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Abstract

We investigate the possible values of the numbers of congruences of finite lattices of an arbitrary but fixed
cardinality. We first construct finite lattices with small numbers of congruences; then, motivated by a result
of Freese and continuing Czédli‘s recent work, we prove that the third, fourth and fifth largest numbers of
congruences of an n–element lattice are: 5 · 2n−5 if n ≥ 5, respectively 2n−3 and 7 · 2n−6 if n ≥ 6. We also
determine the structures of the n–element lattices having 5 · 2n−5, 2n−3, respectively 7 · 2n−6 congruences,
which show the structures of their congruence lattices, as well.

Keywords: (finite) lattice, (principal) congruence, (prime) interval, atom, (ordinal, horizontal) sum.
MSC 2010: primary: 06B10; secondary: 06B05.

1 Introduction

In this paper, we study the smallest, as well as the largest numbers of congruences of lattices of an arbitrary
finite cardinality. The problem of the existence of lattices with certain values for the cardinalities of their sets
of congruences, filters and ideals was raised in Mureşan [25],[26] and further studied in Czédli and Mureşan [11].
The idea behind our current article is that, in the finite case (in which the number of filters and that of ideals
equal the number of elements), the above–mentioned problem can be tackled by identifying the smallest and the
largest possible numbers of congruences and then filling the gap between these, for an arbitrary appropriately
large number of elements.

Our main result is Theorem 5.6, on the third, fourth and fifth largest possible numbers of congruences of
a finite lattice, which thus continues the work of Freese [12] and Czédli [8] on the largest and second largest
number of congruences of finite lattices of an arbitrary but fixed cardinality. Our investigation is also motivated
by Czédli‘s independent work on semilattices [9] and further relates to the representation problem for lattices
in the form of congruence lattices of lattices. The investigation of this representation problem goes back to
R. P. Dilworth and was mile–stoned by Grätzer and Schmidt [23], Wehrung [30], Růžička [28], Grätzer and
Knapp [20], and Ploščica [27], and surveyed in Grätzer [15] and Schmidt [29]. A lot of results have been
proved on the representation problem of two or more lattices and certain maps among them by (complete)
congruences; for example, see Grätzer and Schmidt [24], Grätzer and Lakser [21], Czédli [1],[6]. Even the posets
and monotone maps among them have been characterized by principal congruences of lattices; for example,
see Grätzer [16],[17],[18],[19], Grätzer and Lakser [22], and Czédli [3],[2],[4],[5],[7]. Finally, the above-mentioned
trends, focusing on the sizes of congruence lattices, on the structures formed by congruences, and on maps among
these structures, have recently met in Czédli and Mureşan [11], enriching the first two trends and even related
to the third one.

∗Corresponding author
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2 Definitions, Notations and Immediate Properties

We shall denote by N the set of the natural numbers and by N∗ = N\{0}. ∐ will be the disjoint union of sets. For
any set M , |M | shall be the cardinality of M , Part(M) and Eq(M) will be the bounded lattices of the partitions
and the equivalences on M , respectively, ∆M = {(x, x) | x ∈ M}, ∇M = M2 and eq : Part(M) → Eq(M) shall
be the canonical lattice isomorphism; if π = {M1, . . . ,Mn} for some n ∈ N∗, then eq(π) will simply be denoted
by eq(M1, . . . ,Mn).

All lattices shall be non–empty and, unless mentioned otherwise, they shall be designated by their underlying
sets; their operations and order relation will be denoted in the usual way, and ≺ will denote their succession
relation. The trivial lattice shall be the one–element lattice. ∼= shall denote the existence of a lattice isomorphism.

For any lattice L, Con(L), Filt(L) and Id(L) shall be the lattices of the congruences, filters and ideals of L,
respectively. Clearly, if L′ is the dual of L, then Con(L) ∼= Con(L′). If L is a bounded lattice, then we shall
denote by Con0(L) = {θ ∈ Con(L) | 0/θ = {0}} and by Con01(L) = {θ ∈ Con(L) | 0/θ = {0}, 1/θ = {1}};
note that Con0(L) and Con01(L) are sublattices of Con(L) and bounded lattices, with smallest element ∆L and
greatest element

∨
Con0(L) = eq(

∨
θ∈Con0(L) L/θ) and

∨
Con01(L) = eq(

∨
θ∈Con01(L) L/θ), respectively, where

the second join is in the lattice Part(L) [13]. Now let a, b ∈ L, arbitrary. Following [8], we denote by con(a, b) the
principal congruence of L generated by (a, b). For any θ ∈ Con(L), we know from [14] that every class of θ is a
convex sublattice of L, thus an interval if L is finite, and, clearly, if S is a sublattice of L, then θ∩S2 ∈ Con(S).
If L has a 0, then At(L) shall be the set of the atoms of L. [a)L and (a]L shall be the principal filter, respectively
ideal of L generated by a, and [a, b]L = [a)L ∩ (b]L shall be the interval of L bounded by a and b; recall that
[a, b]L is called a prime interval iff a ≺ b, and it is called a narrows iff it is a prime interval such that a is
meet–irreducible and b is join–irreducible [8],[14]. In the particular case when a, b ∈ N and ≤ is the natural order
on N, [a, b](N,≤) shall simply be denoted by [a, b].

∔ shall be the ordinal sum and ⊞ shall be the horizontal sum. Recall that, for any lattice (L,≤L, 1L)
with largest element and any lattice (M,≤M , 0M ) with smallest element, the ordinal sum of L with M is
defined by identifying c = 1L = 0M ∈ L ∩ M and letting L ∔ M = ((L \ {c}) ∐ {c} ∐ (M \ {c}),≤L ∪ ≤M

∪{(x, y) | x ∈ L, y ∈ M}); for every α ∈ Con(L) and every β ∈ Con(M), we shall denote by α ∔ β =
eq((L/α\{c/α})∪{c/α∪c/β}∪ (M/β \{c/β})); note that Con(L∔M) = {α∔β | α ∈ Con(L), β ∈ Con(M)} ∼=
Con(L)× Con(M) [26]. Also, for any bounded lattices (L,≤L, 0L, 1L) and (M,≤M , 0M , 1M ) with |L|, |M | > 2,
the horizontal sum of L with M is defined by identifying 0 = 0L = 0M , 1 = 1L = 1M ∈ L ∩ M and letting
L⊞M = ((L \ {0, 1})∐ {0, 1} ∐ (M \ {0, 1}),≤L ∪ ≤M , 0, 1); for every α ∈ Con(L) and every β ∈ Con(M), we
shall denote by α ⊞ β = eq((L/α \ {0/α, 1/α}) ∪ {0/α ∪ 0/β, 1/α ∪ 1/β} ∪ (M/β \ {0/β, 1/β})) ∈ Eq(L ⊞M).
Clearly, the ordinal sum of bounded lattices is associative, while the horizontal sum is both associative and
commutative. For any n ∈ N∗, we shall denote by Ln the n–element chain and by Mn = ⊞n

i=1L3, so that
M1 = L3, M2 = L2

2 and M3 is the five–element modular non–distributive lattice (the diamond); we shall also
denote by N5 = L3 ⊞ L4 the five–element non–modular lattice (the pentagon).

3 The Congruence Lattices of Some Constructions of Lattices

Following [11], we call a triple (κ, λ, µ) of nonzero cardinalities CFI–representable iff there exists a lattice L
such that κ = |Con(L)|, λ = |Filt(L)| and µ = |Id(L)|, case in which we say that L CFI–represents the triple
(κ, λ, µ). Of course, if L is finite, then all its filters and all its ideals are principal, thus L CFI–represents
the triple (|Con(L)|, |L|, |L|), with |Con(L)| ∈ N∗. For instance, given any n ∈ N, the Boolean algebra Ln

2

CFI–represents (2n, 2n, 2n) and, if n ≥ 2, then the chain Ln = ∔
n−1
i=1 L2 CFI–represents (2n−1, n, n) since

Con(Ln) ∼= Con(L2)
n−1 ∼= Ln−1

2 . For every lattice K with greatest element and every lattice M with smallest
element, clearly, K ∔ M CFI–represents (|Con(K)| · |Con(M)|, |K| + |M | − 1, |K| + |M | − 1), hence, for any
n ∈ N∗, K ∔ Ln CFI–represents (2n−1 · |Con(K)|, |K|+ n− 1, |K|+ n− 1).

Most of the times, we shall use the remarks in this paper without referencing them.

Remark 3.1. The only triples which are CFI–represented by lattices of cardinality at most 4 are: (1, 1, 1),
(2, 2, 2), (4, 3, 3), (4, 4, 4) and (8, 4, 4).
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Remark 3.2. [26] If L and M are bounded lattices with |L|, |M | > 2, then, clearly, Con01(L⊞M) = {α⊞β | α ∈
Con01(L), β ∈ Con01(M)} ∼= Con01(L)× Con01(M) and, if we consider the following two conditions:

(0L1M) 0 is meet–irreducible in L and 1 is join–irreducible in M ,
(0M1L) 0 is meet–irreducible in M and 1 is join–irreducible in L,

then:

• Con(L⊞M) = Con01(L⊞M)∪{∇L⊞M} ∼= (Con01(L)×Con01(M))∔L2, if none of the conditions (0L1M)
and (0M1L) is fulfilled;

• Con(L ⊞M) = Con01(L ⊞M) ∪ {eq(L \ {0},M \ {1}),∇L⊞M} if (0L1M) holds and (0M1L) fails, and
Con(L ⊞ M) = Con01(L ⊞ M) ∪ {eq(L \ {1},M \ {0}),∇L⊞M} if (0M1L) holds and (0L1M) fails, so
that Con(L ⊞M) ∼= (Con01(L)× Con01(M)) ∔ L3 if exactly one of the conditions (0L1M) and (0M1L)
is fulfilled;

• Con(L⊞M) = Con01(L⊞M)∪{eq(L\{0},M\{1}), eq(L\{1},M\{0}),∇L⊞M} ∼= (Con01(L)×Con01(M))∔
L2
2 if both of the conditions (0L1M) and (0M1L) are fulfilled, that is if 0 is meet–irreducible and 1 is

join–irreducible in both L and M .
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By the previous remark, ifM is a bounded lattice in which 0 is meet–reducible andK = Lk⊞(M∔L2) for some
k ∈ N\{0, 1, 2}, as in the picture above, then Con(K) ∼= (Con0(M)×Con(Lk−2))∔L3

∼= (Con0(M)×Lk−3
2 )∔L3.

Let t ∈ N∗, L1, L2, . . . , Lt be bounded lattices and L = ⊞t
i=1(L2 ∔ Li ∔ L2), as in the previous diagram.

Clearly, for every i ∈ [1, t], Con01(L2 ∔Li ∔L2) ∼= Con(Li) and L2 ∔Li ∔L2 has the 0 strictly meet–irreducible
and the 1 strictly join–irreducible, while (L2 ∔ Li ∔ L2) ⊞ (L2 ∔ Lj ∔ L2) has the 0 meet–reducible and the 1
join–reducible for every j ∈ [1, t] \ {i}, thus, by the previous remark:

• if t = 2, then Con(L) ∼= (Con(L1)× Con(L2))∔ L2
2;

• if t ≥ 3, then Con(L) ∼= (

t∏

i=1

Con(Lt))∔ L2.

For example, N5 = (L2 ∔L1 ∔L2)⊞ (L2 ∔L2 ∔L2) has Con(N5) = {∆N5
, α, β, γ,∇N5

} ∼= (L1 ×L2)∔L2
2
∼=

L2 ∔ L2
2, where α = eq({0, b, c}, {a, 1}), β = eq({0, a}, {b, c, 1}) and γ = (∆L2

∔∇L1
∔∆L2

) ⊞ (∆L2
∔∇L2

∔

∆L2
) = eq({0}, {a}, {b, c}, {1}), with the elements and congruences of N5 denoted as in the figure above, while

M3 = ⊞3
i=1(L2∔L1∔L2) has Con(M3) ∼= (L1×L1)∔L2

∼= L2. Similarly, L3⊞L5 = (L2∔L1∔L2)⊞(L2∔L3∔L2)
and L4 ⊞ L4 = (L2 ∔ L2 ∔ L2)⊞ (L2 ∔ L2 ∔ L2), so that Con(L3 ⊞ L5) ∼= Con(L4 ⊞ L4) ∼= L2

2 ∔ L2
2.

Also, in particular, if N is a bounded lattice, J = L3 ⊞ (L2 ∔N ∔L2)⊞L3 and H = (L2 ∔N ∔L2)⊞L3, as
depicted in the picture above, then, since L3

∼= L2 ∔ L1 ∔ L2, we have Con(J) ∼= (L1 × Con(N) × L1) ∔ L2
∼=

Con(N)∔ L2 and Con(H) ∼= (Con(N)× L1)∔ L2
2
∼= Con(N)∔ L2

2, hence:

• J CFI–represents (|Con(N)|+ 1, |N |+ 4, |N |+ 4);

• H CFI–represents (|Con(N)|+ 3, |N |+ 3, |N |+ 3).

Thus, for all k, n ∈ N∗, remembering the notation Mn = ⊞n
i=1L3 and noting that L4

∼= L2 ∔ L2 ∔ L2:

• if n ≥ 5, then (2, n, n) is CFI–represented by Mn−2;

• if n ≥ 6, then (3, n, n) and (4, n, n) are CFI–represented by L4 ⊞Mn−4 and Mn−3 ∔ L2, respectively;

• if n ≥ 7, then (5, n, n) and (6, n, n) are represented by L4⊞L4⊞Mn−6 and (L4⊞Mn−4)∔L2, respectively;

• if (k, n, n) is CFI–representable, then (k + 1, n+ 4, n+ 4) and (k + 3, n+ 3, n+ 3) are CFI–representable.
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4 Finite Lattices Whose Numbers of Congruences Are Small or Po-

wers of Two

Proposition 4.1. Let n ∈ N such that n ≥ 7. Then:

(i) for any j ∈ [1, n− 1], (2j , n, n) is CFI–representable;

(ii) if n 6= 8, then, for any k ∈ [2, n+ 1], (k, n, n) is CFI–representable.

Proof. (i) For all n ≥ 8 ≥ 5, (2, n, n) is CFI–representable and, if j ∈ N∗ is such that a lattice L CFI–represents
(2j , n − 1, n − 1), then L ∔ L2 CFI–represents (2j+1, n, n). For n = 7, 2n−1 = 26 = 64, and: (2, 7, 7), (4, 7, 7),
(8, 7, 7), (16, 7, 7), (32, 7, 7) and (64, 7, 7) are CFI–represented by M5, M4 ∔L2, M3 ∔L3, L2

2 ∔L2
2, L

2
2 ∔L4 and

L7, respectively. Now an easy induction argument proves (i).
(ii) For any n ∈ N with n ≥ 7, (2, n, n), (3, n, n) and (4, n, n) are CFI–representable, and, if (k, n, n) is CFI–
representable for some k ∈ N∗, then (k+3, n+3, n+3) is CFI–representable, thus, if (k, n, n) is CFI–representable
for any k ∈ [2, n], then (k, n + 3, n + 3) is CFI–representable for any k ∈ [2, n + 3]. Thus it suffices to prove
that, for any n ∈ {7, 9, 11} and any k ∈ [2, n+ 1], (k, n, n) is CFI–representable; then (ii) follows by induction.
Furthermore, for any n ∈ N with n ≥ 7, (5, n, n) and (6, n, n) are CFI–representable, hence it remains to prove
that, for any n ∈ {7, 9, 11} and any k ∈ [7, n+ 1], (k, n, n) is CFI–representable.

Since L2
2 CFI–represents (4, 4, 4), it follows that L3⊞(L2∔L2

2∔L2) CFI–represents (4+3, 4+3, 4+3) = (7, 7, 7).
(8, 7, 7) is CFI–represented by M3 ∔ L3.

Since M3∔L2 CFI–represents (4, 6, 6), it follows that L3⊞ (L2∔M3∔L2∔L2) = L3⊞ (L2∔M3∔L3) CFI–
represents (4 + 3, 6 + 3, 6 + 3) = (7, 9, 9). Since ⊞4

i=1L3 CFI–represents (2, 6, 6) and L2
2 CFI–represents (4, 4, 4),

it follows that (⊞4
i=1L3)∔L2

2 CFI–represents (2 · 4, 6+ 4− 1, 6+4− 1) = (8, 9, 9). Since L2
2 ∔L2 CFI–represents

(8, 5, 5), it follows that L3⊞(L2∔L2
2∔L2∔L2) = L3⊞(L2∔L2

2∔L3) CFI–represents (8+1, 5+4, 5+4) = (9, 9, 9).
(7, 6, 6) is CFI–represented by L4 ⊞ L4 (as well as L3 ⊞ L5), hence, for instance, L3 ⊞ (L2 ∔ (L4 ⊞ L4) ∔ L2)
CFI–represents (7 + 3, 6 + 3, 6 + 3) = (10, 9, 9).

Since (6, 7, 7), (7, 7, 7) and (8, 7, 7) are CFI–representable by the above and (i), it follows that (6+1, 7+4, 7+
4) = (7, 11, 11), (7+1, 7+4, 7+4) = (8, 11, 11) and (8+1, 7+4, 7+4) = (9, 11, 11) are CFI–representable. Since
M5 CFI–represents (2, 7, 7) and N5 CFI–represents (5, 5, 5), it follows that M5∔N5 CFI–represents (2 ·5, 7+5−
1, 7+5−1) = (10, 11, 11). Since N5 CFI–represents (5, 5, 5), it follows that L3⊞(L2∔(L3⊞(L2∔N5∔L2))∔L2)
CFI–represents (5+3+3, 5+3+3, 5+3+3) = (11, 11, 11). L4⊞M2 = L4⊞L2

2, M3 and L2 CFI–represent (3, 6, 6),
(2, 5, 5) and (2, 2, 2), respectively, hence (L4⊞L2

2)∔M3∔L2 CFI–represents (3 ·2 ·2, 6+5−3+1, 6+5−3+1) =
(12, 11, 11).

Note 4.2. Many results can be derived from Proposition 4.1. For instance, using ordinal sums, we get that, for
any n,m, l ∈ N∗ such that (l,m,m) is CFI–representable and n ≥ 7: for any j ∈ [1, n−1], (2j ·l, n+m−1, n+m−1)
is CFI–representable, and, if n 6= 8, then, for any k ∈ [2, n+1], (k · l, n+m− 1, n+m− 1) is CFI–representable.
Thus, for instance, if n ∈ N is such that n ≥ 7 and n 6= 8, then, for any k ∈ [2, n + 1], (k2, 2n − 1, 2n− 1) is
CFI–representable and, more generally, (ks, sn− s+ 1, sn− s+ 1) is CFI–representable for any s ∈ N∗.

These results suggest that, in order to fill in the gap between the numbers of congruences listed above and the
largest possible numbers of congruences of finite lattices, from the next section, it might be useful to represent
the numbers of congruences in base 2; this is why, in our main theorem from the next section, we express the
numbers of congruences in base 2, apart from the fact that it helps clarify the ordering of those numbers.

5 On the Largest Numbers of Congruences of Finite Lattices

Let n ∈ N∗ and L be a lattice with |L| = n. Since L is finite, its meet–irreducibles are strictly meet–irreducible,
its join–irreducibles are strictly join–irreducible, and, for any u, v ∈ L with u < v, [u, v]L contains at least one
successor of u and one predecessor of v. So, for any a, b ∈ L, [a, b]L is a narrows iff a ≺ b, b is the unique
successor of a and a is the unique predecessor of b in L.
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By [9], the first and second largest possible number of congruences of L, along with the structures of the
n–element lattices L with these numbers of congruences, are represented in the figure below; we will show that
the third, fourth and fifth largest possible number of congruences of L, along with the structures of the n–element
lattices L with these numbers of congruences, are as in the figure below:

|Con(L)| = 2n−1 |Con(L)| = 5 · 2n−5 |Con(L)| = 2n−3 |Con(L)| = 7 · 2n−6
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|Con(L)| = 2n−2 |Con(L)| = 7 · 2n−6

|Con(L)| = 2n−3

Lemma 5.1. [8] If L is non–trivial, then:

(i) ∅ 6= At(Con(L)) ⊆ {con(a, b) | a, b ∈ L, a ≺ b};

(ii) for any θ ∈ At(Con(L)), |Con(L/θ)| ≥ |Con(L)|/2;

(iii) for any a, b ∈ L such that a ≺ b: [a, b]L is a narrows iff L/con(a, b) = {{a, b}} ∪ {{x} | x ∈ L \ {a, b}} iff
|L/con(a, b)| = |L| − 1;

(iv) for any a, b ∈ L such that a ≺ b and |L/con(a, b)| = |L| − 2, we have one of the following situations:

• a is meet–reducible, case in which a ≺ c for some c ∈ L \ {b} such that b ≺ b ∨ c, c ≺ b ∨ c,
[a, b ∨ c]L = {a, b, c, b ∨ c} ∼= L2

2 and L/con(a, b) = {{a, b}, {c, b∨ c}} ∪ {{x} | x ∈ L \ {a, b, c, b ∨ c}};

• b is join–reducible, case in which, dually, c ≺ b for some c ∈ L \ {a} such that a ∧ c ≺ a, a ∧ c ≺ c,
[a ∧ c, b]L = {a ∧ c, a, c, b} ∼= L2

2 and L/con(a, b) = {{b ∧ c, c}, {a, b}} ∪ {{x} | x ∈ L \ {b ∧ c, c, a, b}}.

Remark 5.2. Let a, b ∈ L with a 6= b. Also, let θ ∈ Con(L). If a ≺ b and a/θ 6= b/θ, then, clearly, a/θ ≺ b/θ. If
a/θ ≺ b/θ, then there exists no u ∈ [a, b]L \ (a/θ ∪ b/θ), because otherwise we would have a/θ < u/θ < b/θ. Let
us also note that a/θ ≤ b/θ iff a ∨ b ∈ b/θ iff a ∧ b ∈ a/θ iff a ≤ x for some x ∈ b/θ iff w ≤ b for some w ∈ a/θ.

By Lemma 5.1, (iii), if [a, b]L is a narrows, then con(a, b) collapses a single pair of elements, thus, clearly,
con(a, b) ∈ At(Con(L)). Since a/con(a, b) = b/con(a, b), we have |L/con(a, b)| ≤ |L| − 1, hence the second
equivalence in Lemma 5.1, (iii), is clear.

By Lemma 5.1, (iii), if |L/con(a, b)| < |L| − 1, as in Lemma 5.1, (iv), then [a, b]L is not a narrows, hence a
is meet–reducible, so that a has a successor different from b, or b is join–reducible, so that b has a predecessor
different from a. With the notations in Lemma 5.1, (iv), if |L| − |L/con(a, b)| = 2 and, for instance, a is
meet–reducible, then, simply, the fact that (a, b), (c, b ∨ c) = (a ∨ c, b ∨ c) ∈ con(a, b) implies that L/con(a, b) =
{{a, b}, {c, b ∨ c}} ∪ {{x} | x ∈ L \ {a, b, c, b ∨ c}}, with a/con(a, b) 6= x/con(a, b) 6= c/con(a, b) for all x ∈
L \ {a, b, c, b ∨ c} and a/con(a, b) 6= c/con(a, b), which, along with the fact that a ≺ c, as above, proves that
a/con(a, b) ≺ c/con(a, b) = (b ∨ c)/con(a, b).

Lemma 5.3. For any a, b ∈ L such that a ≺ b and |L| − |L/con(a, b)| = 3, we have one of the following
situations:

• a is meet–reducible, so that a ≺ c for some c ∈ L \ {b}, case in which one of the following is fulfilled:
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(i) b ≺ b ∨ c, c ≺ b ∨ c, [a, b ∨ c]L = {a, b, c, b ∨ c} ∼= L2
2 and L/con(a, b) = {{a, b, c, b ∨ c}} ∪ {{x} | x ∈

L \ {a, b, c, b ∨ c}};

(ii) b ≺ b∨ c, c ≺ b∨ c and, for some d ∈ L \ {a, b, c, b∨ c}, d ≺ a, [d, b∨ c]L = {d, a, b, c, b∨ c} ∼= L2 ∔L2
2

and L/con(a, b) = {{d, a, b}, {c, b∨ c}} ∪ {{x} | x ∈ L \ {a, b, c, b ∨ c, d}};

(iii) c ≺ b ∨ c and, for some d ∈ L \ {a, b, c, b ∨ c}, b ≺ d ≺ b ∨ c, [a, b ∨ c]L = {a, b, c, d, b ∨ c} ∼= N5 and
L/con(a, b) = {{a, b, d}, {c, b∨ c}} ∪ {{x} | x ∈ L \ {a, b, c, b ∨ c, d}};

(iv) b ≺ b∨ c, c ≺ b∨ c and, for some d ∈ L \ {a, b, c, b∨ c}, b∨ c ≺ d, [a, d]L = {a, b, c, b∨ c, d} ∼= L2
2 ∔L2

and L/con(a, b) = {{a, b}, {c, b∨ c, d}} ∪ {{x} | x ∈ L \ {a, b, c, b ∨ c, d}};

(v) b ≺ b∨c and, for some d ∈ L\{a, b, c, b∨c}, c ≺ d ≺ b∨c, L/con(a, b) = {{a, b}, {c, d, b∨c}}∪{{x} | x ∈
L \ {a, b, c, b ∨ c, d}} and [a, b ∨ c]L = {a, b, c, d, b ∨ c} ∼= N5;

(vi) b ≺ b ∨ c, c ≺ b ∨ c, [a, b ∨ c]L = {a, b, c, b ∨ c} ∼= L2
2 and, for some d, e ∈ L \ {a, b, c, b ∨ c} such that

d ≺ e, L/con(a, b) = {{a, b}, {c, b∨ c}, {d, e}} ∪ {{x} | x ∈ L \ {a, b, c, b ∨ c, d, e}};

• b is join–reducible, so that the dual of the previous situation is fulfilled, as in Lemma 5.1, (iv).

Proof. Let θ = con(a, b). We have a ≺ b and |L/θ| = |L| − 3 = n− 3, hence [a, b]L is not a narrows, according to
Lemma 5.1, (iii), thus a is meet–reducible or b is join–reducible. We analyse the case when a is meet–reducible,
so that a ≺ c for some c ∈ L \ {b}; the case when b is join–reducible is dual to this one. We depict in the
following diagrams the different situations that can appear:
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If a/θ = b/θ = c/θ, so that (b∨c)/θ = a/θ, then, since a/θ is a convex sublattice of L and |L|− |L/θ| = 3, we
have a/θ = {a, b, c, b∨c} = [a, b∨c]L ∼= L2

2, so that b ≺ b∨c and c ≺ b∨c, and L/θ = {{a, b, c, b∨c}}∪{{x} | x ∈
L \ {a, b, c, b ∨ c}}; this is case (i) in the enunciation of the present lemma.

If a/θ 6= c/θ, then, since a ≺ c, by Remark 5.2 it follows that a/θ ≺ c/θ = (b∨c)/θ. Since |L|−|L/θ| = 3 > 2,
we get that there exists d ∈ L \ {a, b, c, b ∨ c} such that {d} ( d/θ. The fact that |L| − |L/θ| = 3 shows that
there are three possible situations:

• d ∈ a/θ, case in which a/θ = {a, b, d}, c/θ = {c, b ∨ c} and x/θ = {x} for all x ∈ L \ {a, b, c, b ∨ c, d};

• d ∈ c/θ, case in which a/θ = {a, b}, c/θ = {c, b ∨ c, d} and x/θ = {x} for all x ∈ L \ {a, b, c, b ∨ c, d};

• d /∈ a/θ ∪ c/θ, case in which a/θ = {a, b}, c/θ = {c, b ∨ c}, d/θ = {d, e} for some e ∈ L \ {a, b, c, b ∨ c, d}
and x/θ = {x} for all x ∈ L \ {a, b, c, b ∨ c, d, e}.

If d ∈ a/θ, then a/θ is a three–element lattice, thus a/θ = {a, b, d} ∼= L3, so that d < a < b or a < b < d since
a ≺ b. The convexity of a/θ ensures us that, if d < a < b, then a/θ = [d, b]L, so d ≺ a, hence {d, a, b, c, b ∨ c} ∼=
L2 ∔ L2

2; this is case (ii) in the enunciation. If a < b < d, then c � b < d ≤ d ∨ c ∈ (a ∨ c)/θ = c/θ = {c, b ∨ c},
thus b < d ≤ d∨ c = b∨ c 6= d, so that b < d < b∨ c. Therefore {a, b, c, d, b∨ c} ∼= N5, and, since d/θ ≺ (b∨ c)/θ
and any x ∈ L with d < x < b ∨ c would be such that x /∈ d/θ ∪ (b ∨ c)/θ, Remark 5.2 shows that d ≺ b ∨ c; this
is case (iii).

If d ∈ c/θ, then c/θ = {c, b∨c, d} ∼= L3, so that d < c < b∨c or c < d < b∨c or c < b∨c < d. If c < b∨c < d,
then {a, b, c, b∨c, d} ∼= L2

2∔L2 and {c, b∨c, d} = c/θ = [c, d]L, so that b∨c ≺ d; this is case (iv). If c < d < b∨c,
then {a, b, c, d, b ∨ c} ∼= N5 and {c, d, b ∨ c} = c/θ = [c, b ∨ c]L, so that c ≺ d ≺ b ∨ c; this is case (v). Finally, if
d < c < b ∨ c, then {a, b} = a/θ = (a ∧ c)/θ = (a ∧ d)/θ, hence b > a ≥ a ∧ d ∈ {a, b}, thus a ∧ d = a 6= d, so we
obtain a < d < c, which contradicts the fact that a ≺ c.

The remaining possibility is that d/θ = e/θ for some e ∈ L \ {a, b, c, b ∨ c, d}, so that c/θ = {c, b ∨ c} ∼= L2

and d/θ = {d, e} ∼= L2, thus c ≺ b ∨ c and either d ≺ e or e ≺ d; this is case (vi).
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Remark 5.4. Remark 3.1 and the fact that 21−1 = 1 = 22−2, 22−1 = 2 = 23−2 and 23−1 = 4 = 24−2 give us: if
|Con(L)| < 2n−1, then n ≥ 4; if |Con(L)| < 2n−2, then n ≥ 5.

Theorem 5.5. (i) [12],[8] |Con(L)| ≤ 2n−1 and: |Con(L)| = 2n−1 iff L ∼= Ln.

(ii) [8] if |Con(L)| < 2n−1, then |Con(L)| ≤ 2n−2 and: |Con(L)| = 2n−2 iff L ∼= Lk ∔ L2
2 ∔ Ln−k−2 for some

k ∈ [1, n− 3].

Following the line of the proof from [8] of Theorem 5.5, now we prove:

Theorem 5.6. If |Con(L)| < 2n−2, then n ≥ 5 and:

(i) |Con(L)| ≤ 5·2n−5 = 2n−3+2n−5, and: |Con(L)| = 5·2n−5 iff L ∼= Lk∔N5∔Ln−k−3 for some k ∈ [1, n−4];

(ii) if |Con(L)| < 5 · 2n−5, then |Con(L)| ≤ 2n−3, and: |Con(L)| = 2n−3 iff either n ≥ 6 and L ∼= Lk ∔ (L2 ×
L3)∔Ln−k−4 for some k ∈ [1, n−5], or n ≥ 7 and L ∼= Lk∔L2

2∔Lm∔L2
2∔Ln−k−m−4 for some k,m ∈ N∗

such that k +m ≤ n− 5;

(iii) if |Con(L)| < 2n−3, then |Con(L)| ≤ 7 · 2n−6 = 2n−4 + 2n−5 + 2n−6, and: |Con(L)| = 7 · 2n−6 iff n ≥ 6
and, for some k ∈ [1, n− 7], L ∼= Lk ∔ (L3 ⊞ L5)∔ Ln−k−6 or L ∼= Lk ∔ (L4 ⊞ L4)∔ Ln−k−6.

Proof. Assume that |Con(L)| < 2n−2 < 2n−1, so that n ≥ 5 by Remark 5.4. We shall prove the statements in
the enunciation by induction on n ∈ N, n ≥ 5. We shall identify the lattices up to isomorphism.

The five–element lattices are: M3, N5, L2 ∔L2
2, L

2
2 ∔L2 and L5, whose numbers of congruences are: 2, 5, 8,

8 and 24 = 16, respectively. The five–element lattices with strictly less than 25−2 = 8 congruences are M3 and
N5, out of which N5

∼= L1 ∔N5 ∔ L5−1−3, is of the form in (i) and has 5 = 5 · 25−5 congruences, while M3 has
2 < 4 = 25−3 congruences. From this fact and Remark 5.4, it follows that, if |Con(L)| = 2n−3, then n ≥ 6.

The six–element lattices are: M4, L4 ⊞ L2
2, M3 ∔ L2, L2 ∔M3, (L2

2 ∔ L2) ⊞ L3, (L2 ∔ L2
2) ⊞ L3, L3 ⊞ L5,

L4 ⊞ L4, L2 × L3, N5 ∔ L2, L2 ∔N5, L2
2 ∔ L3, L3 ∔ L2

2, L2 ∔ L2
2 ∔ L2 and L6, whose numbers of congruences

are: 2, 3, 4, 4, 6, 6, 7, 7, 8, 10, 10, 16, 16, 16 = 26−2 and 32 = 26−1, respectively. So, the third largest number
of congruences of a six–element lattice is 10 = 5 · 26−5, the fourth largest is 8 = 26−3 and the fifth largest is
7 = 7 · 26−6. As above, we notice that N5 ∔ L2 and L2 ∔N5 are of the form in (i), L2 × L3 is of the first form
in (ii) and L3 ⊞ L5 and L4 ⊞ L4 are of the forms in (iii).

It is easy to construct, as above, the 7–element lattices, and see that the ones with strictly less than 27−2 = 32
congruences are: the ones having 20 = 5 · 27−5 congruences, namely N5 ∔ L3, L3 ∔ N5 and L2 ∔ N5 ∔ L2, all
of the form in (i); the ones having 16 = 27−3 congruences, namely (L2 × L3) ∔ L2 and L2 ∔ (L2 × L3), which
are of the first form in (ii), as well as L2

2 ∔ L2
2, which is of the second form in (ii); the ones having 14 = 7 · 27−6

congruences, namely (L3 ⊞ L5) ∔ L2, L2 ∔ (L3 ⊞ L5), (L4 ⊞ L4) ∔ L2 and L2 ∔ (L4 ⊞ L4), all of the forms in
(iii); and the ones having strictly less than 14 congruences.

Now assume that n ≥ 8 and lattices of cardinality at most n−1 fulfill the statements in the enunciation. Note
that, in the rest of this proof, whenever |Con(L)| = 5 · 2n−5, L is of the form in (i), whenever |Con(L)| = 2n−3,
L is of one of the forms in (ii) and, whenever |Con(L)| = 7 · 2n−6, L is of one of the forms in (iii).

Let θ ∈ At(Con(L)). By Lemma 5.1, (i), at least one such θ exists, and θ = con(a, b) for some a, b ∈ L with
a ≺ b. Then a/θ = b/θ, so that |L/θ| ≤ n − 1, hence |Con(L/θ)| ≤ 2n−2 by Theorem 5.5, (i). By Lemma 5.1,
(i), |Con(L/θ)| ≥ |Con(L)|/2.
(i) By the hypothesis of the theorem, |Con(L)| < 2n−2. Assume by absurdum that |Con(L)| > 5 · 2n−5, so
that |Con(L/θ)| > 5 · 2n−6 > 4 · 2n−6 = 2n−4 = 2(n−3)−1, thus |L/θ| > n − 3 by Theorem 5.5, (i), hence
|L/θ| ∈ {n− 1, n− 2}.

Case (i).1: Assume that |L/θ| = n− 1, so that, according to Lemma 5.1, (ii), L/θ = {{a, b}} ∪ {{x} | x ∈
L \ {a, b}} and [a, b]L is a narrows, thus b is the unique successor of a and a is the unique predecessor of
b. Since |Con(L/θ)| > 5 · 2n−6 = 5 · 2(n−1)−5, Theorem 5.5 and the induction hypothesis ensure us that
|Con(L/θ)| ∈ {2n−2, 2n−3}.

Subcase (i).1.1: Assume that |Con(L/θ)| = 2n−2 = 2(n−1)−1, so that {{a, b}} ∪ {{x} | x ∈ L \ {a, b}} =
L/θ ∼= Ln−1 by Theorem 5.5, (i), and thus, for any x, y ∈ L \ {a, b}, either x/θ ≤ a/θ or a/θ = b/θ ≤ x/θ, and
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either x/θ ≤ y/θ or y/θ ≤ x/θ, so that, by the form of the classes of θ and Remark 5.2, either x ≤ a or b ≤ x,
and either x ≤ y or y ≤ x, therefore L ∼= Ln. But then |Con(L)| = 2n−1, which contradicts the hypothesis that
|Con(L)| < 2n−2 of the present theorem.

Subcase (i).1.2: Assume that |Con(L/θ)| = 2n−3 = 2(n−1)−2, so that, according to Theorem 5.5, (ii),
L/θ ∼= Lk ∔L2

2∔Ln−k−3
∼= Lk ∔ (L3⊞L3)∔Ln−k−3 for some k ∈ [1, n− 4]. If we denote the elements of L/θ as

in the leftmost diagram below, with x, y, z, u ∈ L, and we also consider the facts that |L| − |L/θ| = 1, a has the
unique successor b and b has the unique predecessor a, a/θ = b/θ = {a, b} and v/θ = {v} for all v ∈ L \ {a, b},
then we notice that L is in one of the following situations, represented in the three diagrams to the right of that
of L/θ:

• if a/θ = b/θ ≤ x/θ, then b ≤ x and L ∼= L2 ∔ L/θ ∼= Lk+1 ∔ L2
2 ∔ Ln−k−3, while, if a/θ = b/θ ≥ u/θ, then

a ≥ u and L ∼= L/θ∔L2
∼= Lk ∔L2

2 ∔Ln−k−2, but in these situations |Con(L)| = 2n−2, which contradicts
the hypothesis that |Con(L)| < 2n−2 of the theorem;

• if x/θ < a/θ = b/θ < u/θ, then x < a < b < u, hence {a, b} ∩ {y, z} 6= ∅, so that L ∼= Lk ∔ (L3 ⊞ L4) ∔
Ln−k−3

∼= Lk∔N5∔Ln−k−3, thus |Con(L)| = 2k−1 ·5 ·2n−k−4 = 5 ·2n−5, which contradicts the assumption
that |Con(L)| > 5 · 2n−5.
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Case (i).2: Now assume that |L/θ| = n− 2, which means that we are in the situation from Lemma 5.1, (iv),
and assume, for instance, that a is meet–reducible, so that a ≺ c for some c ∈ L \ {b}, and we have b ≺ b∨ c and
c ≺ b∨ c, so that a/θ = {a, b} ≺ {c, b∨ c} = c/θ by Remark 5.2, [a, b∨ c]L = {a, b, c, b∨ c} ∼= L2

2, and x/θ = {x}
for all x ∈ L \ {a, b, c, b ∨ c}; the dual case is analogous to this one. Since |Con(L/θ)| > 5 · 2n−6 > 4 · 2n−6 =
2n−4 = 2(n−2)−2, Theorem 5.5 ensures us that |Con(L/θ)| = 2(n−2)−1 = 2n−3 and {{a, b}, {c, b∨ c}}∪{{x} | x ∈
L \ {a, b, c, b ∨ c}} = L/θ ∼= Ln−2. So L/θ is a chain, thus, for all x, y ∈ L \ {a, b, c, b ∨ c}, we have either
x/θ ≤ a/θ ≺ c/θ or a/θ ≺ c/θ = (b ∨ c)/θ ≤ x/θ, and either x/θ ≤ y/θ or y/θ ≤ x/θ, so that, by the form
of the classes of θ and Remark 5.2, we have either x ≤ a or b ∨ c ≤ x, and either x ≤ y or y ≤ x, so that
L ∼= Lk ∔ L2

2 ∔ Ln−k−2 for some k ∈ [1, n− 3], with {a, b, c, b ∨ c} being the sublattice of L isomorphic to L2
2;

but then |Con(L)| = 2n−2, which contradicts the hypothesis that |Con(L)| < 2n−2 of the theorem.
Therefore, indeed, |Con(L)| ≤ 5 ·2n−5. Now assume that |Con(L)| = 5 ·2n−5, so that |Con(L/θ)| ≥ 5 ·2n−6 >

4 · 2n−6 = 2n−4, thus, as above, |L/θ| ∈ {n − 1, n− 2}. By Case (i).1, the equality |Con(L)| = 5 · 2n−5 shows
that, if |L/θ| = n− 1, then, for some k ∈ [1, n− 4], L/θ ∼= Lk ∔ L2

2 ∔ Ln−k−3 and L ∼= Lk ∔N5 ∔ Ln−k−3. By
Case (i).2, we can not have |L/θ| = n− 2.
(ii) Assume that |Con(L)| < 5 · 2n−5, and assume by absurdum that |Con(L)| > 2n−3, so that |Con(L/θ)| >
2n−4 = 2(n−3)−1, hence |L/θ| > n− 3 by Theorem 5.5, (i), thus |L/θ| ∈ {n− 1, n− 2}. By Cases (i).1 and (i).2
above, in both of these situations we obtain that |Con(L)| ≥ 5 · 2n−5, contradicting the current assumption.
Therefore |Con(L)| ≤ 2n−3.

Now assume that |Con(L)| = 2n−3, so that |Con(L/θ)| ≥ 2n−4 = 2(n−3)−1, hence |L/θ| ≥ n− 3 by Theorem
5.5, (i), thus |L/θ| ∈ {n− 1, n− 2, n− 3}.

Case (ii).1: Assume that |L/θ| = n− 1. Then, since |Con(L/θ)| ≥ 2n−4 = 2(n−1)−3, Theorem 5.5 and the
induction hypothesis ensure us that |Con(L/θ)| ∈ {2n−2, 2n−3, 5 · 2n−6, 2n−4}. By Case (i).1, we can not have
|Con(L/θ)| ∈ {2n−2, 2n−3}.

Subcase (ii).1.1: Assume that |Con(L/θ)| = 5 · 2n−6, which, by the induction hypothesis, means that L/θ ∼=
Lk ∔ N5 ∔ Ln−k−4 for some k ∈ [1, n − 5], so that L is in one of the following situations, that we separate as
above, where the elements of L/θ are denoted as in the rightmost diagram above, with x, y, z, t, u ∈ L:
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• if a/θ = b/θ ≤ x/θ, then a < b ≤ x and L ∼= L2 ∔ L/θ ∼= Lk+1 ∔N5 ∔ Ln−k−4, while, if a/θ = b/θ ≥ u/θ,
then u ≤ a < b and L ∼= L/θ ∔ L2

∼= Lk ∔N5 ∔ Ln−k−3, hence |Con(L)| = 2 · |Con(L/θ)| = 5 · 2n−5;

• if x/θ < a/θ = b/θ < u/θ, then x < a < b < u and: either {a, b} ∩ {z, t} 6= ∅, case in which a, b, z, t
are pairwise comparable, because otherwise a would be meet–reducible or b would be join–reducible, thus
L ∼= Lk ∔ (L3 ⊞ L5) ∔ Ln−k−4, or y ∈ {a, b}, so that L ∼= Lk ∔ (L4 ⊞ L4) ∔ Ln−k−4, hence |Con(L)| =
2k−1 · (22 + 3) · 2n−k−5 = 7 · 2n−6, which contradicts the current assumption.

The following subcases can be treated exactly as above. For brevity, we shall only indicate the shapes of the
lattices in the remaining part of the proof.

Subcase (ii).1.2: Assume that |Con(L/θ)| = 2n−4 = 2(n−1)−3, which, by the induction hypothesis, means
that either L/θ ∼= Lr ∔ (L2 × L3)∔ Ln−r−5 for some r ∈ [1, n− 6], or L/θ ∼= Lk ∔ L2

2 ∔ Lm ∔ L2
2 ∔ Ln−k−m−5

for some k,m ∈ N∗ such that k +m ≤ n− 6, so that L is in one of the following situations:

• L ∼= Lr+1∔ (L2×L3)∔Ln−r−5 or L ∼= Lr ∔ (L2×L3)∔Ln−r−4 or L ∼= Lk+1∔L2
2∔Lm∔L2

2∔Ln−k−m−5

or L/θ ∼= Lk ∔ L2
2 ∔ Lm+1 ∔ L2

2 ∔ Ln−k−m−5 or L/θ ∼= Lk ∔ L2
2 ∔ Lm ∔ L2

2 ∔ Ln−k−m−4, so that
|Con(L)| = 2 · |Con(L/θ)| = 2n−3;

• L ∼= Lk ∔N5 ∔ Lm ∔ L2
2 ∔ Ln−k−m−5 or L ∼= Lk ∔ L2

2 ∔ Lm ∔N5 ∔ Ln−k−m−5, case in which |Con(L)| =
5 · 22 · 2k−1+m−1+n−k−m−6 = 5 · 2n−6 < 7 · 2n−6 < 8 · 2n−6 = 2n−3, contradicting the current assumption;

• L ∼= Lr ∔ G ∔ Ln−r−5 or L ∼= Lr ∔ G′ ∔ Ln−r−5 or L ∼= Lr ∔ H ∔ Ln−r−5 or L ∼= Lr ∔ H ′ ∔ Ln−r−5

or L ∼= Lr ∔ K ∔ Ln−r−5 or L ∼= Lr ∔ K ′ ∔ Ln−r−5, where G, H and K are the following gluings
of a pentagon with a rhombus and G′, H ′ and K ′ are the duals of G, H and K, respectively, so that
|Con(L)| = 9 · 2r−1+n−r−6 = 9 · 2n−7 < 14 · 2n−7 = 7 · 2n−6 < 2n−3, contradicting the current assumption,
since |Con(G)| = |Con(H)| = |Con(K)| = 9, which is simple to verify, and thus |Con(G′)| = |Con(H ′)| =
|Con(K ′)| = 9, as well; below we are indicating the positions of a and b in these copies of G, H , K, G′,
H ′ and K ′ from L:

G :

r
r r

r r
r

r
a

b

�
�
�
�

❅
❅

�
�

�
�

❅
❅

❅
❅

H :

r
r r

r r
r

r
a

b

�
�
�
�

❅
❅

�
�

�
�

❅
❅

❅
❅

K :

r
r r

r r
r

rb
a

�
�
�
�

❅
❅

�
�

�
�

❅
❅

❅
❅

G′ :

r
r r

r r
r rb

a

�
�
�
�

❅
❅

�
�

�
�

❅
❅

❅
❅

H ′ :

r
r r

r r
rrb

a

�
�
�
�

❅
❅

�
�

�
�

❅
❅

❅
❅

K ′ :

r
r r

r r
r
r
a
b

�
�
�
�

❅
❅

�
�

�
�

❅
❅

❅
❅

Case (ii).2: Assume that |L/θ| = n − 2. Then, since |Con(L/θ)| ≥ 2n−4 = 2(n−2)−2, Theorem 5.5 ensures
us that |Con(L/θ)| ∈ {2n−3, 2n−4}. By Case (i).2, we can not have |Con(L/θ)| = 2n−3, thus |Con(L/θ)| = 2n−4,
hence L/θ ∼= Lk∔L2

2∔Ln−k−5 for some k ∈ [1, n−6], according to Theorem 5.5, (ii). We are in the situation from
Lemma 5.1, (iv), hence a is meet–reducible or b is join–reducible. We shall assume that a is meet–reducible, so
that a ≺ c for some c ∈ L\{b}, and we apply Lemma 5.1, (iv), and Remark 5.2; the case when b is join–reducible
shall follow by duality. Since {a, b} = a/θ ≺ c/θ = {c, b∨ c} and, for all x ∈ L \ (a/θ ∪ c/θ) = L \ {a, b, c, b∨ c},
x/θ = {x} and x /∈ [a, b ∨ c]L, hence L has one of the following forms:

• L ∼= Ls ∔ L2
2 ∔ Lt ∔ L2

2 ∔ Ln−s−t−4 for some s, t ∈ N∗ such that s+ t ≤ n− 5; in this case, one of the two
copies of L2

2 from L is {a, b, c, b ∨ c}, r ∈ {s, s+ t+ 2}, and, indeed, |Con(L)| = 2n−3;

• L ∼= Lr ∔ (L2 × L3) ∔ Ln−r−4, case in which, indeed, |Con(L)| = 2n−3, and a, b, c, b ∨ c belong to the
copy of L2 ×L3 from L, in which they are situated as in one of the following two leftmost diagrams, since
θ = con(a, b) only collapses a, b and c, b ∨ c;

• L ∼= Lr ∔ (L3 ⊞ (L2
2 ∔ L2)) ∔ Ln−r−4 or L ∼= Lr ∔ (L3 ⊞ (L2 ∔ L2

2)) ∔ Ln−r−4, in which a, b, c and b ∨ c
would be positioned in the copy of L3 ⊞ (L2

2 ∔ L2), respectively L3 ⊞ (L2 ∔ L2
2), as in the following two

center diagrams, but then |Con(L)| = (2 + 22) · 2r−1+n−r−5 = 6 · 2n−6 < 7 · 2n−6 < 8 · 2n−6 = 2n−3, which
contradicts the current hypothesis that |Con(L)| = 2n−3.
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r
r r

r r
r

a

c b

b ∨ c

�
�
�
�

❅
❅

�
�

�
�

❅
❅

❅
❅

r
r r

r r
r

a

c b

b ∨ c

�
�
�
�

❅
❅

�
�

�
�

❅
❅

❅
❅

r
a

b c

�
�

❅
❅

❅ r r
r

r
r

�
�

�
�

�

❅
❅b ∨ c

r��
�

❅
❅
r
r r

r
�
�

�
�

❅
❅
❅r

a

b c

b ∨ c

rr
rr r

r

d

b ∨ c

b c

a

e

...
��❅❅

�� ❅❅

r
r r

r r
r
a

b ∨ c

b c

d

e

�
�
�
�

❅
❅

�
�

�
�

❅
❅

❅
❅

Case (ii).3: Assume that |L/θ| = n − 3. Then, since |Con(L/θ)| ≥ 2n−4 = 2(n−3)−1, by Theorem 5.5, (i),
it follows that |Con(L/θ)| = 2n−4, so that L/θ ∼= Ln−3. We are in the case from Lemma 5.3; assume that a is
meet–reducible, so that a ≺ c for some c ∈ L \ {b}; the case when b is join–reducible follows by duality.

In the situation from Lemma 5.3, (i), since L/θ is a chain, it follows that, for any x, y ∈ L \ {a, b, c, b ∨ c},
{x} = x/θ < a/θ = {a, b, c, b∨ c} or a/θ = (b∨ c)/θ < x/θ, and x/θ ≤ y/θ = {y} or y/θ ≤ x/θ, so that x ≤ y or
y ≤ x, and x < z for every z ∈ {a, b, c, b∨c} or z < x for every z ∈ {a, b, c, b∨c}. Therefore L ∼= Lk∔L2

2∔Ln−k−2

for some k ∈ [1, n− 3], so that |Con(L)| = 2n−2, which contradicts the hypothesis that |Con(L)| < 2n−2 of the
present theorem.

In the same way, in the situations from Lemma 5.3, (ii) and (iv), we obtain that L ∼= Lk ∔ L2
2 ∔ Ln−k−2 for

some k ∈ [1, n − 3], so that |Con(L)| = 2n−2, which contradicts both the hypothesis that |Con(L)| < 2n−2 of
the theorem and the fact that θ = con(a, b). Simlilarly, in the situations from Lemma 5.3, (iii) and (v), we get
that L ∼= Lk ∔N5 ∔ Ln−k−3 for some k ∈ [1, n− 4], so that |Con(L)| = 5 · 2n−5, which contradicts the current
assumption that |Con(L)| = 2n−3.

Now assume we are in the situation from Lemma 5.3, (vi), with d and e as in the enunciation of the lemma.
Since L/θ is a chain, without loss of generality, we may assume that d/θ < a/θ ≺ c/θ, because the other case
is dual to this one. So, in L/θ, we will have {d, e} < {a, b} ≺ {c, b ∨ c} and, for all x ∈ L \ {a, b, c, b ∨ c, d, e}:
either x/θ < a/θ ≺ c/θ or a/θ ≺ c/θ = (b ∨ c)/θ < x/θ, and either x/θ ≤ d/θ or d/θ = e/θ < x/θ, therefore,
since x/θ = {x}, Remark 5.2 ensures us that we have either x < a or b ∨ c < x, and either x < d or e < x.

If we had e < a, then L ∼= Lk ∔ L2
2 ∔ Ln−k−2 for some k ∈ [3, n − 3], because d, e, a, b, c, b ∨ c would be

positioned in L as in the fifth diagram above, thus |Con(L)| = 2n−2, which contradicts the hypothesis that
|Con(L)| < 2n−2 of the theorem, as well as the fact that θ = con(a, b). We have {d, e} = d/θ < a/θ = {a, b}.
Since a/θ and d/θ = e/θ are convex, we can not have e > a. Hence e and a are incomparable, d < a and e < b.
So d ≤ a ∧ e ≤ e, thus a ∧ e ∈ d/θ = {d, e} by the convexity of d/θ, hence a ∧ e = d since e 6< a by the above.
Analogously, a ∨ e = b. Hence {d, e, a, b, c, b∨ c} ∼= L2 × L3.

Recall that d ≺ e, a ≺ b ≺ b ∨ c, a ≺ c ≺ b ∨ c and [a, b ∨ c]L = {a, b, c, b ∨ c}. Assume by absurdum that
[d, b]L 6= {d, e, a, b}, so that x ∈ [d, b]L for some x ∈ L \ {d, e, a, b, c, b ∨ c} = L \ (d/θ ∪ a/θ ∪ c/θ). If x is
comparable to neither e, nor a, then {d, e, x, a, b} ∼= M3, so that (a, d) ∈ con(a, b) = θ, which contradicts the
fact that a/θ 6= d/θ. If x is comparable to a, then d < x < a, while, if x is comparable to e, then e < x < b,
since d < x < b, d ≺ e and a ≺ b; in each of these cases, {d, e, x, a, b} ∼= N5, so x ∈ a/con(a, b) = a/θ in the
first of these two cases, and x ∈ d/con(a, b) = d/θ in the second, and each of these situations contradicts the
fact that x /∈ d/θ ∪ a/θ ∪ c/θ. Therefore [d, b]L = {d, e, a, b} and thus [d, b ∨ c]L = {d, e, a, b, c, b∨ c} ∼= L2 × L3,
so that d, e, a, b, c, b ∨ c are positioned in L as in the rightmost diagram above, and, since L/θ is a chain, for
all x ∈ L \ {d, e, a, b, c, b ∨ c}, we have {x} = x/θ < d/θ ≺ a/θ ≺ c/θ or d/θ ≺ a/θ ≺ c/θ < x/θ, so that x < d
or b ∨ c < x by Remark 5.2. Hence L ∼= Lk ∔ (L2 × L3) ∔ Ln−k−4 for some k ∈ [1, n − 5], which, indeed, has
|Con(L)| = 2n−3.
(iii) Assume that |Con(L)| < 2n−3 and assume by absurdum that |Con(L)| > 7 · 2n−6, so that |Con(L/θ)| >
7 · 2n−7 > 5 · 2n−7 > 4 · 2n−7 = 2n−5 = 2(n−4)−1 by Lemma 5.1, (ii), hence |L/θ| > n − 4 by Theorem 5.5, (i),
thus |L/θ| ∈ {n− 1, n− 2, n− 3}.

Case (iii).1: Assume that |L/θ| = n − 1. Since |Con(L/θ)| > 7 · 2n−7 = 7 · 2(n−1)−6, by Theorem 5.5 and
the induction hypothesis it follows that |Con(L/θ)| ∈ {2n−2, 2n−3, 5 · 2n−6, 2n−4}. By Case (i).1, |Con(L/θ)| /∈
{2n−2, 2n−3}. By Subcase (ii).1.1, since |Con(L)| > 7 · 2n−6, it follows that |Con(L/θ)| 6= 5 · 2n−6. Finally, by
Subcase (ii).1.2, since 2n−3 > |Con(L/θ)| > 7 · 2n−7, it follows that |Con(L/θ)| 6= 2n−4.

Case (iii).2: Assume that |L/θ| = n − 2. Since |Con(L/θ)| > 7 · 2n−7 > 5 · 2n−7, by Theorem 5.5 and the
induction hypothesis it follows that |Con(L/θ)| ∈ {2n−3, 2n−4}. By Case (i).2, |Con(L/θ)| 6= 2n−3. By Case
(ii).2, |Con(L/θ)| 6= 2n−4.
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Case (iii).3: Assume that |L/θ| = n − 3. Since |Con(L/θ)| > 7 · 2n−7 > 4 · 2n−7 = 2n−5 = 2(n−3)−2, by
Theorem 5.5 it follows that |Con(L/θ)| = 2n−4 = 2(n−3)−1 and hence L/θ ∼= Ln−3. By Case (ii).3, it follows
that we can not have 2n−3 > |Con(L)| > 7 · 2n−6.

Therefore |Con(L)| ≤ 7 · 2n−6.
Now assume that |Con(L)| = 7 · 2n−6, so that |Con(L/θ)| ≥ 7 · 2n−7 > 5 · 2n−7 > 4 · 2n−7 = 2n−5 = 2(n−4)−1

by Lemma 5.1, (ii), hence |L/θ| > n− 4 by Theorem 5.5, (i), thus |L/θ| ∈ {n− 1, n− 2, n− 3}.
Case 1: Assume that |L/θ| = n − 1. Since |Con(L/θ)| ≥ 7 · 2n−7 = 7 · 2(n−1)−6, by Theorem 5.5 and

the induction hypothesis it follows that |Con(L/θ)| ∈ {2n−2, 2n−3, 5 · 2n−6, 2n−4, 7 · 2n−7}. By Case (i).1,
|Con(L/θ)| /∈ {2n−2, 2n−3}.

Subcase 1.1: Assume that |Con(L/θ)| = 5 · 2n−6. Since we also have |Con(L)| = 7 · 2n−6, by Subcase (i).1.1
it follows that, for some k ∈ [1, n − 3], L/θ ∼= Lk ∔ N5 ∔ Ln−k−4

∼= Lk ∔ (L3 ⊞ L4) ∔ Ln−k−4 and either
L ∼= Lk ∔ (L3 ⊞ L5)∔ Ln−k−4 or L ∼= Lk ∔ (L4 ⊞ L4)∔ Ln−k−4.

Subcase 1.2: Assume that |Con(L/θ)| = 7 ·2n−7, so that, by the induction hypothesis, for some k ∈ [1, n− 6],
L/θ ∼= Lk ∔ (L3 ⊞L5)∔Ln−k−5 or L/θ ∼= Lk ∔ (L4 ⊞L4)∔Ln−k−5, thus, since [a, b]L is a narrows in this Case
1, we have one of the following situations:

• L ∼= Lk+1 ∔ (L3 ⊞ L5)∔ Ln−k−5 or L ∼= Lk ∔ (L3 ⊞ L5)∔ Ln−k−4 or L ∼= Lk+1 ∔ (L4 ⊞ L4)∔ Ln−k−5 or
L ∼= Lk ∔ (L4 ⊞ L4)∔ Ln−k−4;

• L ∼= Lk∔(L3⊞L6)∔Ln−k−5 or L ∼= Lk∔(L4⊞L5)∔Ln−k−5, but in these cases Con(L) ∼= Ln−7
2 ×(L3

2∔L2
2),

so that |Con(L)| = 2n−7 ·(23+3) = 11·2n−7 < 14·2n−7 = 7·2n−6, which contradicts the current assumption
that |Con(L)| = 7 · 2n−6.

Case 2: Assume that |L/θ| = n− 2. Then, by Lemma 5.1, (iv), we can assume that a is meet–reducible, so
that a ≺ c for some c ∈ L \ {b}, since the other case is dual to this one. Since |Con(L/θ)| ≥ 7 · 2n−7 > 5 · 2n−7 =
5 ·2(n−2)−5, by Theorem 5.5 and the induction hypothesis it follows that |Con(L/θ)| ∈ {2n−3, 2n−4, 5 ·2n−7}. By
Case (i).2, |Con(L/θ)| 6= 2n−3. By Case (ii).2, since |Con(L)| = 7·2n−6, it follows that |Con(L/θ)| 6= 2n−4. Hence
|Con(L/θ)| = 5 · 2n−7, so that, by the induction hypothesis, for some k ∈ [1, n− 6], L/θ ∼= Lk ∔N5 ∔ Ln−k−5,
so that L is in one of the following situations, as shown by Lemma 5.1, (iv):

• either k ≥ 4 and, for some r, s ∈ N∗ such that r+ s+2 ≤ k, L ∼= Lr ∔L2
2∔Ls∔N5∔Ln−k−5, or n ≥ k+9

and, for some r, s ∈ N∗ such that r + s+ 2 ≤ n− k − 5, L ∼= Lk ∔N5 ∔ Lr ∔ L2
2 ∔ Ls, but in these cases

Con(L) ∼= Ln−6
2 × (L2 ∔ L2

2), so that |Con(L)| = 5 · 22 · 2n−8 = 5 · 2n−6 < 7 · 2n−6, which contradicts the
current assumption that |Con(L)| = 7 · 2n−6;

• L ∼= Lk ∔ ((L2
2 ∔L2)⊞L4)∔Ln−k−5 or L ∼= Lk ∔ ((L2 ∔L2

2)⊞L4)∔Ln−k−5, with the positions of a, b, c
and b∨ c in the copy of (L2

2 ∔L2)⊞L4, respectively (L2 ∔L2
2)⊞L4 from L as depicted in the two leftmost

diagrams below, but in these cases Con(L) ∼= L4 × Ln−7
2 , so that |Con(L)| = 2n−5 = 2 · 2n−6 < 7 · 2n−6,

which gives us another contradiction to the current assumption;

• L ∼= Lk∔(L3⊞(L2∔L2
2∔L2))∔Ln−k−5, with the positions of a, b, c and b∨c in the copy of L3⊞(L2∔L2

2∔L2)
from L as depicted in the center diagram below, but in this case Con(L) ∼= (L2

2 ∔ L2
2) × Ln−7

2 , so that
|Con(L)| = 7 · 2n−7 < 7 · 2n−6, and we obtain a contradiction again;

• L ∼= Lk∔(L3⊞(L2
2∔L3))∔Ln−k−5 or L ∼= Lk∔(L3⊞(L3∔L2

2))∔Ln−k−5, with the positions of a, b, c and b∨c
in the copy of L3⊞(L2

2∔L3), respectively L3⊞(L3∔L2
2) from L as depicted in the two rightmost diagrams

below, but in these cases Con(L) ∼= Ln−7
2 × (L2 ∔ L2

2), so that |Con(L)| = 5 · 2n−7 < 14 · 2n−7 = 7 · 2n−6,
which gives us another contradiction.
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Case 3: Assume that |L/θ| = n − 3. Since |Con(L/θ)| ≥ 7 · 2n−7 > 4 · 2n−7 = 2n−5 = 2(n−3)−2, Theorem
5.5 ensures us that |Con(L/θ)| = 2n−4 = 2(n−3)−1, so that L/θ ∼= Ln−3. But Case (iii).3 shows us that, in this
case, |Con(L)| 6= 7 · 2n−6, so we have a contradiction to the current assumption.

Corollary 5.7. (i) |Con(L)| = 2n−1 iff Con(L) ∼= Ln−1
2 .

(ii) |Con(L)| = 2n−2 iff n ≥ 4 and Con(L) ∼= Ln−2
2 .

(iii) |Con(L)| = 5 · 2n−5 iff n ≥ 5 and Con(L) ∼= Ln−5
2 × (L2 ∔ L2

2).

(iv) |Con(L)| = 2n−3 iff n ≥ 6 and Con(L) ∼= Ln−3
2 .

(v) |Con(L)| = 7 · 2n−6 iff n ≥ 6 and Con(L) ∼= Ln−6
2 × (L2

2 ∔ L2
2).

Proof. The converse implications are trivial, and the direct implications follow from Theorems 5.5 and 5.6.
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