Krámli András

E-mail: kramli@informatika.ilab.sztaki.hu

Address: A. Krámli
JATE Bolyai Institute
Aradi vértanúk tere 1.
Szeged, Hungary
H–6720

Phone: ++36 62-544-097 (office)
++36 62-319-025 (home)

Fax: ++36 62-426-246

Position: professor (egyetemi tanár)

Scientific degrees:

'Candidate' of Mathematical Science (PhD) (1973)
'Doctor' of Mathematical Science (1991)

Fields of interest:

Statistical Physics, Ergodic Theory

Motto: Look Andrash, there are everywhere phase transitions!
Ya. G. Sinai

Main publications: (all publications with citations)

A remark to a paper of L. Schmetterer.
In: Studia Sci. Math. Hung. 2 (1967).
pp. 159-169.


Operators of the form C*C in indefinite inner product spaces.
coauthor(s): Bognár J.
In: Acta Sci. Math. 29 (1968).
pp. 19-31.


Spektrálmátrixok faktorizációjáról.
In: MTA III. Osztály Közleményei XVIII 2 (1968).
pp. 183-186.


Geodesic Flows on Riemannian Surfaces without Focal Points.
In Russian.
In: Russian Math. Surveys 27 (1972).
pp. 245-246.


On the solution of optimal performance storage hierarchies with
an independent reference string.
coauthor(s): Arató M. and Benczúr A.
In: Banach Center Publ. Warsaw 6 (1980).
pp. 9-15.


On the convergence of the Lorentz gas to the equilibrium.
coauthor(s): Szász D.
In: Colloquia Math. Soc. Bolyai 35 (1980).
pp. 757-766.


Random walk with internal degrees of freedom, I.
coauthor(s): Szász D.
In: Z. Wahrscheinlichkeitstheorie 63 (1983).
pp. 85-95.


Central limit theorem for the Lorentz process via perturbation theory.
coauthor(s): Szász D.
In: Commun. Math. Phys. 91 (1983).
pp. 519-528.


The problem of recurrence for Lorentz processes.
coauthor(s): Szász D.
In: Comm. Math. Phys. 98 (1985).
pp. 539-552.


Heat Conduction in Caricature Models of the Lorentz Gas.
coauthor(s): Simányi N. and Szász D.
In: Journal of Stat. Phys. 46 (1987).
pp. 303-318.


Ergodic properties of semi-dispersing billiards:
I. Two cylindric scatterers on the 3D torus.
coauthor(s): Simányi N. and Szász D.
In: Nonlinearity 2 (1989).
pp. 311-326.


A 'transversal' fundamental theorem for semi-dispersing billiards.
coauthor(s): Simányi N. and Szász D.
In: Comm. Math. Phys. 129 (1990).
pp. 535-560.


Three billiard balls on the n-dimensional torus is a K-flow.
coauthor(s): Simányi N. and Szász D.
In: Annals of Math. 133 (1991).
pp. 37-72.


The K-Property of Four Billiard Balls.
coauthor(s): Simányi N. and Szász D.
In: Comm. Math. Phys. 144 (1992).
pp. 107-148.


Decay of correlations in one and two dimensions.
In: Journal of Stat. Phys. 83 1/2 (1996).
pp. 167-192.