Publications

Monographs

  1. T. Krisztin, H.-O. Walther and J. Wu, Shape, Smothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback , Fields Institute Monographs, Vol. 11, Amer. Math. Soc., Providence, RI, 1999.

Research papers

  1. T. Krisztin, On the convergence of solutions of functional differential equations, Acta Sci. Math. (Szeged) 43 (1981), 45--54. pdf
  2. T. Krisztin, A Ljapunov-Razumikhin condition for convergence of solutions of delay differential equations, Functional Differential Systems and Related Topics II (Proc. Conf. Blazejewko, Poland, 1981), The Higher College of Engineering in Zielona G\'ora, Zielona Góra, 1981; pp. 190--194.
  3. T. Krisztin, Convergence of solutions of a nonlinear integro-differential equation arising in compartmental systems, Acta Sci. Math. (Szeged) 47 (1984), 471--485.. pdf
  4. J. Haddock and T. Krisztin, Estimates regarding the decay of solutions of functional differential equations, Nonlinear Anal. 8 (1984), 1395--1408.
  5. T. Krisztin, On the asymptotic constancy of solutions of functional differential equations with infinite delay, Tenth International Conference on Nonlinear Oscillations (Proc. Conf. Varna, Bulgaria, 1984), Publishing House of the Bulgarian Academy of Sciences, Sofia, 1985; pp. 662--665.
  6. T. Krisztin, On the convergence of solutions of functional differential equations with infinite delay, J. Math. Anal. Appl. 109 (1985), 509--521.
  7. J. Haddock, T. Krisztin and J. Terjéki, Invariance principles for autonomous functional differential equations, J. Integral Equations 10 (1985), 123--136.
  8. T. Krisztin, On the rate of convergence of solutions of functional differential equations, Funkcial. Ekvac. 29 (1986), 1--10.
  9. J. Haddock and T. Krisztin, Rate of decay of solutions of functional differential equations with infinite delay, Nonlinear Anal. 10 (1986), 727--742.
  10. T. Krisztin, On the convergence of the solutions of a nonlinear integro-differential equation, Differential Equations: Qualitative Theory (Proc. Conf. Szeged, 1984), Colloq. Math. Soc. J. Bolyai 47, North-Holland, Amsterdam--Oxford--New York, 1987; pp. 597--614.
  11. T. Krisztin, Uniform asymptotic stability of a linear integrodifferential equation, Eleventh International Conference on Nonlinear Oscillations (Proc. Conf. Budapest, 1987), J. Bolyai Math. Soc, Budapest, 1987; pp. 432--435.
  12. J. Haddock, T. Krisztin and J. Terjéki, Comparison theorems and convergence properties for functional differential equations with infinite delay, Acta Sci. Math. (Szeged) 52 (1988), 399--414. pdf
  13. L.C. Becker, T.A. Burton and T. Krisztin, Floquet theory for a Volterra equation, J. London Math. Soc. 37 (1988), 141--147.
  14. T. Krisztin and J. Terjéki, On the rate of convergence of solutions of a linear Volterra equation, Bollettino U. M. I. (7) 2-B (1988), 427--444.
  15. Krisztin, Uniform asymptotic stability of a class of integTrodifferential equations, J. Integral Eqns. Appl. 1 (1988), 581--597.
  16. T. Krisztin, A note on the convergence of the solutions of a linear functional differential equation, J. Math. Anal. Appl. 145 (1990), 17--25.
  17. J. Haddock, T. Krisztin and J. Wu, Asymptotic equivalence of neutral and infinite retarded equations, Nonlinear Anal. 14 (1990), 369--377.
  18. T. Krisztin, Asymptotic estimation for functional differential equations via Lyapunov functions, Qualitative Theory of Differential Equations (Proc. Conf. Szeged, 1988), Colloq. Math. Soc. J. Bolyai vol. 53, North--Holland, Amsterdam---Oxford---New York, 1990; pp. 365--376.
  19. T. Krisztin, Stability for functional differential equations and some variational problems, Tohoku Math. J. 42 (1990), 407--417.
  20. T. Krisztin, On stability properties for one-dimensional functional differential equations, Funkcial. Ekvac. 34 (1991), 241--256.
  21. T. Krisztin, Stability results for one-dimensional functional differential equations, Functional Differential Equations (Proc. Conf. Kyoto, 1990), World Scientific, Singapore, 1991; pp. 181--190.
  22. L. Hatvani and T. Krisztin, On the existence of periodic solutions for linear inhomogeneous and quasilinear functional differential equations, J. Differential Equations 97 (1992), 1--15.
  23. H.I. Freedman and T. Krisztin, Global stability in models of population dynamics with diffusion. I. Patchy environment, Proc. Royal Soc. Edinburgh 122A (1992), 69--84.
  24. I. Gyõri and T. Krisztin, Oscillation results for linear autonomous partial delay differential equations, J. Math. Anal. Appl. 174 (1993), 204--217.
  25. T. Krisztin, R.M. Mathsen and Xu Yuantong, Counterexamples to a conjecture for neutral equations, Canad. Math. Bull. 36 (1993), 74--77.
  26. T. Krisztin and H.I. Freedman, Global stability in models of population dynamics with diffusion. II. Continuously varying environments, Rocky Mountain J. Math. 24 (1994), 1--9.
  27. J. Haddock, T. Krisztin, J. Terjéki and J. Wu, Invariance principles for neutral functional differential equations, J. Differential Equations 107 (1994), 395--417.
  28. T. Krisztin and J. Wu, Monotone semiflows generated by neutral equations with different delays in neutral and retarded parts, Acta Math. Univ. Comenianae 63 (1994), 207--220.
  29. T. Krisztin, Monotone semiflows generated by neutral functional differential equatios, to appear in Proc. of the Internat. Conf. on Differential Equations (Marrakech, 1995).
  30. L. Hatvani and T. Krisztin, Asymptotic stability for a differential-difference equation containing both delayed and undelayed terms, Acta Sci. Math. (Szeged) 60 (1995), 371--384. pdf
  31. L. Hatvani, T. Krisztin and V. Totik, A necessary and sufficient condition for the asymptotic stability of the damped oscillator, J. Differential Equations 119 (1995), 209--223.
  32. T. Krisztin, Exponential boundedness and oscillation for solutions of linear autonomous functional differential systems, Dynamic Systems Appl. 4 (1995), 405--420.
  33. T. Krisztin, An invariance principle of Lyapunov-Razumikhin type and compartmental systems, Proc. of the First World Congress of Nonlinear Analysts, Walter de Gruyter, Berlin -- New York, 1996, pp. 1371--1380.
  34. T. Krisztin and J. Wu, Asymptotic periodicity, monotonicity and oscillation of solutions of scalar neutral functional differential equations, J. Math. Anal. Appl. 199 (1996), 502--525.
  35. T. Krisztin and J. Wu, Asymptotic behaviors of solutions of scalar neutral functional differential equations, Differential Equations and Dynamical Systems 4 (1996), 351--366.
  36. L. Hatvani and T. Krisztin, Necessary and sufficient conditions for intermittent stabilization of linear oscillators by large damping, Differential Integral Equations 10 (1997), 265--272.
  37. T. Krisztin, Convergence and periodicity in difference equations arising in compartmental systems, Advances in Difference Equations , Proc. of the second Int. Conf. on Difference Equations (eds. S. Elaydi, I. Gyõri and G. Ladas), Gordon and Breach Science Publishers, Amsterdam, 1997, pp. 371--380.
  38. T. Krisztin, H.-O. Walther and J. Wu, The structure of an attracting set defined by delayed and monotone positive feedback, CWI Quarterly 12 (1999), 315--327.
  39. Y. Chen, J. Wu and T. Krisztin, Connecting orbits from synchronous periodic solutions to phase locked periodic solutions in a delay differential system, J. Differential Equations 163 (2000), 130--173.
  40. T. Krisztin, Nonoscillation for functional differential equations of mixed type, J. Math. Anal. Appl. 245 (2000), 326--345.
  41. T. Krisztin, Periodic orbits and the global attractor for delayed monotone negative feedback, E. J. Qualitative Theory of Diff. Equ ., Proc. 6'th Coll. Qualitative Theory of Diff. Equ. 15 (2000), pp. 1--12.
  42. T. Krisztin, The unstable set of zero and the global attractor for delayed monotone positive feedback, Dynamical Systems and Differential Equations, An added volume to Discrete and Continuous Dynamical Systems 2001, pp. 229--240.
  43. T. Krisztin, Unstable sets of periodic orbits and the global attractor for delayed feedback, Topics in Functional Differential and Difference Equations, Fields Institute Communications 29 (2001), 267--296. pdf
  44. T. Krisztin and O. Arino, The $2$-dimensional attractor of a differential equation with state-dependent delay, J. Dynam. Differential Equations 13 (2001), 453--522.pdf
  45. T. Krisztin and H.-O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor, J. Dynam. Differential Equations 13 (2001), 1--57.pdf
  46. T. Krisztin, A local unstable manifold for differential equations with state-dependent delay, Discrete and Continuous Dynamical Systems 9 (2003), 9930--1028.
  47. T. Krisztin, Invariance and noninvariance of center manifolds of time-t maps with respect to the semiflow, SIAM J. Math. Anal. 36 (2005), 717--739.
  48. F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional differential equations with state-dependent delay: theory and applications. In: Canada A, Drabek P, Fonda A (eds) Handbook of differential equations: Ordinary differential equations. Vol. 3.Amsterdam: Elsevier - North-Holland, 2006. pp. 435-545.
  49. T. Krisztin, C1-smoothness of center manifolds for delay differential equations with state-dependent delay. Fields Institute Communications; 48. 2006. Providence, American Mathematical Society, pp. 213-226.pdf
  50. Krisztin Tibor, Móczár József, A Harrod modell strukturális stabilitása. SZIGMA 37 (2006), 1--32.
  51. T. Krisztin, Global dynamics of delay differential equations. Periodica Mathematica Hungarica 56 (2008), 83—95. pdf
  52. T. Krisztin, On the fundamental solution of a linear delay differential equation. Int. J. Qualitative Theory of Diff. Equations and Appl. 3 (2009), 53—59. pdf
  53. Á. Garab and T Krisztin, The period function of a delay differential equation and an application. Periodica Mathematica Hungarica 63 (2011), 173—190. pdf
  54. T. Krisztin and G. Vas, On the fundamental solution of linear delay differential equations with multiple delays. Electronic J. Qualitative Theory of Diff. Equations, 36 (2011), 1-28.pdf
  55. T. Krisztin and G. Vas, Large-Amplitude Periodic Solutions for Differential Equations with Delayed Monotone Positive Feedback. J. Dynam. Differential Equations 23 (2011), 727—790. pdf
  56. T. Krisztin and E. Liz, Bubbles for a Class of Delay Differential Equations, Qualitative Theory of Dynamical Systems 10 (2011), 169—196.pdf
  57. F.A. Bartha, Á. Garab and T. Krisztin, Local stability implies global stability for the 2-dimensional Ricker map. J. Difference Equ. Appl. 19 (2013), 2043-2078. Best JDEA Paper 2013 Prize Winner. pdf
  58. B. Bánhelyi, T. Csendes, A. Neumaier and T. Krisztin, Global attractivity of the zero solution for Wright’s equation. SIAM J. Appl. Dy. Syst. 13 (2014), 537-563.pdf
  59. T. Krisztin and G.Vas, Erratum to: Large-amplitude periodic solutions for differential equations with delayed monotone positive feedback. J. Dynam. Differential Equations 26 (2014), 401-403.pdf
  60. T. Krisztin and G.Vas, The unstable set of a periodic orbit for delayed positive feedback, to appear in J. Dynam. Differential Equations. Doi: 10.1007/s10884-014-9375-0pdf