On the representation of finite convex geometries with convex sets, (Acta Sci. Math. (Szeged) 83 (2017), 301-312)

with A.F. Holmsen, E. Roldán-Pensado: Cutting Convex Curves , (EUROPEAN JOURNAL OF COMBINATORICS 58: pp. 34-37. (2016))

On the Helly Dimension of Hanner Polytopes, (Convexity and Discrete Geometry Including Graph Theory, Springer International Publishing)

Tanulójátékok egyenesrendszerek lapjain, (Polygon, XXII. kötet, 1-2. szám)

with G. Makay, M. Maróti, J. Osztényi, L. Zádori: A special case of the Stahl conjecture, (European Journal of Combinatorics, doi:10.1016/j.ejc.2012.10.003)

The Helly dimension of the L_1-sum of convex sets, (Acta Sci. Math. (Szeged) 76 (2010), 643-657)

The topological type of the $\alpha$-sections of convex sets, (Advances in Mathematics, 217 (2008) 2159–2169.)

An example of a stable even order quadrangle which is determined by its angle function, (Discrete Geometry,(in honor of W. Kuperberg's 60th birthday, ed. A. Bezdek), Marcel Dekker, 2003.)

The determination of a convex set from its angle function, (Discrete and Comput. Geom. 30 (2003), 287-297.)

with Á. Kurusa: Can you recognize the shape of a figure from its shadows?, (Beitr. Algebra Geom. 36, No.1, 25-35 (1995))

On polytopes cut by flats., (Discrete Comput. Geom. 14, No.3, 287-294 (1995).)

with Kurusa Árpád: Felimerhető-e egy alakzat az árnyékképeiből?, (Poygon, I. évf., 2. szám)

with V. Totik: Theorems and counterexamples on contractive mappings., (Math. Balk., New Ser. 4, No.1, 69-90 (1990).)

How big can the circuits of a bridge of a maximal circuit be?, (Combinatorica 8, No.2, 201-205 (1988).)

The classification of 3- and 4-Helly-dimensional convex bodies., (Geom. Dedicata 22, 283-301 (1987).)

with I. Bárány.: A characterization of the Helly dimension of convex bodies., (Stud. Sci. Math. Hung. 22, No.1-4, 401-406 (1987).)