagonal alternating cycles
The 8-toric and 16-toric good pairings ofH9 can be considered as special perfect matchings
of graphs based on H9. The vertex sets are the basic tori, and each vertex is connected to
the eight neighbors of the square it represents. A domino of a pairing is an edge, and the
whole pairing is not only a perfect matching but has the additional property that it contains
exactly one edge (domino) from each torus line.

It is well known that the union of two perfect matchings on the same vertex set consist
of parallel edges and alternating cycles. So if we take the (graph theoretic) union of two
good pairings (e.g. of C and W ) which have the same horizontal and vertical edges, then
the non-trivial alternating cycles contain only diagonal edges. Identifying the vertices in
the case of non-isomorphicGC andGW the system of diagonal alternating cycles gives the
possible ways to get the 16-toric good pairings.

We arrive to the following simple corollary.
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Corollary 4.1. If there exists a 16-toric good pairing for H9, then we can derive two 8-
toric good pairings from it (in case of non-isomorphic GC and GW ) differing only in some
diagonal cycles.

Figure 4: Diagonal alternating cycles give 16-toric pairing (left) and some −1 slope diag-
onal torus lines (right).

Theorem 4.2. An 8-toric solution C gives a 16-toric solution if and only if another 8-
toric solution W exists, differing in some diagonal dominoes, such that their union gives
a system of diagonal alternating cycles. There are only two possible systems of diagonal
alternating cycles which are shown in Figure 5; the left and middle ones.

Figure 5: The diagonal alternating cycles.

Proof. Since there is exactly one domino in each torus line of an arbitrarily chosen 8 × 8
square sub-board of a 8-toric solution, then the alternating cycles coming from the diagonal
dominoes of the union ofC andW must meet the torus lines either in zero or two dominoes.
(If they meet only in one, then there will be an unblocked torus line in C or W . Meeting
more than two times would mean overblocking.)

An easy case study gives that only the systems of diagonal alternating cycles of Figure 5
may come into consideration. However, the third one would make a horizontal line (namely
the 1-9) impossible to be blocked by a domino.

Remark 4.3. There are only two different systems of alternating cycles, but it is possible
that there is more than one such system in one 16-toric pairing. In that case we can deduce
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more than two (four or eight) 8-toric pairings from that 16-toric one. An example is shown
in the right of Figure 6.

Observation 4.4. There exist good pairings for H9 containing the first or the second type
of (the systems of) diagonal alternating cycles.

Proof. In Figure 6, one can see examples of the statement. Taking bold (thin) pairs of the
alternating cycle for C (W ) we get a 16-toric pairing. Naturally this 16-toric pairing is not
8-toric.

Figure 6: Examples of the alternating circles.

5 Pairings of the 8 torus
We have seen that pairings on the anomaly-free sub-boards are either 8-toric or 16-toric.
Since the 16-toric solutions can be reduced to 8-toric ones or conversely, they can be con-
structed from 8-toric solutions we examine only the later ones in detail.

Definition 5.1. The 8 × 8 Maker-Breaker torus game is played on the 64 squares of the
discrete torus, where there are 32 winning sets; the eight rows and columns and the diagonal
torus lines of slope ±1 (see the right side of Figure 4). We will call T8 the hypergraph of
that game.

Observation 5.2. An arbitrary good 8-toric pairing forH9 provides a good pairing for T8.

Remark 5.3. The reverse is not true, since T8 has good pairings which are not domino
types. However, considering only domino pairings we can always extend a good pairing of
T8 into a good 8-toric pairing ofH9.

To find all good domino pairings for the 8×8 torus is a finite task, which is not hard us-
ing a computer. However, one has to check the torus symmetries to list the non-isomorphic
pairings, which gives the difficulty of the problem. The number of non-isomorphic domino
type good pairings is 194 543, which turns out to be a prime. The pairings themselves can
be downloaded at the page [9].

6 There is no quasi crystal pairing for the infinite board
We have an open problem left: are there any pairings forH9 with anomalies? Note that on
a n× n sub-board there can be O(n) anomalies which might result in infinitely many (and
possibly untraceable) solutions. Fortunately, this is not the case as we will see.
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Lemma 6.1. A given anomaly-free pairing of a large enough square sub-board can be
extended uniquely to the whole plane.

Proof. We have seen that all anomaly-free pairings of a square sub-board is an extension
of a domino pairing of either a 8 × 8 or a 16 × 16 torus. Continuing the extension to the
whole plane gives a good pairing.

Lemma 6.2. Let us assume that a pairing of the whole plane is an extension of an anomaly-
free half-plane R. Then the whole pairing is anomaly-free.

Proof. To prove by contradiction, assume that we have an extensionAL containing anoma-
lies. Let AF be the anomaly-free extension of the half-plane pairing that exists by Lem-
ma 6.1. Obviously AL is not equal to AF .

Figure 7: There are no quasicrystals.

Let us take a square with an anomaly which is one of the closest to R, and denote it
by q. As it is pictured in Figure 7 we may assume that the border line of the half-plane
R is vertical and the pairing AL is anomaly-free left to the square q. Let AF (q) be the
domino covering the square q in AF . If AF (q) is placed horizontally and q is the right
half of it, then AL does not contain the domino AF (q) at the square q which leaves a 9-in-
a-row edge unblocked by AL. A similar argument to diagonally placed dominoes shows
that AF (q) can be nothing but a vertical domino. Let us take the six squares above and
below AF (q). Because of 8-periodicity, there are no other squares containing a vertical
pair in AF covering these 12 squares, but there must be a half of a vertical pair on those
places (e.g. in s) in AL, because of the blocking condition. The domino AF (s) is either
horizontal or diagonal, and since AF (s) is not in AL, it results in an unblocked horizontal
or diagonal edge in AL.

To answer the main question at the beginning of this section, we will need the ideas of
the previous lemma.

Theorem 6.3. An anomaly-free pairing of a big enough square sub-board extends uniquely
and anomaly-free to the whole board.
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Figure 8: The extension of an anomaly-free pairing.

Proof. Fix a good pairing for H9 and take an m × m sub-board B that is anomaly-free;
this exists by Lemma 3.5. The pairing on B extends anomaly-free to a large part of the
right side of B, like in Lemma 6.2. The extension surely contains the right-angled triangle
whose hypotenuse length is m − 16, and touches the right side of B, see Figure 8. The
argument of Lemma 6.2 does not work next to the top and the bottom of B, since there are
no diagonal dominoes there in B which were used before.

Doing the same trick to extend the pairing on the other sides ofB, that results in a bigger
(the size is about (

√
2m − 16) × (

√
2m − 16)) rotated square. Repeating this procedure,

we can see that the anomaly-free pairing of B is forced to extend to the whole plane.

7 A pairing strategy in 3D
Kruczek and Sundberg [8] conjectured upper bounds matching with the lower bound of
Proposition 2.2 for k-in-a-row type games in d dimension.

Conjecture 7.1 ([8]). In the Maker-Breaker game on Zd where there is a finite set S ⊂ Zd

of winning line direction-vectors, Breaker has a pairing strategy that allows him to win if
the length of each winning line is at least 2|S| + 1, i.e., Breaker has a winning pairing-
strategy for the game k-in-a-row if k ≥ 2|S|+ 1.

The special case of the plane gives back that Breaker has winning pairing strategy in
the k-in-a-row if and only if k ≥ 9. The higher dimensional versions are mainly open.
One possible form of the M-B game in 3-dimension is when the winning directions are
given by 13 vectors: {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 1,−1),
(1, 0,−1), (1,−1, 0), (1, 1, 1), (1, 1,−1), (1,−1, 1), (−1, 1, 1)}. Here Proposition 2.2
implies that k should be at least 27 to have a good pairing. According to Conjecture 7.1,
we may expect good pairings for k = 27.

We have examined a related problem in 3-dimension. If the directions of winning
lines are given by three vectors: {(0, 0, 1), (0, 1, 0), (1, 0, 0)}, then one expects pairing
strategies if k ≥ 7. (In other words, this is a Harary-type game [4] in 3-dimension, where
the winning polyomino is the P7, i.e. the seven connected consecutive cubes in a row.)

In fact, a computer search confirms this expectation, see Figure 9. This is a domino
pairing of 3-dimensional torus type, we give the pairing on the 6 × 6 × 6 torus in layers.
The horizontal and vertical pairs of the same layer are obvious, while the pairs between the
layers are denoted by points and circles.
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Figure 9: A good pairing of the 3D 7-in-a-row.

8 Conclusion
We have shown some new pairings for H9. We have proved that a good pairing for H9 is
either 8-toric or 16-toric. There are 194 543 pairings which are 8-toric, and it is possible to
construct 16-toric good pairings of H9 from some of those. There are no good pairings on
the infinite board containing anomalies.
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L. Győrffy et al.: The pairing strategies of the 9-in-a-row game 109

[9] G. Makay, 9-in-a-row game, http://www.math.u-szeged.hu/˜makay/amoba/, ac-
cessed on 6 December 2016.

[10] P. Mukkamala and D. Pálvölgyi, Asymptotically optimal pairing strategy for tic-tac-
toe with numerous directions, Electron. J. Combin. 17 (2010), #N33, http://www.
combinatorics.org/ojs/index.php/eljc/article/view/v17i1n33.

[11] T. G. L. Zetters, Problems and solutions: Solutions of problems dedicated to Emory P. Starke:
S10, Amer. Math. Monthly 87 (1980), 575–576, doi:10.2307/2321433.

http://www.math.u-szeged.hu/~makay/amoba/
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v17i1n33
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v17i1n33

	Introduction
	Pairing strategies
	Conditions for good pairings of the 9-in-a-row
	Diagonal alternating cycles
	Pairings of the 8 torus
	There is no quasi crystal pairing for the infinite board
	A pairing strategy in 3D
	Conclusion

