# Publications

Monographs

- T. Krisztin, H.-O. Walther and J. Wu,
*Shape, Smothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback*, Fields Institute Monographs, Vol. 11, Amer. Math. Soc., Providence, RI, 1999.

Research papers

- T. Krisztin, On the convergence of solutions of functional differential equations,
*Acta Sci. Math. (Szeged)***43**(1981), 45--54. pdf - T. Krisztin, A Ljapunov-Razumikhin condition for convergence of solutions of delay differential equations,
*Functional Differential Systems and Related Topics II*(Proc. Conf. Blazejewko, Poland, 1981), The Higher College of Engineering in Zielona G\'ora, Zielona Góra, 1981; pp. 190--194. - T. Krisztin, Convergence of solutions of a nonlinear integro-differential equation arising in compartmental systems,
*Acta Sci. Math. (Szeged)***47**(1984), 471--485.. pdf - J. Haddock and T. Krisztin, Estimates regarding the decay of solutions of functional differential equations,
*Nonlinear Anal.***8**(1984), 1395--1408. - T. Krisztin, On the asymptotic constancy of solutions of functional differential equations with infinite delay,
*Tenth International Conference on Nonlinear Oscillations*(Proc. Conf. Varna, Bulgaria, 1984), Publishing House of the Bulgarian Academy of Sciences, Sofia, 1985; pp. 662--665. - T. Krisztin, On the convergence of solutions of functional differential equations with infinite delay,
*J. Math. Anal. Appl.***109**(1985), 509--521. - J. Haddock, T. Krisztin and J. Terjéki, Invariance principles for autonomous functional differential equations,
*J. Integral Equations***10**(1985), 123--136. - T. Krisztin, On the rate of convergence of solutions of functional differential equations,
*Funkcial. Ekvac.***29**(1986), 1--10. - J. Haddock and T. Krisztin, Rate of decay of solutions of functional differential equations with infinite delay,
*Nonlinear Anal.***10**(1986), 727--742. - T. Krisztin, On the convergence of the solutions of a nonlinear integro-differential equation,
*Differential Equations: Qualitative Theory*(Proc. Conf. Szeged, 1984), Colloq. Math. Soc. J. Bolyai 47, North-Holland, Amsterdam--Oxford--New York, 1987; pp. 597--614. - T. Krisztin, Uniform asymptotic stability of a linear integrodifferential equation,
*Eleventh International Conference on Nonlinear Oscillations*(Proc. Conf. Budapest, 1987), J. Bolyai Math. Soc, Budapest, 1987; pp. 432--435. - J. Haddock, T. Krisztin and J. Terjéki, Comparison theorems and convergence properties for functional differential equations with infinite delay,
*Acta Sci. Math. (Szeged)***52**(1988), 399--414. pdf - L.C. Becker, T.A. Burton and T. Krisztin, Floquet theory for a Volterra equation,
*J. London Math. Soc.***37**(1988), 141--147. - T. Krisztin and J. Terjéki, On the rate of convergence of solutions of a linear Volterra equation,
*Bollettino U. M. I.***(7) 2-B**(1988), 427--444. - Krisztin, Uniform asymptotic stability of a class of integTrodifferential equations,
*J. Integral Eqns.*Appl.**1**(1988), 581--597. - T. Krisztin, A note on the convergence of the solutions of a linear functional differential equation,
*J. Math. Anal. Appl.***145**(1990), 17--25. - J. Haddock, T. Krisztin and J. Wu, Asymptotic equivalence of neutral and infinite retarded equations,
*Nonlinear Anal.***14**(1990), 369--377. - T. Krisztin, Asymptotic estimation for functional differential equations via Lyapunov functions,
*Qualitative Theory of Differential Equations*(Proc. Conf. Szeged, 1988), Colloq. Math. Soc. J. Bolyai vol. 53, North--Holland, Amsterdam---Oxford---New York, 1990; pp. 365--376. - T. Krisztin, Stability for functional differential equations and some variational problems,
*Tohoku Math. J.***42**(1990), 407--417. - T. Krisztin, On stability properties for one-dimensional functional differential equations,
*Funkcial. Ekvac.***34**(1991), 241--256. - T. Krisztin, Stability results for one-dimensional functional differential equations,
*Functional Differential Equations*(Proc. Conf. Kyoto, 1990), World Scientific, Singapore, 1991; pp. 181--190. - L. Hatvani and T. Krisztin, On the existence of periodic solutions for linear inhomogeneous and quasilinear functional differential equations,
*J. Differential Equations***97**(1992), 1--15. - H.I. Freedman and T. Krisztin, Global stability in models of population dynamics with diffusion. I. Patchy environment,
*Proc. Royal Soc. Edinburgh***122A**(1992), 69--84. - I. Gyõri and T. Krisztin, Oscillation results for linear autonomous partial delay differential equations,
*J. Math. Anal. Appl.***174**(1993), 204--217. - T. Krisztin, R.M. Mathsen and Xu Yuantong, Counterexamples to a conjecture for neutral equations,
*Canad. Math. Bull.***36**(1993), 74--77. - T. Krisztin and H.I. Freedman, Global stability in models of population dynamics with diffusion. II. Continuously varying environments,
*Rocky Mountain J. Math.***24**(1994), 1--9. - J. Haddock, T. Krisztin, J. Terjéki and J. Wu, Invariance principles for neutral functional differential equations,
*J. Differential Equations***107**(1994), 395--417. - T. Krisztin and J. Wu, Monotone semiflows generated by neutral equations with different delays in neutral and retarded parts,
*Acta Math. Univ. Comenianae***63**(1994), 207--220. - T. Krisztin, Monotone semiflows generated by neutral functional differential equatios, to appear in
*Proc. of the Internat. Conf. on Differential Equations*(Marrakech, 1995). - L. Hatvani and T. Krisztin, Asymptotic stability for a differential-difference equation containing both delayed and undelayed terms,
*Acta Sci. Math. (Szeged)***60**(1995), 371--384. pdf - L. Hatvani, T. Krisztin and V. Totik, A necessary and sufficient condition for the asymptotic stability of the damped oscillator,
*J. Differential Equations***119**(1995), 209--223. - T. Krisztin, Exponential boundedness and oscillation for solutions of linear autonomous functional differential systems,
*Dynamic Systems Appl.***4**(1995), 405--420. - T. Krisztin, An invariance principle of Lyapunov-Razumikhin type and compartmental systems,
*Proc. of the First World Congress of Nonlinear Analysts*, Walter de Gruyter, Berlin -- New York, 1996, pp. 1371--1380. - T. Krisztin and J. Wu, Asymptotic periodicity, monotonicity and oscillation of solutions of scalar neutral functional differential equations,
*J. Math. Anal. Appl.***199**(1996), 502--525. - T. Krisztin and J. Wu, Asymptotic behaviors of solutions of scalar neutral functional differential equations,
*Differential Equations and Dynamical Systems***4**(1996), 351--366. - L. Hatvani and T. Krisztin, Necessary and sufficient conditions for intermittent stabilization of linear oscillators by large damping,
*Differential Integral Equations***10**(1997), 265--272. - T. Krisztin, Convergence and periodicity in difference equations arising in compartmental systems,
*Advances in Difference Equations*, Proc. of the second Int. Conf. on Difference Equations (eds. S. Elaydi, I. Gyõri and G. Ladas), Gordon and Breach Science Publishers, Amsterdam, 1997, pp. 371--380. - T. Krisztin, H.-O. Walther and J. Wu, The structure of an attracting set defined by delayed and monotone positive feedback,
*CWI Quarterly***12**(1999), 315--327. - Y. Chen, J. Wu and T. Krisztin, Connecting orbits from synchronous periodic solutions to phase locked periodic solutions in a delay differential system,
*J. Differential Equations***163**(2000), 130--173. - T. Krisztin, Nonoscillation for functional differential equations of mixed type,
*J. Math. Anal. Appl.***245**(2000), 326--345. - T. Krisztin, Periodic orbits and the global attractor for delayed monotone negative feedback,
*E. J. Qualitative Theory of Diff. Equ .*, Proc. 6'th Coll. Qualitative Theory of Diff. Equ.**15**(2000), pp. 1--12. - T. Krisztin, The unstable set of zero and the global attractor for delayed monotone positive feedback,
*Dynamical Systems and Differential Equations*, An added volume to*Discrete and Continuous Dynamical Systems*2001, pp. 229--240. - T. Krisztin, Unstable sets of periodic orbits and the global attractor for delayed feedback,
*Topics in Functional Differential and Difference Equations*, Fields Institute Communications**29**(2001), 267--296. pdf - T. Krisztin and O. Arino, The $2$-dimensional attractor of a differential equation with state-dependent delay,
*J. Dynam. Differential Equations***13**(2001), 453--522.pdf - T. Krisztin and H.-O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor,
*J. Dynam. Differential Equations***13**(2001), 1--57.pdf - T. Krisztin, A local unstable manifold for differential equations with state-dependent delay,
*Discrete and Continuous Dynamical Systems***9**(2003), 9930--1028. - T. Krisztin, Invariance and noninvariance of center manifolds of time-t maps with respect to the semiflow,
*SIAM J. Math. Anal.***36**(2005), 717--739. - F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional differential equations with state-dependent delay: theory and applications. In: Canada A, Drabek P, Fonda A (eds) Handbook of differential equations: Ordinary differential equations. Vol. 3.Amsterdam: Elsevier - North-Holland, 2006. pp. 435-545.
- T. Krisztin, C1-smoothness of center manifolds for delay differential equations with state-dependent delay.
*Fields Institute Communications;*48. 2006. Providence, American Mathematical Society, pp. 213-226.pdf - Krisztin Tibor, Móczár József, A Harrod modell strukturális stabilitása.
*SZIGMA***37**(2006), 1--32. - T. Krisztin, Global dynamics of delay differential equations.
*Periodica Mathematica Hungarica***56**(2008), 83—95. pdf - T. Krisztin, On the fundamental solution of a linear delay differential equation.
*Int. J. Qualitative Theory of Diff. Equations and Appl.***3**(2009), 53—59. pdf - Á. Garab and T Krisztin, The period function of a delay differential equation and an application.
*Periodica Mathematica Hungarica***63**(2011), 173—190. pdf - T. Krisztin and G. Vas, On the fundamental solution of linear delay differential equations with multiple delays.
*Electronic J. Qualitative Theory of Diff. Equations*,**36**(2011), 1-28.pdf - T. Krisztin and G. Vas, Large-Amplitude Periodic Solutions for Differential Equations with Delayed Monotone Positive Feedback.
*J. Dynam. Differential Equations***23**(2011), 727—790. pdf - T. Krisztin and E. Liz, Bubbles for a Class of Delay Differential Equations,
*Qualitative Theory of Dynamical Systems***10**(2011), 169—196.pdf - F. Bartha, Á. Garab and T. Krisztin, Local stability implies global stability for the 2-dimensional Ricker map. arXiv:1209.2406v1 [math.DS] 11 Sep 2012 - [a proof of a conjecture of Levin and May (1976)]pdf