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1 Kolmogorov consistency theorem

This part is from the Csörgő notes [2].

1.1 Arbitrary product of measurable spaces

Let I be an arbitrary index set, and Xi , i ∈ I, arbitrary sets. The product

XI = {x | x : I 7→ ∪i∈IXi , x(i) ∈ Xi , i ∈ I} ,

that is the set of functions defined on I, such that x(i) ∈ Xi.
Typical examples are I = {0, 1, . . .} (Markov chains, or iid random vari-

ables), I = [0,∞) (Poisson process, continuous time Markov chains), and
Xi = X = R.

For I ⊃ J ⊃ K define the projection

πJ,K : XJ → XK

such that we forget the coordinates in J −K, that is

πJ,K(x) = x|K , x ∈ XJ .

Put πK = πI,K and πi = π{i}.
In what follows let (Xi,Fi) be measurable spaces.
The sets

R = {x : x(i) ∈ Bi , i ∈ J} = π−1
J

(∏
i∈J

Bi

)
for Bi ∈ Fi , i ∈ J , are measurable rectangles. For fix J the set of all
measurable rectangles are

RJ =

{
π−1
J

(∏
i∈J

Bi

)
: Bi ∈ Fi , i ∈ J

}

and the set of all rectangles

R = ∪J finiteRJ .

Recall that for J ⊂ I finite, the product σ-algebra FJ :=
∏

i∈J Fi =
σ(RJ), is the σ-algebra generated by the measurable rectangles. In what
follows we define the product σ-algebra for arbitrary products.
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Sets of the form

π−1
J (B) ⊂ XI , where B ∈ FJ =

∏
i∈J

Fi

are cylinders. Put
CJ =

{
π−1
J (B) : B ∈ FJ

}
and

C = ∪{CJ : J ⊂ I, J finite}.

Recall that a A is semialgebra on X if (1) X ∈ A, (2) is closed under
intersection, and (3) if A ∈ A then there exists A1, . . . , An ∈ A disjoint, such
that Ac = ∪ni=1Ai. It is an algebra, if (1), (2) hold, if A ∈ A then Ac ∈ A.

Lemma 1.1. (i) R is semialgebra.

(ii) CJ is σ-algebra for any finite J .

(iii) C is algebra.

Proof. It is easy. Recall that the inverse image of a σ-algebra is σ-algebra.

Now we can define the product σ-algebra. Let

FI =
∏
i∈I

Fi = σ(C).

1.2 Consistency theorem

Let (Ω,A,P) a probability space, and (Xi,Fi), i ∈ I, measurable spaces, and
Xi : Ω→ Xi a random element in Xi (that is, it is Fi–A-measurable). Then

X : Ω→ XI , X(ω)(i) = Xi(ω), ω ∈ Ω, i ∈ I,

is a random element in XI .
Indeed, it is enough to check measurability on a generating system, and

it is easy to see that FI = σ(R). For π−1
J

(∏
i∈J Bi

)
∈ R

X−1

(
π−1
J

(∏
i∈J

Bi

))
= ∩i∈JX−1

i (Bi) ∈ A,

since Xi is measurable.
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The random element X is a stochastic process indexed by I. Its distribu-
tion is

Q = P◦X−1.

For any B ∈ FI
Q(B) = P◦X−1(B) = P(X ∈ B).

If J ⊂ I, C ∈ FJ

Q◦π−1
J (C) = P(X ∈ π−1

J (C)) = P(X|J ∈ C).

Note that Q is a measure on FI , while Q◦π−1
J , J ⊂ I finite, is a measure

on the finite product space (XJ ,FJ). The set of measures

{Q◦π−1
J : J ⊂ I, J finite}

are the finite dimensional distributions of X. For K ⊂ J ⊂ I

(Q◦π−1
J )◦π−1

J,K = Q◦π−1
J ◦π

−1
J,K = Q◦(πJ,K◦πJ)−1 = Q◦π−1

K .

With the notation QJ = Q◦π−1
J we obtained the consistency condition

QJ ◦π−1
J,K = QK .

In probabilistic terms P(X|J |K ∈ B) = P(X|K ∈ B) for each B ∈ FK .

Exercise 1.2. Show that σ(R) = FI .

The measurable space (X ,F) is an Euclidean space if X ∈ B(Rn), and
F = X ∩ B(Rn) for some n.

Theorem 1.3 (Kolmogorov’s consistency theorem). Assume that (Xi,Fi),
i ∈ I, are Euclidean spaces. For J ⊂ I finite, let QJ be a measure on the
(finite) product σ-algebra FJ . If the set of measures {QJ : J ⊂ I, J finite }
satisfies the consistency condition

QJ ◦ π−1
J,K = QK , ∀K ⊂ J ⊂ I, J,K finite, (1)

then there exists a unique measure Q on the product σ-algebra FI , for which

Q◦ π−1
J = QJ ∀J finite.

Before the proof we recall some results from measure theory.
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Lemma 1.4 (Regularity). Let (Rk,B(Rk), µ) be a finite measure space. For
any B ∈ B(Rk) and for any ε > 0 there exists a compact K ⊂ B such that
µ(B −K) < ε.

Theorem 1.5 (Charatheodory extension). Let µ0 be a σ-finite measure on
a semialgebra A. Then µ0 extends uniquely to a measure µ on σ(A).

Theorem 1.6 (Kolmogorov’s continuity). Let µ be a finitely additive mea-
sure on the algebra A. It is measure if and only if An ↓ ∅, An ∈ A, implies
limn→∞ µ(An) = 0.

Exercise 1.7. Prove the continuity theorem.

Proof of the consistency theorem. Since FI = σ(C) we have to define Q0 as

Q0(C) = QJ(A), C = π−1
J (A) ∈ C , A ∈ FJ , J ⊂ I finite, (2)

and hope for the best.
First we need that Q0 is well-defined. Let J, K finite, A ∈ FJ , B ∈ FK ,

such that
C = π−1

J (A) = π−1
K (B).

Let L = J ∪K. Then

π−1
L (π−1

L,J(A)) = π−1
J (A) = C = π−1

K (B) = π−1
L (π−1

L,K(B)).

This implies π−1
L,J(A) = π−1

L,K(B) =: D. By the consistency condition (1)

QJ(A) = QL◦ π−1
L,J(A) = QL(π−1

L,J(A)) = QL(D) = QK(B),

that is the definition is unique.
Next we show that Q0 is finitely additive. Let C,D ∈ C disjoint, C ∈ CJ ,

D ∈ CK . Then C,D ∈ CL, with L = J ∪K, and C = π−1
L (A), D = π−1

L (B).
Since C ∩D = ∅ we have A ∩B = ∅. Thus

Q0(C ∪D) = Q0(π−1
L (A) ∪ π−1

L (B)) = Q0(π−1
L (A ∪B))

= QL(A ∪B) = QL(A) +QL(B)

= Q0(C) +Q0(D),

showing the additivity.
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Therefore Q0 is a finitely additive finite measure on C. Therefore, by
the continuity theorem, to show that Q0 is in fact a measure we need that
C1, C2, . . . ∈ C, such that Cn ↓ ∅, implies Q0(Cn)→ 0. Equivalently, if

C1, C2, . . . ∈ C , Cn ↓ lim
n→∞

Q0(Cn) = inf
n≥1

Q0(Cn) =: 2ε > 0 , (3)

then ∩∞n=1Cn 6= ∅. This is the difficult part.
In what follows we assume (Xi,Fi) = (R,B). Then (XI ,FI) = (RI ,BI).
Let C1, C2, . . . a sequence satisfying (3). Then there exist B1, B2, . . .

Cn = π−1
Jn

(Bn), Bn ∈ BJn , Jn ⊂ I, J1 ⊂ J2 ⊂ . . . , |Jn| = kn,

where 0 < k1 < k2 < . . .. Indeed, smaller Bn’s can be extended by some
factors of R if necessary. Choosing

{C̃1, C̃2, . . .} = {RI , . . . ,RI︸ ︷︷ ︸
k1−1

, C1, . . . , C1︸ ︷︷ ︸
k2−k1

, . . . , Cn, . . . , Cn︸ ︷︷ ︸
kn+1−kn

, . . .},

we may also assume that kn = n. We suppress the ∼.
That is for each n ∈ N

Cn = π−1
Jn

(Bn), Bn ∈ BJn , Jn ⊂ I, J1 ⊂ J2 ⊂ . . . , |Jn| = n.

By the regularity lemma there exists Kn ∈ RJn compact (bounded, closed)

Kn ⊂ Bn, QJn(Bn −Kn) <
ε

2n
.

Since Cn = ∩nk=1Ck,

Q0(Cn) = Q0(∩nk=1 Ck) = Q0(∩nk=1π
−1
Jk

(Bk))

= Q0(∩nk=1[π−1
Jn
◦π−1

Jn,Jk
(Bk)]) = Q0

(
π−1
Jn

(
∩nk=1 π

−1
Jn,Jk

(Bk)
))

= QJn

(
∩nk=1 π

−1
Jn,Jk

(Bk)
)
.
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Using that ∩Ak − ∩Bk ⊂ ∪(Ak −Bk)

QJn(∩nk=1π
−1
Jn,Jk

(Kk))

= Q0(Cn)−
{
QJn(∩nk=1π

−1
Jn,Jk

(Bk))−QJn(∩nk=1π
−1
Jn,Jk

(Kk))
}

≥ 2 ε−QJn

(
∩nk=1π

−1
Jn,Jk

(Bk)− ∩nk=1π
−1
Jn,Jk

(Kk)
)

≥ 2 ε−QJn

(
∪nk=1π

−1
Jn,Jk

(Bk −Kk)
)

≥ 2 ε−
n∑
k=1

QJn(π−1
Jn,Jk

(Bk −Kk)) = 2 ε−
n∑
k=1

QJk(Bk −Kk)

≥ 2 ε−
n∑
k=1

ε

2k
≥ 2 ε−

∞∑
k=1

ε

2k
= ε > 0.

That is
∩nk=1π

−1
Jn,Jk

(Kk) 6= ∅ , n = 1, 2, . . . .

Therefore, for each n there exists (xn,1, . . . , xn,n) such that (xn,1, . . . , xn,k) ∈
Kk, k = 1, . . . , n . Since (xn,1)∞n=1 ⊂ K1, and K1 is compact, by the Bolzano–

Weierstrass theorem there exists a subsequence (n
(1)
j )j and x1 ∈ K1 ⊂ RJ1

such that limj→∞ xn(1)
j ,1

= x1. We can choose a further subsequence (n
(2)
j )j of

n
(1)
j such that limj→∞ xn(2)

j ,2
= x2 for some x2 for which (x1, x2) ∈ K2 ⊂ RJ2 .

Continuing the process we obtain a point (x1, x2, . . .) such that (x1, . . . , xk) ∈
Kk for k = 1, 2, . . .. Let x ∈ RI such that πJk(x) = (x1, . . . , xk), k = 1, 2, . . .,
and the other coordinates are arbitrary. Then

x ∈ ∩∞k=1π
−1
Jk

(Kk) ⊂ ∩∞k=1π
−1
Jk

(Bk) = ∩∞k=1Ck,

proving ∩∞k=1Ck 6= ∅, thus the statement.

As an important corollary, we obtain the coordinate representation of a
stochastic process.

Theorem 1.8 (Kolmogorov’s existence theorem). Under the conditions of
the consistency theorem there exists a probability space (Ω,A,P) and a stochas-
tic process X : Ω→ XI , X(ω)(i) = Xi(ω), ω ∈ Ω, i ∈ I, such that the finite
dimensional distributions of Q = P◦X−1 is the given collection of consistent
measures

{Q◦π−1
J : J ⊂ I, J finite}.

Proof. Choose (Ω,A,P) = (XI ,FI , Q), and X : XI → XI : x 7→ x.
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2 Conditional expectation

This is a from Csörgő [2] and Durrett [3].

2.1 Existence and uniqueness

Let (Ω,A,P) be a probability space, and G ⊂ A a sub-σ-algebra. Let X be
an integrable random variable, E|X| <∞. The conditional expectation of X
given the σ-algebra G is a random variable E[X|G] which is

(i) G measurable and integrable,

(ii) for any G ∈ G ∫
G

E[X|G]dP =

∫
G

XdP.

Note that conditional expectation is a random variable. Therefore, all equal-
ities, inequalities involving conditional expectation are meant almost surely.

The conditional probability of A given G is defined by

P(A|G) = E[I(A)|G].

Example 2.1. If G = {∅,Ω} then E[X|G] = EX, while if G = A (or more
generally, X is G-measurable) then E[X|G] = X.

If X is independent of the σ-algebra G, then E[X|G] = EX.

Theorem 2.2. Conditional expectation exists and it is unique.

Proof. Existence. First recall the Radon–Nikodym theorem. Let µ, ν be
measure on the measurable space (X ,F). Then ν is absolute continuous with
respect to µ, ν � µ, if µ(A) = 0 implies ν(A) = 0. The Radon–Nikodym
theorem states that whenever ν � µ then there exists a measurable function
f such that

ν(A) =

∫
A

fdµ.

Then f = dν
dµ

is called the Radon–Nikodym derivative of ν with respect to µ.
Let’s go back to our setup. First assume that X ≥ 0, and define a new

measure ν on (Ω,G) as

ν(G) =

∫
G

XdP, G ∈ G.
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Clearly, ν � P. Therefore, there exists f G-measurable, for which

ν(G) =

∫
G

fdP.

Then f = E[X|G] satisfies (i) and (ii) in the definition above.
In the general case write X = X+ −X−, and apply the result above.
Uniqueness. Let Y, Z be random variables satisfying (i) and (ii). Choose

G = {Y > Z} ∈ G. Then ∫
G

Y dP =

∫
G

ZdP,

implying P(G) = 0. Symmetry gives the statement.

We need some results from measure theory. A π-system is a collection of
sets closed under intersection. A class of sets L on Ω is λ-system if

(i) ∅,Ω ∈ L;

(ii) if A,B ∈ L and A ⊂ B then B − A ∈ L; (i.e. closed under proper
difference)

(iii) An ↑, An ∈ L implies ∪nAn ∈ L (closed under monotone union).

Exercise 2.3. Let µ and ν be finite measure on (Ω,A) such that µ(Ω) =
ν(Ω). Show that

L = {A : µ(A) = ν(A)}

is λ-system.

The following result and its proof is similar to the monotone class theo-
rem, but it more useful.

Theorem 2.4 (π–λ theorem). Let C be a π-system. Then σ(C) = λ(C).

It is enough to check the defining integral condition (ii) on a generating
π-system.

Proposition 2.5. Let Z be G-measurable, C be a π-system such that σ(C) =
G. If ∫

C

ZdP =

∫
C

XdP (4)

for each C ∈ C, then Z = E[X|G].
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Proof. Let L be the set of all sets C for which (4) holds. Then, by assumption
C ⊂ L. It is easy to check that L is a λ-system. The π–λ-theorem gives the
result.

We also frequently use the following simple lemma.

Lemma 2.6. Let G be a sub-σ-algebra, X, Y G-measurable. Then X ≤ Y
a.s. iff ∫

G

XdP ≤
∫
G

Y dP ∀G ∈ G.

2.2 Conditional expectation with respect to random
variable

Let Y be a random variable. Then

E[X|Y ] = E[X|σ(Y )].

The next lemma implies that E[X|Y ] is a function of Y .

Lemma 2.7. Let Y be a random element on (Y ,F), and let Z be a σ(Y )-
measurable random variable. Then there exists an F-measurable function
g : Y → R, such that Z = g(Y ) a.s.

Proof. Writing Z = Z+ − Z−, we may assume that Z ≥ 0. Consider a
sequence of σ(Y )-simple functions

Zm =
km∑
i=1

cm,iI(Am,i), Am,i ∈ σ(Y ),

such that Zm ↑ Z. Since Am,i = Y −1(Fm,i), for some Fm,i ∈ F , we see that

Zm =
m∑
i=1

cm,iI(Y ∈ Fm,i) =: gm(Y ).

Clearly, gm is F -measurable, and gm(Y (ω)) ↑ Z(ω) a.s. Let

g(y) = lim sup
m→∞

gm(y).

Then g is measurable, and g(Y ) = lim supm→∞ gm(Y ) = Z, as claimed.
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Since E[X|Y ] is σ(Y )-measurable (by definition), there exists a gX mea-
surable such that E[X|Y ] = gX(Y ) a.s. The conditional expectation of X
given Y = y is

E[X|Y = y] = gX(y), y ∈ Y .

Note that the event {Y = y} has probability 0 for continuous Y , therefore
the definition above does not make sense in the old (elementary) definition
of conditional probability.

By the definition, for any F ∈ F∫
{Y ∈F}

XdP =

∫
{Y ∈F}

E[X|Y ] dP =

∫
{Y ∈F}

gX(Y ) dP

=

∫
F

gX(y)µY (dy) =

∫
F

E[X|Y = y]µY (dy).

For a real random variable, with F = R

EX =

∫
R

E[X|Y = y]µY (dy).

In particular, if Y is discrete

EX =
∑
j

E[X|Y = yj] P(Y = yj),

while if it is continuous with density h

EX =

∫
R

E[X|Y = y]h(y) dy.

2.3 Properties

Theorem 2.8. Let (Ω,A,P) be a probability space, G ⊂ A a sub-σ-algebra,
X, Y,Xn are integrable random variables, and a, b ∈ R.

(i) (linearity) E[aX + bY |G] = aE[X|G] + bE[Y |G].

(ii) (monotonicity) If X ≤ Y then E[X|G] ≤ E[Y |G].

(iii) |E[X|G]| ≤ E[|X| |G].

(iv) (monotone convergence) 0 ≤ Xn ↑ X a.s., then E[Xn|G] ↑ E[X|G].

(v) If 0 ≥ Xn ↓ X a.s., then E[Xn|G] ↓ E[X|G].
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(vi) (conditional Fatou) If Xn ≥ 0 and lim infn→∞Xn is integrable, then

E[lim inf
n→∞

Xn|G] ≤ lim inf
n→∞

E[Xn|G].

(vii) (conditional Lebesgue’s dominated convergence) If limn→∞Xn = X
a.s., and |Xn| ≤ Y a.s., for all n ∈ N, with an integrable Y then
limn→∞E[Xn|G] = E[X|G].

(viii) If limn→∞Xn = X a.s., and E[supn |Xn|] < ∞, then E[Xn|G] →
E[X|G].

(ix) If Z is G-measurable, X and ZX are integrable, then

E[ZX|G] = ZE[X|G].

(x) (tower rule) If G1 ⊂ G2 sub-σ-algebras then

E
[
E[X|G2]|G1

]
= E[X|G1] = E

[
E[X|G1]|G2

]
.

(xi) (conditional Jensen inequality) If ϕ is convex and E|X| <∞, E|ϕ(X)| <
∞, then

ϕ (E[X|G]) ≤ E [ϕ(X)|G] .

Proof. (i) The RHS is G-measurable, and satisfies the integral equation defin-
ing the LHS.

(ii) Both sides are G-measurable, thus it is enough to prove that∫
G

E[X|G]dP ≤
∫
G

E[Y |G]dP

for any G ∈ G. This follows from the defining integral equation of the
conditional expectation.

(iii) follows from (ii).
(iv) From (ii) we see that E[Xn|G] is increasing, therefore it has a G-

measurable limit, say Z. Monotone convergence theorem implies that Z
satisfies the defining integral equation of E[X|G].

(v) follows from (iv).
(vi) Put Yn = infm≥nXm. Then Yn ↑ lim infn→∞Xn, thus by (iv)

E[Yn|G] ↑ E[lim inf
n→∞

Xn|G].
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Simply Yn ≤ Xn, thus by (ii) E[Yn|G] ≤ E[Xn|G], so

lim inf E[Yn|G] ≤ lim inf E[Xn|G].

(vii) By assumption Zn := supm≥n |Xm −X| ↓ 0 a.s., and by Lebesgue’s
dominated convergence theorem, EZn → 0. Then

|E[Xn|G]− E[X|G]| ≤ E[|Xn −X| |G] ≤ E[Zn|G].

Since Zn ↓ 0, we have that E[Zn|G] ↓ V , for some V nonnegative, G-
measurable. Then

EV ≤ EZn → 0,

implying that V = 0 a.s.
(viii) follows from (vii) with Y = sup |Xn|.
(ix) As usual we may assume that X,Z are nonnegative. We show that

ZE[X|G] satisfies the defining properties of E[ZX|G]. Measurability is clear.
If Z = IA, A ∈ G, then∫

G

IAE[X|G]dP =

∫
A∩G

E[X|G]dP =

∫
A∩G

XdP =

∫
G

IAXdP.

Thus the statement holds for indicators. Using linearity and monotone con-
vergence the statement follows.

(x) Since E[X|G1] is G2-measurable, the second equality follows. For the
first equality, for G ∈ G1∫

G

E [E[X|G2]|G1] dP =

∫
G

E[X|G2]dP =

∫
G

XdP,

as claimed, where the second equality holds since G ∈ G2.
(xi) By convexity, for any x, a

ϕ(x) ≥ ϕ(a) + ϕ′(a)(x− a).

Thus
ϕ(X) ≥ ϕ (E[X|G]) + ϕ′ (E[X|G]) (X − E[X|G]).

Take conditional expectation E[·|G] and note that on the RHS ϕ′ (E[X|G]) is
G-measurable. If ϕ is not differentiable, take left derivative, which exists.

12



Exercise 2.9 (Chebyshev’s inequality). Prove that

P(|X| ≥ x|G) ≤ E[X2|G]

x2
.

Theorem 2.10. Assume that EX2 <∞. Then

inf
Y G−measurable

E(X − Y )2 = E (X − E[X|G])2 ;

that is E[X|G] is that G-measurable random variable which minimizes the
error E(X − Y )2.

This means that the conditional expectation is a projection to

L2(G) = {Z : Ω→ R,EZ2 <∞, Z G −measurable}.

Proof. For Z ∈ L2(G)

E (ZE[X|G]) = E(ZX),

that is
E (Z(X − E[X|G])) = 0.

Thus for Y ∈ L2(G)

E[(X − Y )2] = E[(X − E[X|G] + E[X|G]− Y )2]

= E[(X − E[X|G])2] + E[(E[X|G]− Y )2].

Thus we see that the minimum is attained at Y = E[X|G].

2.4 Regular conditional probabilities

This is from Durrett [3].
Let G ⊂ A be a sub-σ-algebra, and consider for A ∈ A the conditional

probabilities P(A|G) = E[IA|G]. Since 0 ≤ IA ≤ 1,

P(A|G) ∈ [0, 1] a.s. (5)

Furthermore, for disjoint Ai ∈ A, i = 1, 2, . . ., we have

P(∪∞i=1Ai|G) =
∞∑
i=1

P(Ai|G) a.s. (6)
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Therefore, P(·|G) behaves as a probability measure. However, both (5) and
(6) hold almost surely. That is, there is an exceptional set NA, which is a
P-null set, P(NA) = 0, such that (5) holds for ω 6∈ NA. The P-null set NA

may depend on A. In general, a σ-algebra has more than countable infinitely
many sets (indeed, it is either finite, or at least continuum). Thus these null
set may pile up to a large set. The same problem appears in (6). Under some
general conditions we can guarantee that the bad points cannot pile up.

Let (Ω,A,P) be a probability space, X : Ω → S a random element in
(S,S), and G be a sub-σ-algebra of A. The regular conditional distribution
for X given G is a function µ : Ω× S → [0, 1] such that

(i) for each A ∈ A fix, P(X ∈ A|G)(ω) = µ(ω,A) a.s.;

(ii) Almost surely A 7→ µ(ω,A) is a probability measure on (S,S).

If S = Ω and X is the identity map, µ is a regular conditional probability.
A measurable space (S,S) is nice, if there is a 1-1 map φ : S → R such

that φ, φ−1 are measurable. If S is a Borel subset of a complete separable
metric space, and S are the Borel sets, then (S,S) is nice.

Theorem 2.11. Regular conditional distribution exist if (S,S) is nice.

Proof. We prove only in the special case (S,S) = (R,B(R)). The general
case is almost identical, with some technical difficulties.

Consider the conditional probabilities P(X ≤ q|G), q ∈ Q. For each
q ∈ Q there is P-null set Nq, such that P(X ≤ q|G)(ω) ∈ [0, 1] for ω 6∈ Nq.
Similarly, for each q < r there exists a P-null set Nq,r such that for each
ω 6∈ Nq,r

P(X ≤ q|G)(ω) ≤ P(X ≤ r|G)(ω).

Set
N = ∪q∈QNq ∪ ∪q<r∈QNq,r.

Then P(N) = 0 and P(X ≤ q|G)(ω) ∈ [0, 1], and it is nondecreasing in q ∈ Q
for ω 6∈ N . Let

G(x, ω) = inf{P(X ≤ q|G)(ω) : q > x}.

If ω 6∈ N then G(x, ω) is a distribution function in x.
Furthermore, since P(X ≤ qn|G) ↓ P(X ≤ x|G) as qn ↓ x we see that

G(x, ω) = P(X ≤ x|G)(ω) a.s.
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Taking G = σ(Y ), we see that P(X ∈ A|G) is a measurable function of
Y , for each A. This can be done also simultaneously, as above.

Theorem 2.12. Let X, Y be random elements in the nice space (S,S), and
let G = σ(Y ). Then there exists µ : S × S → [0, 1] such that

(i) for each A ∈ S, µ(Y (ω), A) = P(X ∈ A|Y )(ω) a.s.

(ii) almost surely A 7→ µ(Y (ω), A) is a probability measure on (S,S).

Proof. The proof is similar to the previous one. Again assume (S,S) =
(R,B(R)).

As above, we can find random variables G(q, ω) nondecreasing in q outside
of P-null set N , such that G(q, ω) = P(X ≤ q|Y )(ω), a.s., q ∈ Q. Since the
latter is σ(Y )-measurable, G(q, ω) = H(q, Y (ω)). Choosing

F (x, y) = inf{H(q, y) : q > x},

we can show that F (x, Y (ω)) = P(X ≤ x|Y )(ω). This defines a measure,
since F (·, y) is nondecreasing.

Existence of regular conditional distribution allows us to compute condi-
tional expectations simultaneously, and also shows the connection to usual
expectation.

Theorem 2.13. Let µ be a regular conditional distribution for X given G.
Let f : S → R measurable with E|f(X)| <∞. Then

E[f(X)|G] =

∫
f(x)µ(ω, dx) a.s.

Proof. The result holds for indicators, by definition. Linearity and monotone
convergence implies the statement, as usual.

3 Discrete time martingales

First part of discrete time martingales are mainly from Durrett [3].
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3.1 Definition, properties

Let (Ω,A,P) be a probability space. A filtration is an increasing sequence of
sub-σ-algebras F0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂ . . .. A sequence of random variables
(Xn)n is adapted to the filtration (Fn) if Xn is Fn-measurable. The sequence
(Xn,Fn) is a martingale, or (Xn) is martingale with respect to (Fn), if

(i) E|Xn| <∞;

(ii) (Xn) is adapted;

(iii) E[Xn+1|Fn] = Xn.

For a submartingale (supermartingale) conditions (i) and (ii) hold, and (iii)
hold with ≥ (≤).

If the filtration is not specified then (Xn) is martingale meant as it is mar-
tingale with respect to the natural filtration (Fn), where Fn = σ(X1, . . . , Xn).

Clearly, if (Xn) is a submartingale then (−Xn) is a supermartingale,
therefore it is enough to prove statements for submartingales.

Example 3.1. Let X,X1, . . . iid random variables with EX = 0, and put
Sn = X1 + . . .+Xn. Then (Sn) is a martingale. If EX2 <∞ then (S2

n) is a
submartingale.

If X,X1, . . . are iid nonnegative random variables, EX = 1, then (Rn)n
is a martingale, where Rn =

∏n
i=1Xi.

Proposition 3.2. If (Xn) is a submartingale then E[Xn|Fm] ≥ Xm for any
n > m. Equality holds for martingales.

Proposition 3.3. (i) Let (Xn,Fn) be a martingale and ϕ be a convex func-
tion such that E|ϕ(Xn)| <∞. Then ϕ(Xn) is a submartingale.

(ii) Let (Xn,Fn) be a submartingale and ϕ be a nondecreasing convex
function such that E|ϕ(Xn)| <∞. Then ϕ(Xn) is a submartingale.

Proof. It follows from Jensen’s inequality.

Corollary 3.4. If (Xn) is a submartingale then ((Xn− a)+) is a submartin-
gale. If (Xn) is a supermartingale then (Xn ∧ a)n is a supermartingale.
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3.2 Martingale convergence theorem

A sequence (Hn) is predictable if Hn is Fn−1-measurable. Let (Hn) be pre-
dictable and (Xn) be adapted. Then

(H ·X)n =
n∑
k=1

Hm(Xm −Xm−1).

Note that this is a discrete stochastic integral.

Theorem 3.5. Let (Xn) be a submartingale and (Hn) be predictable, non-
negative, and bounded. Then (H ·X)n is a submartingale.

Proof. Follows from the submartingale property.

An integer valued random variable τ is a stopping time, if {τ = n} ∈ Fn.

Corollary 3.6. Let τ be a stopping time, and (Xn) a submartingale. Then
(Xτ∧n) is a submartingale.

Proof. Let Hn = I(τ ≥ n). Then (Hn) is predictable, thus ((H · X)n =
Xτ∧n −X0)n is a submartingale.

Let (Xn) be a submartingale, a < b. Let τ0 = −1, and

τ2k−1 = min{m > τ2k−2 : Xm ≤ a},
τ2k = min{m > τ2k−1 : Xm ≥ b}.

Then τk’s are stopping times. So

Hm =

{
1, if τ2k−1 < m ≤ τ2k for some k,

0, otherwise.
(7)

is predictable. By definition X(τ2k−1) ≤ a and X(τ2k) ≥ b, thus between
τ2k−1 and τ2k the process (Xn) crosses the strip [a, b]. This is an upcrossing.
Let Un = max{k : τ2k ≤ n} is the number of upcrossings up to time n.

Lemma 3.7 (Upcrossing lemma). Let (Xn) be a submartingale, a < b. Then

(b− a)EUn ≤ E(Xn − a)+ − E(X0 − a)+.
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Proof. Define Yn = a+ (Xn− a)+. This is a submartingale, which upcrosses
[a, b] the same number of times as (Xn) does. Recalling the definition of
H from (7) we have (b − a)Un ≤ (H · Y )n. Indeed, each upcrossing has
at least b − a contribution, and the last incomplete one has a nonnegative
contribution (because of changing X to Y ).

Let Kn = 1−Hn. Since Yn − Y0 = (H · Y )n + (K · Y )n, and

E(K · Y )n ≥ E(K · Y )0 = 0,

we have
E(H · Y )n ≤ E(Yn − Y0),

and the result follows.

A consequence of the previous lemma we obtain the following.

Theorem 3.8 (Martingale convergence theorem). Let (Xn) be a submartin-
gale with sup EX+

n < ∞. Then limn→∞Xn converges almost surely to a X
with E|X| <∞.

Proof. Fix a < b. Since (X − a)+ ≤ X+ + |a| we have

EUn ≤
|a|+ EX+

n

b− a
.

Let U = limn→∞ Un. Clearly, Un is nondecreasing, so the limit exists. By the
assumptions EU <∞, in particular U is finite almost surely. This holds for
any a < b, the set

A = ∪a,b∈Q{lim inf Xn < a < b < lim supXn}

has probability 0. If ω 6∈ A then limXn(ω) exists. By Fatou, EX∗ ≤
lim inf EX+

n <∞, so X is finite a.s. Furthermore,

EX−n = EX+
n − EXn ≤ EX+

n − EX0,

which implies

EX− ≤ lim inf
n→∞

EX−n ≤ sup EX+
n − EX0 <∞.
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3.3 Doob’s decomposition

A submartingale is informally a stochastically increasing sequence. It can be
decomposed to a martingale part, which corresponds to a fair game, and a
predictable almost surely nondecreasing part.

Theorem 3.9 (Doob’s decomposition). Let (Xn) be a submartingale. There
exists a unique martingale (Mn), and a predictable nondecreasing sequence
(An), with A0 = 0 such that Xn = Mn + An.

Proof. Existence. Under the stated properties

E[Xn|Fn−1] = Mn−1 + An = Xn−1 − An−1 + An.

Therefore, we must have

An =
n∑
k=1

E[Xn −Xn−1|Fn−1],

and Mn = Xn − An. It is easy to see that this indeed works.
Uniqueness follows easily.

3.4 Doob’s maximal inequality

This part is mainly from Csörgő [2].
Our first optional stopping theorem is the following.

Theorem 3.10. Let (Xn)n be a submartingale and let τ be a bounded stop-
ping time, i.e. τ ≤ k a.s. for some k ∈ N. Then

EX0 ≤ EXτ ≤ EXk.

Proof. We proved that the stopped process (Xn∧τ )n is submartingale, thus

EX0 = EXτ∧0 ≤ EXτ∧k = EXτ .

For the other direction, put Kn = I(τ < n) = I(τ ≤ n−1). Then Kn is Fn−1-
measurable, so (Kn)n is predictable. Therefore (K · X)n is submartingale,
where

(K ·X)n =
n∑
i=1

I(τ ≤ i− 1)(Xi −Xi−1) = Xn −Xτ∧n.

That is
EXk − EXτ = E(K ·X)k ≥ E(K ·X)0 = 0.
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An easy consequence is Doob’s maximal inequality.

Theorem 3.11 (Doob’s maximal inequality). Let (Xk,Fk)k be a submartin-
gale, and put

Mn = max
1≤k≤n

Xk.

Then for any x > 0

xP(Mn ≥ x) ≤
∫
{Mn≥x}

XndP ≤ EX+
n ,

where a+ = max{a, 0}.

Proof. The second inequality is obvious.
Let τ = min{min{k : Xk ≥ x, k = 1, 2, . . . , n}, n}. Then τ is a bounded

stopping time. Since Xτ ≥ x on {Mn ≥ x}

xP{Mn ≥ x} ≤
∫
{Mn≥x}

XτdP.

By Theorem 3.10 EXτ ≤ EXn, and Xτ = Xn on the event {Mn < x}, thus∫
{Mn≥x}

XτdP ≤
∫
{Mn≥x}

XndP,

proving the statement.

We obtain a new proof for Kolmogorov’s maximal inequality.

Example 3.12 (Kolmogorov’s maximal inequality). Let ξ, ξ1, . . . be indepen-
dent random variables with Eξi = 0, and Eξ2

i = σ2
i <∞. Then Xn =

∑n
i=1 ξi

is a martingale with respect to the natural filtration. Therefore (X2
n)n is a

submartingale and

P

(
max

1≤k≤n
|Xk| ≥ x

)
= P

(
max

1≤k≤n
X2
k ≥ x2

)
≤ x−2EX2

n = x−2

n∑
i=1

σ2
i .

For an infinite sequence we obtain the following.
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Corollary 3.13. If (Xk,Fk) is a submartingale and x > 0, then

P(sup
n
Xn ≥ x) ≤ 1

x
sup
n

EX+
n .

Proof. Follows from the previous result combined with the monotone con-
vergence theorem.

Exercise 3.14. Prove the corollary.

For the Lp version we need a lemma.

Lemma 3.15. Let X, Y be nonnegative random variables such that

P(X ≥ x) ≤ 1

x

∫
{X≥x}

Y dP, x > 0.

Then for any p > 1

EXp ≤
(

p

p− 1

)p
EY p.

Proof. Note the for a nonnegative random variable X

EXp =

∫ ∞
0

pxp−1[1− F (x)]dx,

where F (x) = P(X ≤ x) is the distribution function of X. Indeed,

EXp =

∫
Ω

XpdP =

∫
Ω

∫ ∞
0

I(x < X(ω))pxp−1dxdP(ω)

=

∫ ∞
0

pxp−1[1− F (x)]dx.
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The result follows using Hölder’s inequality as

EXp =

∫ ∞
0

pxp−1[1− F (x)]dx

≤
∫ ∞

0

pxp−1 1

x

∫
{X≥x}

Y (ω)dP(ω) dx

=

∫ ∞
0

∫
Ω

pxp−2I(X(ω) ≥ x)Y (ω)dP(ω)dx

=

∫
Ω

Y (ω)

(∫ X(ω)

0

pxp−2dx

)
dP(ω)

=

∫
Ω

Y Xp−1 p

p− 1
dP

≤ p

p− 1
(EY p)1/p (EX(p−1)q

)1/q

=
p

p− 1
(EY p)1/p (EXp)1/q ,

where p and q are conjugate exponents, i.e. 1/p+ 1/q = 1.

Theorem 3.16 (Lp maximal inequality). (i) Let (Xk)
n
k=1 be a nonnegative

submartingale and p ∈ (1,∞). Then

E max{Xp
1 , . . . , X

p
n} ≤

(
p

p− 1

)p
EXp

n.

(ii) Let (Xk)
∞
k=1 be a nonnegative submartingale and p ∈ (1,∞). Then

E sup
n∈N

Xp
n ≤

(
p

p− 1

)p
sup
n∈N

EXp
n.

Proof. Statement (i) follows from Doob’s maximal inequality and Lemma
3.15.

(ii) follows from (i) and the monotone convergence theorem as

E sup
n
Xp
n = lim

n→∞
E max

1≤k≤n
Xp
k

≤ lim inf
n→∞

(
p

p− 1

)p
EXp

n

≤
(

p

p− 1

)p
sup
n

EXp
n.
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3.5 Optional stopping theorem

Let (Ω,F ,P) be a probability measure and (Fn)n a filtration on it. Recall
that a random variable τ : Ω→ N is stopping time, if {τ ≤ n} ∈ Fn for each
n ∈ N.

We already used the following simple observation.

Proposition 3.17. The following are equivalent.

(i) τ is stopping time;

(ii) {τ > n} ∈ Fn for each n ∈ N;

(iii) {τ = n} ∈ Fn for each n ∈ N.

Exercise 3.18. Prove this result.

Let τ be a stopping time. The σ-algebra of the events prior to τ , or short
pre-τ -sigma algebra is defined as

Fτ = {A ∈ F : A ∩ {τ ≤ n} ∈ Fn, n = 1, 2, . . .}. (8)

It is easy to see that Fτ is indeed a σ-algebra. Clearly, Ω ∈ Fτ , and if
A ∈ Fτ , then

Ac ∩ {τ ≤ n} = (Ω−A)∩ {τ ≤ n} = {τ ≤ n}− (A∩ {τ ≤ n}) ∈ Fn, n ∈ N.

Finally, if A1, A2, . . . ∈ Fτ , then

(∪∞k=1Ak) ∩ {τ ≤ n} = ∪∞k=1(Ak ∩ {τ ≤ n}) ∈ Fn

for any n = 1, 2, . . ..

Exercise 3.19. Show that if τ ≡ k for some k ∈ N then Fτ = Fk, so the
notation is consistent.

Some simple properties are summarized in the next statement.

Lemma 3.20. Let σ, τ be stopping times.

(i) τ is Fτ -measurable.

(ii) σ ∧ τ = min(σ, τ) and σ ∨ τ = max(σ, τ) are stopping times.

(iii) If σ ≤ τ , then Fσ ⊂ Fτ .

(iv) If (Xn)n is an adapted sequence then Xτ is Fτ -measurable.
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Theorem 3.21 (Optional stopping theorem, Doob). Let (Xn)n be a sub-
martingale, and σ ≤ τ stopping times such that

E(|Xσ|) <∞ , E(|Xτ |) <∞ (9)

and

lim inf
n→∞

∫
{τ>n}

|Xn| dP = 0. (10)

Then E(Xτ |Fσ) ≥ Xσ almost surely.
Furthermore, if (Xn)n is martingale then E(Xτ |Fσ) = Xσ.

Clearly, conditions (9) and (10) hold if the stopping times are bounded.

Proof. Since Xσ is Fσ-measurable, Xσ = E(Xσ|Fσ), therefore it is enough to
show that

E(Xτ −Xσ|Fσ) ≥ 0.

This is the same as∫
A

(Xτ −Xσ) dP ≥ 0 for all A ∈ Fσ. (11)

First assume that τ is bounded, that is τ ≤ m for some m. For any
A ∈ Fσ

A ∩ {σ < k ≤ τ} = A ∩ {σ ≤ k − 1} ∩ {τ > k − 1} ∈ Fk−1 , k ≥ 2,

thus ∫
A

(Xτ −Xσ) dP

=

∫
A

( τ∑
k=σ+1

(Xk −Xk−1)

)
dP

=

∫
A

( m∑
k=2

I(σ < k ≤ τ)(Xk −Xk−1)

)
dP

=
m∑
k=2

∫
A∩{σ<k≤τ}

(Xk −Xk−1) dP

=
m∑
k=2

∫
A∩{σ<k≤τ}

E(Xk −Xk−1|Fk−1) dP ≥ 0,
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proving (11).
Consider the general case. For any n we can write∫

A

(Xτ −Xσ)dP

=

∫
A

(Xτ∧n −Xσ∧n)dP +

∫
A

(Xτ −Xτ∧n)dP−
∫
A

(Xσ −Xσ∧n)dP.

On the event {σ ≥ n} we have Xτ∧n = Xn = Xσ∧n, therefore∫
A

(Xτ∧n −Xσ∧n)dP =

∫
A∩{σ<n}

(Xτ∧n −Xσ∧n)dP ≥ 0 , n ∈ N, (12)

where the inequality follows from the previous case.
By condition (10) there exists a sequence nk →∞ such that

lim
k→∞

∫
{τ>nk}

|Xnk | dP = 0.

It is enough to show that on this subsequence the second and third terms in
decomposition (12) tends to 0. For the second term∣∣∣∣ ∫

A

(Xτ −Xτ∧nk)dP

∣∣∣∣ =

∣∣∣∣ ∫
A∩{τ>nk}

(Xτ −Xτ∧nk)dP

∣∣∣∣
≤
∫
A∩{τ>nk}

(|Xτ |+ |Xnk |)dP

≤
∫
{τ>nk}

|Xτ | dP +

∫
{τ>nk}

|Xnk | dP.

Similarly, for the third term∣∣∣∣ ∫
A

(Xσ −Xσ∧nk)dP

∣∣∣∣ =

∣∣∣∣ ∫
A∩{σ>nk}

(Xσ −Xnk)dP

∣∣∣∣
≤
∫
{σ>nk}

|Xσ| dP +

∫
{τ>nk}

|Xnk | dP.

Using (9) both upper bounds tend to 0.

Corollary 3.22. Assume that (Xn) is (super-, sub-) martingale, τ is a stop-
ping time, E(|Xτ |) <∞ and (10) holds. Then
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(i) E(Xτ |F1) ≤ X1 and E(Xτ ) ≤ E(X1) for supermartingales;

(ii) E(Xτ |F1) ≥ X1 and E(Xτ ) ≥ E(X1) for submartingales;

(iii) E(Xτ |F1) = X1 and E(Xτ ) = E(X1) for martingales.

Some conditions are needed for the optional stopping to hold.

Example 3.23 (Simple symmetric random walk). Let ξ, ξ1, ξ2, . . . are iid
random variables with P(ξ = ±1) = 1/2. Let S0 = 1 and Sn = Sn−1 + ξn.
Then (Sn) is martingale. Let τ = min{n : Sn = 0}. Then τ is a stopping
time and the martingale (Sτ∧n)n tends to 0 a.s. The optional stopping does
not hold as Sτ ≡ 0 a.s., while S0 = 1. Clearly, condition (10) does not hold.

Theorem 3.24 (Wald identity). Let X,X1, X2, . . . be iid random variables
with EX = µ ∈ R, and let τ be a stopping time with E(τ) < ∞. Put
Sn = X1 + · · ·+Xn, n ∈ N. Then E(Sτ ) = µE(τ).

Proof. First assume X ≥ 0. We have

E(Sτ ) = E

( ∞∑
k=1

I(τ ≥ k)Xk

)
=
∞∑
k=1

E(I(τ ≥ k)Xk)

=
∞∑
k=1

EI(τ ≥ k)E(Xk)

= µ
∞∑
k=1

P(τ ≥ k)

= µE(τ).

To see the general case consider the decomposition Sτ = S
(+)
τ −S(−)

τ where

S(+)
τ =

∞∑
k=1

X+
k I(τ ≥ k)

and

S(−)
τ =

∞∑
k=1

X−k I(τ ≥ k).
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As a simple application of the optional stopping problem we consider the
gambler’s ruin problem. There is an elementary but longer way to derive
these formulas.

Example 3.25 (Gambler’s ruin). Let X,X1, X2, . . . be iid random variables
such that P(X = 1) = p = 1 − P(X = −1), 0 < p < 1, and put Sn =
X1 + · · ·+Xn, n ∈ N. Fix a, b ∈ N and let

τ = τa,b(p) = inf{n : Sn ≥ b or Sn ≤ −a},

with the convention inf ∅ =∞. Let (Fn) be the natural filtration, i.e. Fn =
σ(X1, . . . , Xn), n ∈ N.

It is easy to show that P(τ <∞) = 1, and τ is a stopping time. Further-
more, |Sτ | ≤ max(a, b), in particular E|Sτ | <∞ and

lim inf
n→∞

∫
{τ>n}

|Sn| dP ≤ lim inf
n→∞

max(a, b)P(τ > n) = 0.

First assume that p = 1/2. Then EX = 0 and (Sn) is a martingale.
Therefore, by the optional stopping theorem

0 = ES0 = ESτ = −aP(Sτ = −a) + bP(Sτ = b)

= −a(1−P(Sτ = b)) + bP(Sτ = b).

Thus

P(Sτ = b) =
a

a+ b
and P(Sτ = −a) =

b

a+ b
.

Using that (S2
n − n) is a martingale, we can determine Eτ . Since

0 = E(S2
0 − 0) = E(S2

τ − τ)

we obtain

Eτ = ES2
τ = a2P(Sτ = −a) + b2P(Sτ = b) = a2 b

a+ b
+ b2 a

a+ b
= ab.

The case p 6= 1/2 is different. Introduce

Zn = sSn =
n∏
k=1

sXk
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with s = (1− p)/p = 1/r. Then (Zn) is a martingale and

Zτ = sbI(Sn = b) + s−aI(Sn = −a) ≤ sb + s−a,

thus EZτ <∞ and

lim inf
n→∞

∫
{τ>n}

|Zn| dP ≤ (sb + s−a) lim inf
n→∞

P{τ > n} = 0.

Again, by the optional sampling theorem

s−aP(Sτ = −a) + sb (1−P(Sτ = −a))

= s−aP(Sτ = −a) + sbP(Sτ = b)

= E(sSτ ) = E(Zτ )

= E(Z1) = E(sX) = 1.

Rearranging we obtain

P(Sτ = −a) =
1− sb

s−a − sb
rb

rb
=

rb − 1

ra+b − 1
=

1− rb

1− ra+b
.

To obtain Eτ , using the Wald identity

ESτ = (2p− 1)Eτ,

from which

Eτ =
1

2p− 1
ESτ =

1

2p− 1
[−aP(Sτ = −a) + bP(Sτ = b)] .

Exercise 3.26. Show that τ <∞ a.s.

4 Continuous time martingales

4.1 Definitions and simple properties

This part is from Karatzas and Shreve [4].
Let (Ω,F ,P) be a probability space and (Ft)t≥0 a filtration, i.e. an in-

creasing sequence of σ-algebras. The time horizon is either finite or infinite,
t ∈ [0, T ] or t ∈ [0,∞).

In what follows we always assume that the filtration satisfies the usual
conditions :
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(i) F0 contains the P-null sets;

(ii) (Ft)t is right-continuous, i.e. ∩s>tFs =: Ft+ = Ft.
Let (Xt) and (Yt) be stochastic processes. The process Y is a modification

of X if Xt = Yt a.s. for any fix t, i.e. P(Xt = Yt) = 1 for each t ≥ 0. The
processes X and Y are indistinguishable if their sample path are the same
almost surely, i.e.

P(Xt = Yt, t ≥ 0) = 1.

They have the same finite dimensional distributions if for all 0 ≤ t1 < t2 <
. . . < tn <∞ and A ∈ B(Rn)

P ((Xt1 , . . . , Xtn) ∈ A) = P ((Yt1 , . . . , Ytn) ∈ A) .

Example 4.1. Let U be uniform(0, 1), and Xt ≡ 0, t ∈ [0, 1], and Yt =
I(U = t). Then Y is a modification of X, but they are not indistinguishable,
since

P(Xt = Yt, t ≥ 0) = 0.

The process (Xt)t is adapted to the filtration (Ft)t, if Xt is Ft-measurable
for each t ≥ 0. The process (Xt,Ft)t is a martingale if

(i) (Xt)t is adapted to (Ft)t;
(ii) E|Xt| <∞ for all t ≥ 0;

(iii) E[Xt|Fs] = Xs a.s. for all t ≥ s.

It is sub- or supermartingale if (i) and (ii) holds, and (iii) holds with ≥ or ≤
instead of =.

A random variable τ : Ω → [0,∞) is a stopping time if {τ ≤ t} ∈ Ft.
The σ-algebra of the events prior to τ , or pre-τ -σ-algebra is

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}.

Exercise 4.2. Show that Fτ is indeed a σ-algebra.

The next result is obvious, but very useful.

Proposition 4.3. Let (Xt,Ft) be a (sub-, super-) martingale. Then for any
sequence 0 ≤ t0 < t1 < . . . < tN < ∞ the process (Xtn ,Ftn)Nn=0 is a discrete
time martingale.

Lemma 4.4. Let σ, τ be stopping times.
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(i) τ is Fτ -measurable.

(ii) If τ ≡ t then Fτ = Ft.
(iii) σ ∧ τ = min(σ, τ) and σ ∨ τ = max(σ, τ) are stopping times.

(iv) If σ ≤ τ , then Fσ ⊂ Fτ .

(v) If (Xt)t is right-continuous and adapted then Xτ is Fτ -measurable.

Exercise 4.5. Prove the lemma.

Remark 1. In continuous time the technical details are trickier.
The process (Xt)t is adapted to (Ft)t, if Xt is Ft-measurable, and it is

progressively measurable with respect to (Ft)t, if for all t ≥ 0 and A ∈ B(Rd)

{(s, ω) : s ≤ t, Xs(ω) ∈ A} ∈ B([0, t])⊗Ft,

where B stands for the Borel sets, and ⊗ is the product σ-algebra. In what
follows we always need progressive measurability, adaptedness is not enough.

The next statement says that the situation is not too bad.

Proposition 4.6. If (Xt)t is right continuous and adapted, then it is progres-
sively measurable.

Example 4.7 (Poisson process). A Poisson process with intensity λ > 0 is
an adapted integer valued RCLL (right continuous with left limits) process
N = (Nt,Ft)t≥0 such that

(i) N has independent increments, that is Nt − Ns is independent of Fs
for any s < t,

(ii) N0 = 0 a.s.,

(iii) Nt −Ns ∼ Poisson(λ(t− s)).

Exercise 4.8. Show that (Nt − λt) is martingale.

Proposition 4.9. Let (Xt) be a martingale, and ϕ a convex function such
that E|ϕ(Xt)| <∞ for all t ≥ 0. Then (ϕ(Xt)) is submartingale.

Furthermore if (Xt) is a submartingale and ϕ nondecreasing and convex
that E|ϕ(Xt)| <∞ for all t ≥ 0, then (ϕ(Xt)) is a submartingale.

Example 4.10 (Wiener process). The Wiener process or standard Brownian
motion is an adapted process W = (Wt,Ft)t≥0 such that
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(i) W has independent increments, that is Wt −Ws is independent of Fs
for any s < t,

(ii) W0 = 0 a.s.,

(iii) Wt −Ws ∼ N(0, t− s),
(iv) Wt has continuous sample path.

Exercise 4.11. Show that (Wt) and (W 2
t − t) are martingales.

4.2 Martingale convergence theorem

Consider an adapted stochastic process (Xt)t≥0. Fix a < b, and a finite set
F ⊂ [0,∞). Let UF denote the number of upcrossings of the interval [a, b]
by the restricted process (Xt)t∈F . Formally, let τ0 = 0, and

τ2k−1 = min{t ∈ F : t ≥ τ2k−2, Xt < a},
τ2k = min{t ∈ F : t ≥ τ2k−1, Xt > b}.

The number of upcrossings on F is

UF (a, b) = UF = max{k : τ2k <∞}.

We can extend the definition of infinite sets I ⊂ [0,∞) as

UI = sup{UF : F ⊂ I, F finite}.

We have the upcrossing inequality.

Theorem 4.12 (Upcrossing inequality). Let (Xt) be a right-continuous sub-
martingale. For any a < b and 0 ≤ S ≤ T <∞

(b− a)EU[S,T ] ≤ E(XT − a)+ − E(XS − a)+.

Proof. Consider an enumeration of the countable set Q ∩ [S, T ] as

Q ∩ [S, T ] = {q1, q2, . . .},

and let Fn = {q1, . . . , qn} ∪ {S, T}. Then (Xt,Ft)t∈Fn is a discrete time
submartingale, therefore, by the upcrossing inequality

(b− a)EUFn ≤ E(XT − a)+ − E(XS − a)+.
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Since Fn is increasing, UFn is increasing, and by the right-continuity of (Xt)

lim
n→∞

UFn = U[S,T ] a.s.

In particular, U[S,T ] is measurable, and by the monotone convergence theorem
the result follows.

Theorem 4.13 (Martingale convergence theorem). Let (Xt) be a right-
continuous submartingale such that

sup
t≥0

E(X+
t ) <∞.

Then limt→∞Xt = X exists a.s. and E|X| <∞.

Proof. By the upcrossing inequality and the monotone convergence theorem
for any a < b

EU[0,∞)(a, b) ≤
supt≥0 EX+

t + |a|
b− a

.

Therefore, for any a < b the upcrossings U[0,∞)(a, b) are a.s. finite. Thus
almost surely the upcrossings are finite for all a < b rationals, implying the
existence of the limit.

The integrability of the limit follows from Fatou’s lemma.

Exercise 4.14. Let (Xt) be a right-continuous nonnegative submartingale.
Show that the following are equivalent:

(i) (Xt) is uniformly integrable;

(ii) converges in L1;

(iii) converges a.s. to an integrable random variableX∞, such that (Xt)t∈[0,∞]

is a submartingale.

4.3 Inequalities

Theorem 4.15 (Doob’s maximal inequality). Let (Xt) be a right-continuous
submartingale.

(i) For any 0 < S < T <∞, x > 0

xP( sup
S≤t≤T

Xt ≥ x) ≤ EX+
T .
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(ii) If (Xt) is nonnegative and p > 1 then

E

(
sup
S≤t≤T

Xt

)p
≤
(

p

p− 1

)p
EXp

T .

Proof. (i): Let Fn be as above. Then (Xt,Ft)t∈Fn is a discrete time martin-
gale. Therefore, by Doob’s maximal inequality

yP

(
sup
t∈Fn

Xt > y

)
≤ EX+

T .

Right-continuity implies{
sup
S≤t≤T

Xt > y

}
= ∪∞n=1

{
sup
t∈Fn

Xt > y

}
,

and the union is increasing. Letting n→∞

yP

(
sup
S≤t≤T

Xt > y

)
≤ EX+

T .

Letting y ↑ x the result follows.
Part (ii) follows as in the discrete time case.

Exercise 4.16. Let N be a Poisson process with intensity λ > 0. Show that
for any c > 0

lim sup
t→∞

P

(
sup

0≤s≤t
(Ns − λs) ≥ c

√
λt

)
≤ 1

c
√

2π
,

and

lim sup
t→∞

P

(
inf

0≤s≤t
(Ns − λs) ≤ −c

√
λt

)
≤ 1

c
√

2π
.

Show that for any 0 < S < T <∞

E sup
S≤t≤T

(
Nt

t
− λ
)2

≤ 4Tλ

S2
.

Corollary 4.17. Let N be a Poisson process with intensity λ > 0. Then

lim
t→∞

Nt

t
= λ a.s.
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Proof. By Chebyshev’s inequality

P
(∣∣t−1Nt − λ

∣∣ > ε
)
≤ Var(Nt)

t2ε2
=

λ

ε2t
.

By the first Borel–Cantelli-lemma almost surely

lim
n→∞

N2n

2n
= λ.

So on a subsequence we are done. In between we have

P

(
sup

2n≤t≤2n+1

∣∣t−1Nt − λ
∣∣ > ε

)
≤

E
(
sup2n≤t≤2n+1 |t−1Nt − λ|

)2

ε2

≤ 4 2n+1λ

22nε2
= 2−n

8λ

ε2
.

Applying Borel–Cantelli again, we are done.

4.4 Optional stopping

Let (Xt,Ft)t∈[0,∞) be a right-continuous submartingale. It has a last element
X∞, if X∞ is measurable with respect to the σ-algebra F∞ = σ (∪t≥0Ft),
E|X∞| <∞ and for all t ≥ 0 E[X∞|Ft] ≥ Xt a.s.

If we work on the finite time horizon [0, T ], T <∞, then the submartin-
gale (Xt)t∈[0,T ] has a last element XT (by definition!).

Theorem 4.18 (Optional stopping). Let (Xt,Ft)t≥0 be a right-continuous
submartingale with last element X∞. Let σ ≤ τ be stopping times. Then

E[Xτ |Fσ] ≥ Xσ a.s.

Proof. Assume that τ is bounded, i.e. τ ≤ K. Let

σn(ω) = k/2n, if σ(ω) ∈ [(k − 1)/2n, k/2n),

and define τn similarly. Then σn and τn are stopping times, and σn ≤ τn. We
can apply the optional stopping theorem for the submartingale (Xk/2n ,Fk/2n),
and stopping times σn, τn. Then

E[Xτn|Fσn ] ≥ Xσn ,
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that is for A ∈ Fσn ∫
A

XτndP ≥
∫
A

XσndP.

Since σn ≥ σ for each n, Fσn ⊃ Fσ. Therefore, for A ∈ Fσ∫
A

XτndP ≥
∫
A

XσndP.

By the right-continuity Xτn → Xτ and Xσn → Xσ a.s. This combined with
the uniform integrability implies∫

A

XτdP ≥
∫
A

XσdP,

proving the result.

Exercise 4.19. Prove that σn, τn are indeed stopping times.

4.5 Doob-Meyer decomposition

The Doob-Meyer decomposition is the continuous time analogue of the Doob’s
decomposition of submartingales. While the latter is basically trivial, the
Doob-Meyer decomposition is highly nontrivial, and needs further assump-
tions.

Recall that a class D of random variables are uniformly integrable, if for
any ε > 0 there exists K > 0 such that for all X ∈ D∫

|X|>K
|X|dP < ε.

Put
Sa = {τ : τ stopping time , τ ≤ a}.

The adapted process (Xt) belongs to the class DL is for any a > 0 the class
{Xτ}τ∈Sa of random variables is uniformly integrable.

Theorem 4.20 (Doob-Meyer decomposition). Let the filtration Ft satisfy
the usual conditions, and let (Xt)t be a right-continuous submartingale in
DL. Then there exist (Mt) and (At) such that (Mt) is a martingale, (At) is
an adapted nondecreasing right-continuous process with A0 ≡ 0, and

Xt = Mt + At, t ≥ 0.

Furthermore, the decomposition is unique.
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Example 4.21. If (Nt) is a Poisson process with intensity λ > 0, then it is
a submartingale. Its Doob-Meyer decomposition is

Nt = (Nt − λt) + λt.

If (Wt) is a standard Brownian motion, then (W 2
t ) is a submartingale and

its Doob-Meyer decomposition is

W 2
t = (W 2

t − t) + t.

5 Wiener process

This part is from Karatzas and Shreve [4].

5.1 First properties and existence

Let (Ω,A,P) be a probability space. Then W = (Wt,Ft)t≥0 is a Wiener
process or standard Brownian motion if

(W1) W0 = 0 a.s.,

(W2) W has independent increments, that is Wt −Ws is independent of Fs
for any s < t,

(W3) Wt −Ws ∼ N(0, t− s),
(W4) Wt has continuous sample path.

Exercise 5.1. Show that (W2) and (W3) with s = 0 (i.e. Wt ∼ N(0, t))
implies (W3).

Proposition 5.2. (i) E(Wt) = 0 for all t.

(ii) Cov(Ws,Wt) = E(WsWt) = min(s, t) =: s ∧ t, s, t ≥ 0.

(iii) For any k ∈ N and 0 ≤ t1 < · · · < tk, the random vector (Wt1 , . . . ,Wtk)
has a multivariate normal distribution with mean 0 and covariance

Σ = Σt1,...,tk =


t1 t1 · · · t1
t1 t2 · · · t2
...

...
. . .

...
t1 t2 · · · tk

 .
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Proof. Part (i) and (ii) are trivial. For part (iii) note that by the independent
increment property the components of

X = (Wt1 ,Wt2 −Wt1 , . . . ,Wtk −Wtk−1
)>

are independent normal random variables. Therefore X is a multivariate
normal. Since

(Wt1 , . . . ,Wtk)
> = AX,

the statement follows from the fact that a linear transformation of a multi-
variate normal is normal with covariance matrix ACov(X)A>.

Let (Xt) be a stochastic process with finite second moment. Then m(t) =
EXt is the mean value and r(s, t) = Cov(Xs, Xt) = E([Xs − m(s)][Xt −
m(t)]) , is the covariance function.

Clearly r is symmetric, and nonnegative definite, i.e.

k∑
j=1

k∑
`=1

cjc` r(tj, t`) ≥ 0 , k ∈ N , t1, . . . , tk ∈ T , c1, . . . , ck ∈ R .

Definition 5.3. The stochastic process (Xt) is a Gaussian process with mean
function m(t) and covariance function r(t, s) if for any k ∈ N and t1, . . . , tk
the random vector (Xt1 , . . . , Xtk) has multivariate normal distribution with
mean (m(t1), . . . ,m(tk)) and covariance (r(tj, t`))

k
j, `=1.

A simple, but not very interesting example to a Gaussian process is Xt =
a(t)Z + b(t), where Z ∼ N(0, 1).

We proved that the Wiener process (Wt) is a Gaussian process with mean
m(t) ≡ 0 and covariance function r(s, t) = min(s, t). This could be the
definition of the Wiener process.

Proposition 5.4. Let (Wt) be a continuous Gaussian process with mean 0
and covariance function r(s, t) = min(s, t). Then (Wt) is a Wiener process.

Exercise 5.5. Prove the statement.

Exercise 5.6. Let (W (t)) be SBM. Show that

(i) W1(t) = W (c+ t)−W (c), t ≥ 0;

(ii) W2(t) =
√
cW (t/c), t ≥ 0;

(iii) W3(t) = tW (1/t)
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are SBM.

Kolmogorov’s consistency theorem yields the existence of Gaussian pro-
cesses.

Theorem 5.7. Let T ⊂ R, and let m(t) be an arbitrary function and r(s, t) a
nonnegative definite function. Then there exists a Gaussian process (Xt)t∈T
with mean function m and covariance function r.

Therefore, apart from continuity, we have a Wiener process. That is, we
have a probability space (R[0,∞),B[0,∞),P) and a stochastic process (W̃t(ω) =
ωt)t≥0, which satisfies (W1)–(W3).

Let C = C[0,∞) be the space of continuous function on [0,∞). We have

to show that P(W̃ ∈ C) = 1. The problem is that C does not belong to the
product σ-algebra B[0,∞). Indeed, it can be shown that

B[0,∞) = ∪{π−1
K (BK) : K ⊂ [0,∞), K countable}.

Therefore, if C ∈ B[0,∞), then C = π−1
K (BK) for some countable K ⊂ [0,∞).

But continuity cannot be determined from the values of the function on a
countable set. Similarly,{

ω ∈ R[0,∞) : sup
0≤t≤1

ωt ≤ x
}
, x ∈ R ,

is not B[0,∞)-measurable, so we cannot define supt∈[0,1] W̃t.
Thus the setup in Kolmogorov’s consistency theorem cannot deal with

continuous processes. We need a different approach.
Recall that Y is a modification ofX ifXt = Yt a.s. for any fix t, i.e. P(Xt =

Yt) = 1 for each t ≥ 0.

Theorem 5.8 (Kolmogorov continuity theorem). Let (Xt)t∈[0,T ] be a stochas-
tic process on (Ω,A,P), such that for some positive constants α, β, C

E|Xt −Xs|α ≤ C|t− s|1+β, 0 ≤ s, t ≤ T.

Then X has a continuous modification X̃ which is Hölder continuous with
exponent γ for every γ ∈ (0, β/α), that is for some h(ω) a.s. positive random
variable and δ > 0

P

({
ω : sup

0<t−s<h(ω)

X̃t(ω)− X̃s(ω)

|t− s|γ
≤ δ

})
= 1.
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Proof. We can assume that T = 1. By Chebyshev

P(|Xt −Xs| > ε) ≤ ε−αE|Xt −Xs|α ≤ Cε−α|t− s|1+β,

in particular Xt → Xs in probability as t→ s. Fix γ ∈ (0, β/α). Then

P

(
max

1≤k≤2n
|Xk2−n −X(k−1)2−n| > 2−γn

)
≤ 2nP

(
|Xk2−n −X(k−1)2−n| > 2−γn

)
≤ 2nC2−αγn2−n(1+β)

= C2−n(β−αγ).

By the first Borel–Cantelli lemma with probability 1 only finitely many of
the events

max
1≤k≤2n

|Xk2−n −X(k−1)2−n| > 2−γn

occur. That is, there is a set Ω0 with P(Ω0) = 1, and a threshold n0(ω)
(depending on ω!) such that for ω ∈ Ω0

max
1≤k≤2n

|Xk2−n −X(k−1)2−n| ≤ 2−γn, n ≥ n0(ω).

Fix ω ∈ Ω0. Put Dn = {k2−n : k = 0, 1, . . . , 2n}, and D = ∪nDn. Then for
n ≥ n0(ω) and m > n induction gives that

|Xt(ω)−Xs(ω)| ≤ 2
m∑

j=n+1

2−γj, t, s ∈ Dm, |t− s| ≤ 2−n.

This implies that (Xt(ω))t∈D is uniformly continuous in t ∈ D. Indeed, for
any t, s ∈ D with 0 < t − s < h(ω) = 2−n0(ω) there is an n ≥ n0 such that
2−n−1 ≤ t− s < 2−n, thus

|Xt(ω)−Xs(ω)| ≤ 2
∞∑

j=n+1

2−γj = 2−γ(n+1) 2

1− 2−γ
≤ |t− s|γ 2

1− 2−γ
.

Informally, we proved that (Xt) behaves regularly on D. We define X̃. If

ω 6∈ Ω0 let X̃(ω) = 0, (or anything). If ω ∈ Ω0 and t ∈ D let X̃t(ω) = Xt(ω),
while if t 6∈ D choose a sequence sn ∈ D such that sn → t and let

X̃t(ω) = lim
n→∞

Xsn(ω).
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By the uniform continuity and the Cauchy criteria the limit on the right-hand
side exist.

The a.s. uniqueness of the stochastic limit together with the stochastic
continuity of X implies that X̃ is a modification of X.

Exercise 5.9 (Random fields). A random field is a collection of random
variables indexed by a partially ordered set. Let (Xt)t∈[0,T ]d be a random
field satisfying

E|Xt −Xs|α ≤ C‖t− s‖d+β,

for some positive constants. Show that there exists a continuous modification
X̃ which is Hölder continuous with exponent γ for every γ ∈ (0, β/α), that
is for some h(ω) a.s. positive random variable and δ > 0

P

(
ω : sup

0<‖t−s‖<h(ω)

X̃t(ω)− X̃s(ω)

‖t− s‖γ
≤ δ

)
= 1.

Exercise 5.10. Show that if Wt −Ws ∼ N(0, t− s) then for any n > 0

E|Wt −Ws|2n = Cn|t− s|n,

where Cn = E(Z2n), Z ∼ N(0, 1).

Corollary 5.11. Wiener process exists.

Proof. We need only the continuity part. The condition of Kolmogorov con-
tinuity theorem holds with α = 2n and β = n− 1 for any n > 1. Thus there
exists a continuous modification on [0, N ], for any N ∈ N. Necessarily, XN1

and XN2 agrees a.s. for any fix t ∈ [0, N1 ∧ N2], which allows us to extend
the process to [0,∞).

In fact, we proved that the Wiener process is locally γ-Hölder continuous
for any γ < 1/2.

Exercise 5.12. Let (Nt) be a Poisson process with intensity 1. Compute
the order E|Nt − Ns|α for t − s small. (Thus the condition in the conti-
nuity theorem holds for β = 0. Well, of course, Poisson processes are not
continuous.)

More generally, we obtain a result on continuity of Gaussian processes.
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Theorem 5.13. Let (Xt) be a Gaussian process with continuous mean func-
tion m, and covariance function r. If there exist positive constants δ, C such
that for all s, t

r(t, t)− 2r(s, t) + r(s, s) ≤ C|t− s|δ,
then (Xt) has a continuous modification which is locally γ-Hölder continuous
for any γ ∈ (0, δ/2).

Proof. Subtracting the mean function we may and do assume that m(t) ≡ 0.
Simply

Var(Xt −Xs) = r(t, t)− 2r(s, t) + r(s, s) = σ2(s, t),

therefore
E|Xt −Xs|α = E|Z|ασ(s, t)α,

with Z ∼ N(0, 1). Thus

E|Xt −Xs|α ≤ C|t− s|δα/2,

which implies that the condition of the continuity theorem holds with α > 0,
β = δα/2− 1. Letting α→∞ the result follows.

Exercise 5.14 (Fractional Brownian motion). Fractional Brownian motion
with Hurst index H ∈ (0, 1) is a Gaussian process (B(t)) with mean function
m(t) ≡ 0 and covariance function

r(s, t) =
1

2

(
t2H + s2H − |t− s|2H

)
.

Note that H = 1/2 corresponds to the usual Brownian motion.

(i) Show that it is self-similar, i.e. B(at) ∼ aHB(t).

(ii) Show that it has stationary increments: B(t)−B(s) ∼ B(t− s).
(iii) Prove that a continuous modification exists, which is γ-Hölder for any

γ < H. (That is H is the ‘roughness parameter’: for small H the
process strongly oscillates, while for H close to 1 the paths are almost
smooth.)

(iv) Are the increments independent?

Exercise 5.15. Let (Xt)t∈[0,1] be a continuous Gaussian process with mean

0 and covariance function r(s, t). Show that Y =
∫ 1

0
Xtdt ∼ N(0, σ2), where

σ2 =

∫ 1

0

∫ 1

0

r(s, t) ds dt .
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Show that Yt =
∫ t

0
Xsds is a Gaussian process. Determine its covariance

function.

A version of the continuity theorem is the following.

Theorem 5.16. Let T ⊂ R finite or infinite interval, and (Xt)t∈T a stochas-
tic process such that for δ > 0 small enough

P (|Xt −Xs| ≥ g(δ)) ≤ h(δ) whenever |s− t| < δ , s, t ∈ T,

where g and h are continuous function such that

∞∑
n=1

g
(
2−n
)
<∞ ,

∞∑
n=1

2nh
(
2−n
)
<∞ ,

Then X has a continuous modification.

Recall that

ϕ(x) =
1√
2π
e−

x2

2

is the standard normal density function, and

Φ(x) =

∫ x

−∞
ϕ(y)dy

is the standard normal distribution function.

Lemma 5.17. For any x > 0(
1

x
− 1

x3

)
ϕ(x) ≤ 1− Φ(x) ≤ 1

x
ϕ(x)

and

lim
x→∞

1− Φ(x)
1
x
ϕ(x)

= 1.

Proof. The first follows from integrating the inequality(
1− 3

y4

)
ϕ(y) ≤ ϕ(y) ≤

(
1 +

1

y2

)
ϕ(y),

on (x,∞). The second is immediate from the first.
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Using Theorem 5.16 we obtain a better criteria for continuity.

Corollary 5.18. Let T ⊂ R be a finite or infinite interval and let (Xt)t∈T be a
Gaussian process with continuous mean function m, and covariance function
r such that for δ small enough

sup
|s−t|≤δ

(r(t, t)− 2r(s, t) + r(s, s)) ≤ C (− log δ)−3(1+α)

for some C > 0, α > 0. Then (Xt) has a continuous modification.

5.2 The space C[0,∞)

As SBM is continuous, its natural space is the space of continuous functions.
Instead of a collection of random variables a stochastic process (Wt) can be
understood as a random element of a function space.

Recall that ρ is a metric if on S

(i) ρ ≥ 0, ρ(ω1, ω2) = 0 iff ω1 = ω2;

(ii) symmetric;

(iii) the triangle inequality holds, i.e.

ρ(ω1, ω2) ≤ ρ(ω1, ω3) + ρ(ω2, ω3).

Then (S, ρ) is a metric space.
The sequence (xn) is Cauchy if for each ε > 0 there exist n0(ε) such that

ρ(xm, xn) ≤ ε for all m,n ≥ n0. The space (S, ρ) is complete if every Cauchy
sequence converges. A set A ⊂ S is dense, if for any x ∈ S there exists a
sequence (xn) ⊂ A such that xn → x. The space (S, ρ) is separable if there
exists a countable dense subset.

Let C[0,∞) denote the space of continuous real functions on [0,∞) with
metric

ρ(ω1, ω2) =
∞∑
n=1

1

2n
max
t∈[0,n]

(|ω1(t)− ω2(t)| ∧ 1) .

Proposition 5.19. ρ is a metric, and (C[0,∞), ρ) is a complete separable
metric space.
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Proof. It is clear that ρ is a metric. Fix a Cauchy sequence (xn). For any
fix N ∈ N the limit limn→∞ xn(t) = x∞(t) exists for t ∈ [0, N ], and it is
continuous. Thus x∞ exists and continuous.

To find a countable dense subset consider functions which are 0 for t ≥ n,
are rational at k/n for k = 0, 1, . . . , n2 − 1, and linear between.

If (S, ρ) is a metric space we can define open sets. The σ-algebra generated
by open sets is the Borel-σ-algebra B(S). With this (S,B(S)) is a measurable
space.

If (Ω,A,P) is a probability space and (S,B(S)) is a measurable space
then a measurable X : Ω→ S is a random variable / random element in S.
It induces a probability measure P ◦X−1 on S as

P ◦X−1(B) = P(X ∈ B) = P({ω : X(ω) ∈ B}).

Let (Pn) be a sequence of probability measure on (S,B(S)) and P another
measure on it. Then Pn converges weakly to P , Pn

w→ P , if

lim
n→∞

∫
S

f(s)dPn(s) =

∫
S

f(s)dP (s)

for every continuous real function f . Note that the limit measure is neces-
sarily a probability measure.

Let Xn and X be random elements in S, defined possibly on different
probability spaces. The sequence (Xn) converges in distribution to X if the
corresponding induced measures converge weakly. Equivalently,

Ef(Xn)→ Ef(X)

for all continuous and bounded f .
Assume that Xn → X in distribution. For any 0 ≤ t1 < . . . < tk consider

the projection πt1,...,tk : C[0,∞)→ Rk

πt1,...,tk(ω) = (ω(t1), . . . , ω(tk)) .

This is clearly continuous. For a continuous bounded function f : Rk → R
the composite function f(πt1,...,tk) is bounded and continuous. Therefore, by
the definition of convergence in distribution

Ef(πt1,...,tk(Xn))→ Ef(πt1,...,tk(X))
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that is
Ef(Xn(t1), . . . , Xn(tk))→ Ef(X(t1), . . . , X(tk)).

That is, for any 0 ≤ t1 < . . . < tk

(Xn(t1), . . . , Xn(tk))
D−→ (X(t1), . . . , X(tk)).

This means that the finite dimensional distributions converge.
We proved the following.

Proposition 5.20. If (Xn) converges in distribution to X then all finite
dimensional distributions converge.

The converse is not true in general.

Example 5.21. Let

Xn(t) = ntI[0,(2n)−1](t) + (1− nt)I((2n)−1,n−1](t), t ≥ 0.

Then all finite dimensional distributions converge to the corresponding finite
dimensional distributions of X ≡ 0. However, convergence as a process does
not hold.

In what follows we try to understand what goes wrong in the example
above, and state a converse of the Proposition above.

A family of probability measures Π on (S,B(S)) is tight if for every ε > 0
there exists a compact set K ⊂ S such that P (K) ≥ 1−ε for all P ∈ Π. The
family Π is relatively compact if each sequence of elements from Π contains
a convergent subsequence. A family of random elements is tight (relatively
compact) if the family of induced measures is tight (relatively compact).

Theorem 5.22 (Prohorov). Let Π be a family of probability measures on
a complete separable metric space S. Then Π is tight if and only if it is
relatively compact.

The modulus of continuity plays an important role in characterization of
tightness on C. Fix T > 0 and δ > 0, and let ω ∈ C[0,∞). The modulus of
continuity on [0, T ]

mT (ω, δ) = max {|ω(s)− ω(t)| : |s− t| ≤ δ, 0 ≤ s, t ≤ T} .

Exercise 5.23. Show that mT is continuous in ω ∈ C[0,∞) under the metric
ρ, is nondecreasing in δ, and limδ↓0m

T (ω, δ) = 0 for each ω ∈ C[0, T ).
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Theorem 5.24 (Arselà–Ascoli). A set A ⊂ C[0,∞) has compact closure if
and only if the following two conditions hold:

(i) supω∈A |ω(0)| <∞;

(ii) for every T > 0
lim
δ↓0

sup
ω∈A

mT (ω, δ) = 0.

Now we can characterize tightness of probability measures.

Theorem 5.25. A sequence (Pn) of probability measures on (C[0,∞),B) is
tight if and only if the following two conditions hold:

(i) limλ↑∞ supn≥1 Pn(ω : |ω(0)| > λ) = 0;

(ii) for all T > 0 and ε > 0

lim
δ↓0

sup
n≥1

Pn(ω : mT (ω, δ) > ε) = 0.

Theorem 5.26. Let (Xn) be a tight sequence of continuous processes such
that its finite dimensional distributions converge. Then the sequence of in-
duced measures (Pn) converge weakly to a measure P such that the coordinate
mapping Wt(ω) = ωt on C[0,∞) satisfies

(Xn(t1), . . . , Xn(tk))
D−→ (W (t1), . . . ,W (tk)) ,

for any 0 ≤ t1 < . . . < tk <∞, k ≥ 1.

Proof. Tightness is the same as relative compactness. Therefore, every sub-
sequence contains a further convergent subsequence. Because of the con-
vergence of finite dimensional distributions any two limit measure has the
same finite dimensional distributions. But finite dimensional distributions
determine the measure.

5.3 Donsker theorem

Let ξ, ξ1, ξ2, . . . be iid random variables with Eξ = 0, Eξ2 = σ2 ∈ (0,∞), and
let Sn =

∑n
i=1 ξi denote the partial sum. Define the continuous time process

(Yt)t≥0 as
Yt = Sbtc + (t− btc)ξbtc+1,
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where b·c stands for the usual integer part. For n ∈ N define the scaled
process

X
(n)
t =

1

σ
√
n
Ynt, t ≥ 0.

Then X
(n)
t −X

(n)
s for s, t ∈ N/n is independent of σ(ξ1, . . . , ξsn), and by the

CLT its distribution tends to N(0, t− s).

Theorem 5.27 (Invariance principle of Donsker). Let Pn denote the measure
on (C[0,∞),B(C[0,∞))) induced by X(n). Then Pn converges weakly to a
measure P?. Under P? the coordinate mapping Wt(ω) = ω(t), ω ∈ C[0,∞)
is SBM.

Proof. According to Theorem 5.26 we have to show that (X(n)) is tight and
the finite dimensional distributions converge to those of a SBM.

To prove tightness we have to show that the conditions of Theorem 5.25
hold for Pn. This can be done by proving some maximal inequalities. We
skip this part.

We prove the convergence of finite dimensional distributions. Fix d ∈ N
and 0 ≤ t1 < . . . < td <∞. We have to show that(

X
(n)
t1 , . . . , X

(n)
td

)
D−→ (Wt1 , . . . ,Wtd) .

To ease notation let d = 2 and (t1, t2) = (s, t). We want to show that

(X(n)
s , X

(n)
t )

D−→ (Ws,Wt) .

By the definition of X(n)∥∥∥∥(X(n)
s , X

(n)
t )− 1

σ
√
n

(Sbsnc, Sbtnc)

∥∥∥∥ P−→ 0,

therefore it is enough to show that

1

σ
√
n

(Sbsnc, Sbtnc)
D−→ (Ws,Wt) .

By Lévy’s CLT

1

σ
√
n

(Sbsnc, Sbtnc − Sbsnc)
D−→ (
√
sZ,
√
t− sZ ′),
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Figure 1: Simulation of 3 independent SBM

where Z,Z ′ are independent N(0, 1). Therefore

1

σ
√
n

(Sbsnc, Sbtnc)
D−→ (
√
sZ,
√
sZ +

√
t− sZ ′) D= (Ws,Wt),

as claimed.

In the proof above we used the following simple statements.

Exercise 5.28. Let (Xn) be a sequence of random elements in the metric
space (S1, ρ1) converging in distribution to X. Let ϕ : S1 → S2 be continu-
ous, where (S2, ρ2) is another metric space. Show that ϕ(Xn) converges in
distribution to ϕ(X).

Exercise 5.29. Let (Xn), (Yn) be random elements in the separable metric
space (S, ρ) defined on the same probability space. Show that if Xn converges
in distribution to X and ρ(Xn, Yn) → 0 in probability then Yn converges in
distribution to X.

As a consequence of Donsker’s invariance principle we obtain limit result
for the path of random walks. Let us restrict to the interval [0, 1] and con-
sider the space C[0, 1] with the supremum norm. Consider the continuous
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functional
f : C[0, 1]→ R; ω 7→ max

t∈[0,1]
ω(t).

Since X(n) → W in distribution (in C[0, 1]) we have that f(X(n)) → f(W )
in distribution (in R!). That is

P(max
t∈[0,1]

X
(n)
t ≤ x)→ P(max

t∈[0,1]
Wt ≤ x),

for each x ∈ R (well, only for continuity point of the limit, but it is continu-
ous). By the definition of X(n) we can rewrite the RHS to get

P

(
max
k≤n

Sk ≤
√
nσx

)
→ P(max

t∈[0,1]
Wt ≤ x).

Next we determine the LHS. Using the reflection principle

P

(
max
t∈[0,1]

Wt > x

)
= P

(
max
t∈[0,1]

Wt > x, W1 > x

)
+ P

(
max
t∈[0,1]

Wt > x, W1 < x

)
= 2P

(
max
t∈[0,1]

Wt > x, W1 > x

)
= 2P (W1 > x) = 2 (1− Φ(x)) .

Summarizing

lim
n→∞

P

(
max
k≤n

Sk ≤
√
nσx

)
= 2Φ(x)− 1.

5.4 Markov property

Assume that we have a SBM (Wt) and we know everything up to time s.
Conditioned on that information, what is the distribution of Wt, t > s?

Formally, (Wt,Ft) is a SBM, and we are interested in the conditional
probabilities

P(Wt ∈ A|Fs).
Since Wt = Ws + Wt − Ws, where Ws is Fs-measurable and Wt − Ws is
independent of Fs, we obtain

P(Wt ∈ A|Fs) = P(Wt ∈ A|Ws) = PWs(Wt−s ∈ A),
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where Px(Wu ∈ A) = P(Wu ∈ A|W0 = x), that is under Px W is a SBM
starting at x. That is knowing the whole past up to s gives no more infor-
mation than knowing only Ws. This is the Markov property.

To make the previous argument formal we need the following.

Exercise 5.30. Let (Ω,A,P) be a probability space, G ⊂ A a sub-σ-algebra,
and X, Y random variables such that X is independent of G and Y is G-
measurable. Then

P(X + Y ∈ A|G) = P(X + Y ∈ A|Y ) P− a.s.

and
P(X + Y ∈ A|Y = y) = P(X + y ∈ A) PY −1 − a.s.

For the latter note that for some σ(Y )/B(R)-measurable h

P(X + Y ∈ A|Y ) = h(Y ).

So the latter statement claims that h(y) = P(X + y ∈ A) a.s. with respect
to the induced measure PY −1.

A (d-dimensional) adapted process (Xt) is Markov process with initial
distribution µ if

(i) P(X0 ∈ A) = µ(A);

(ii) P(Xt+s ∈ A|Fs) = P(Xt+s ∈ A|Xs), for all A and t, s > 0.

Sometimes it is more convenient to work with various initial distribu-
tions. A Markov family is an adapted process (Xt) together with a family of
probability measures (Px) such that

(i) Px(X0 = x) = 1;

(ii) Px(Xt+s ∈ A|Fs) = Px(Xt+s ∈ A|Xs);

(iii) Px(Xt+s ∈ A|Xs = y) = Py(Xt ∈ A) PxX
−1
s -a.s.

For a given ω ∈ Ω denote Xs+· the function Xs+t, that is we shift the
path by s. The property in the definition of Markov process easily extends
to path.

Proposition 5.31. For a Markov family for any F ∈ B(R[0,∞))

(i) Px(Xs+· ∈ F |Fs) = Px(Xs+· ∈ F |Xs);

(ii) Px(Xs+· ∈ F |Xs = y) = Py(X· ∈ F ) PxX
−1
s -a.s.
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The proof goes by the usual technical machinery. The sets F satisfying
the above properties forms a λ-system and it contains the finite dimensional
cylinders.

Markov property states that the process restarts at fixed times t. Some-
times we need to restart the process at stopping times τ . This property is
the strong Markov property.

A (d-dimensional) adapted process (Xt) is strong Markov process with
initial distribution µ if

(i) P(X0 ∈ A) = µ(A);

(ii) P(Xτ+t ∈ A|Fτ ) = P(Xt ∈ A|Xτ ), for all A and stopping time τ .

Similarly, a strong Markov family is an adapted process (Xt) together with
a family of probability measures Px such that

(i) Px(X0 = x) = 1;

(ii) Px(Xτ+t ∈ A|Fτ ) = Px(Xτ+t ∈ A|Xτ ) for all A and stopping time τ ;

(iii) Px(Xτ+t ∈ A|Xτ = y) = Py(Xt ∈ A) PxX
−1
τ -a.s. for all A and stopping

time τ ;

Proposition 5.32. For a strong Markov family for any F ∈ B((R)[0,∞))

(i) Px(Xτ+· ∈ F |Fτ ) = Px(Xτ+· ∈ F |Xτ );

(ii) Px(Xτ+· ∈ F |Xτ = x) = Px(X· ∈ F ) PxX
−1
τ -a.s.

We proved that SBM is Markov. In fact, it is strong Markov.

Theorem 5.33. SBM is a strong Markov process.

5.5 Path properties

Theorem 5.34. Almost surely the sample path of a SBM is not monotone
in any interval.

Proof. Let

A = {ω : W (·, ω) is monotone on some interval} .

Clearly
A = ∪r,s∈Q {ω : W (·, ω) is monotone on [r, s]} .
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Since this is a countable union it is enough to prove that each event has
probability zero. To ease notation choose r = 0, s = 1, and put

B = {ω : W (·, ω) is nondecreasing on [0, 1]} .

We have

B = ∩∞n=1 {ω : W ((i+ 1)/n, ω) ≥ W (i/n, ω), i = 0, 1, . . . , n− 1} =: ∩∞n=1Bn.

By the independent increment property

P(Bn) =
n−1∏
i=0

P(W ((i+ 1)/n) ≥ W (i/n)) = 2−n,

which implies that P(B) = 0 as claimed.

For any interval [a, b] let Πn = {a = t0 < t1 < . . . < tn = b} a partition
with mesh

‖Πn‖ = max{ti − ti−1 : i = 1, 2, . . . , n}.

We determine the quadratic variation of the Wiener process.

Theorem 5.35. Let Πn = {a = t0 < t1 < . . . < tn = b}, n = 1, 2, . . ., a
sequence of partitions of [a, b] such that ‖Πn‖ → 0. Then

n∑
i=1

(Wti −Wti−1
)2 L2

−→ b− a.

Proof. Assume that [a, b] = [0, 1]. We have to show that

E

(
n∑
i=1

(Wti −Wti−1
)2 − 1

)2

−→ 0.

Using 1 =
∑n

i=1(ti − ti−1) we have

E

(
n∑
i=1

(Wti −Wti−1
)2 − 1

)2

=

n∑
i,j=1

E
([

(Wti −Wti−1
)2 − (ti − ti−1)

] [
(Wtj −Wtj−1

)2 − (tj − tj−1)
])
.

(13)
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If i 6= j then Wti −Wti−1
and Wtj −Wtj−1

are independent. Therefore

E
[
(Wti −Wti−1

)2 − (ti − ti−1)
]

= 0,

so the mixed products in (13) are 0. Using that Wt −Ws ∼ N(0, t − s) we
obtain

E

(
n∑
i=1

(Wti −Wti−1
)2 − 1

)2

=
n∑
i=1

E
[
(Wti −Wti−1

)2 − (ti − ti−1)
]2

=
n∑
i=1

(ti − ti−1)2E

[(
Wti −Wti−1√
ti − ti−1

)2

− 1

]2

= E(Z2 − 1)2

n∑
i=1

(ti − ti−1)2,

where Z ∼ N(0, 1). Since

n∑
i=1

(ti − ti−1)2 ≤ ‖Πn‖
n∑
i=1

(ti − ti−1) = ‖Πn‖ → 0,

the proof is ready.

Under some extra conditions a.s. convergence hold. Recall that in gen-
eral neither L2 convergence nor a.s. convergence implies the other. More-
over, L2 convergence implies a.s. convergence on a subsequence. However, if∑∞

n=1 ‖Πn‖ <∞ then the Borel–Cantelli lemma implies a.s. convergence.

Exercise 5.36. Let Πn = {a = t0 < t1 < . . . < tn = b}, n = 1, 2, . . ., a
sequence of partitions of [a, b] such that

∑∞
n=1 ‖Πn‖ <∞. Then a.s.

n∑
i=1

(Wti −Wti−1
)2−→b− a.

Corollary 5.37. Let (Πn) be a sequence of partitions of the interval [a, b]
such that

∑∞
n=1 ‖Πn‖ <∞. Then

∑n
i=1 |Wti −Wti−1

| → ∞ a.s.

Proof. Clearly,

n∑
i=1

(Wti −Wti−1
)2 ≤ sup

1≤i≤n
|Wti −Wti−1

|
n∑
i=1

|Wti −Wti−1
|.

53



The left-hand side converges to b − a a.s. on a subsequence. On the right-
hand side the first factor goes to 0 a.s. by the continuity of the Wiener pro-
cess. (Recall that continuous function is uniformly continuous on compacts.)
Therefore the second term necessarily tends to infinity.

We proved that the sample path of W are Hölder continuous with expo-
nent < 1/2, and that the sample path are not of bounded variation. These
results suggest that the trajectories are quite irregular. In fact, they are
a.s. nowhere differentiable.

Theorem 5.38 (Paley, Wiener, Zygmund (1933)). Almost surely the path
W (·, ω) is nowhere differentiable.

Proof. For n, k ∈ N consider

Xnk = max
{ ∣∣W (

k2−n
)
−W

(
(k − 1)2−n

)∣∣ , ∣∣W (
(k + 1)2−n

)
−W

(
k2−n

)∣∣ ,∣∣W (
(k + 2)2−n

)
−W

(
(k + 1)2−n

)∣∣ }.
Using the independent increment property and the scale invariance

P(Xnk ≤ ε) = (P(|W (1/2n)| ≤ ε))3 ≤
(
2 · 2n/2ε

)3
.

Putting Yn = min1≤ k≤n2n Xnk we obtained

P(Yn ≤ ε) ≤
n2n∑
k=1

P(Xnk ≤ ε) < n 2n
(
2 · 2n/2 ε

)3
.

Introduce the event

A = {ω : W (· , ω) is somewhere differentiable}.

If ω ∈ A then there exist t = t(ω) such that W ′(t, ω) = D(ω) ∈ R. Thus

lim
s→t

∣∣∣∣W (s, ω)−W (t, ω)

s− t

∣∣∣∣ = |D(ω)| <∞ .

Therefore there exists δ(ω) = δ(ω, t) > 0 such that for |s− t| < δ(ω)

|W (s, ω)−W (t, ω)| ≤ (|D(ω)|+ 1)|s− t| .
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Let n0(ω) = n0(ω, t) so large that

2−n0(ω) <
δ(ω)

2
, n0(ω) ≥ max{4(|D(ω)|+ 1), t+ 1}.

Fix n ≥ n0(ω) and let
k(ω)

2n
≤ t <

k(ω) + 1

2n
.

Then

max

{∣∣∣∣t− j

2n

∣∣∣∣ : j = k(ω)− 1, k(ω), k(ω) + 1, k(ω) + 2

}
≤ 2

2n
< δ(ω) ,

thus

Xn, k(ω)(ω) ≤ max

{∣∣∣∣W( j

2n
, ω

)
−W (t, ω)

∣∣∣∣+

∣∣∣∣W(j − 1

2n
, ω

)
−W (t, ω)

∣∣∣∣}
≤ 2
(
|D(ω)|+ 1

) 2

2n
= 4

(
|D(ω)|+ 1

)
1

2n
≤ n

2n
,

where the max is taken on the set j ∈ {k(ω), k(ω) + 1, k(ω) + 2}.
Since k(ω) ≤ n 2n, we obtained

Yn(ω) = min
1≤k≤n2n

Xnk(ω) ≤ n/2n.

Thus ω ∈ A implies ω ∈ An = {ω : Yn(ω) ≤ n/2n} for all n ≥ n0(ω) so

ω ∈ lim inf
n→∞

An = ∪∞n=1 ∩∞m=n Am

= {ω : ω ∈ Ak except finitely many k}.

That is A ⊂ B := lim infn→∞An. Using the Fatou lemma

P(B) ≤ lim inf
n→∞

P(An) ≤ lim inf
n→∞

P
(
Yn ≤

n

2n

)
≤ lim inf

n→∞
n 2n

(
2 · 2n/2 n

2n

)3

= 0.

So A ⊂ B and P(B) = 0 as claimed.
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Note that we don’t claim that A ∈ A. Now we see the usefulness of the
usual conditions. The usual conditions include that F0 contains the null-sets
of A.

Let
Z(ω) = {t : W (t, ω) = 0}

denote the set of zeros. Let λ be the Lebesgue measure. By Fubini

Eλ(Z) =

∫
Ω

λ(Z(ω))P(dω)

=

∫
Ω

∫
R
I(W (t, ω) = 0) dtP(dω)

=

∫
R

P(W (t, ω) = 0)dt = 0.

Since λ(Z) ≥ 0 this implies λ(Z) = 0 a.s.

Theorem 5.39 (Khinchin, 1933). For almost every ω

lim sup
t↓0

Wt(ω)√
2t log log 1/t

= 1 and lim inf
t↓0

Wt(ω)√
2t log log 1/t

= −1,

and

lim sup
t→∞

Wt(ω)√
2t log log t

= 1 and lim inf
t→∞

Wt(ω)√
2t log log t

= −1.

Proof. By symmetry it is enough to prove the limsup results, and since
(tW1/t) is SBM it is enough to prove at 0.

Let

Xt = exp

{
λWt −

λ2

2
t

}
.

This is a martingale, therefore by the maximal inequality

P

(
max
s∈[0,t]

(
Ws −

λ

2
s

)
≥ β

)
= P

(
max
s∈[0,t]

Xs ≥ eλβ
)
≤ e−λβ.

Put h(t) =
√

2t log log(1/t). Fix θ, δ ∈ (0, 1). Choose λ = (1 + δ)θ−nh(θn),
β = h(θn)/2, and t = θn. Then

P

(
max
s∈[0,t]

(
Ws −

λ

2
s

)
≥ β

)
≤ e−λβ = (n log 1/θ)−(1+δ) .
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This is summable, therefore by the Borel–Cantelli lemma there exists N(ω),
and Ωδ,θ with P(Ωδ,θ) = 1 such that

max
s∈[0,θn]

(
Ws −

1 + δ

2
sθ−nh(θn)

)
≤ 1

2
h(θn) for n ≥ N(ω).

Thus for t ∈ (θn+1, θn]

Wt(ω) ≤ max
s∈[0,θn]

Ws(ω) ≤ (1 + δ/2)h(θn) ≤ (1 + δ/2) θ−1/2 h(t).

Therefore for n ≥ N(ω)

sup
t∈(θn+1,θn]

Wt(ω)

h(t)
≤ (1 + δ/2) θ−1/2,

which implies as n→∞

lim sup
t↓0

Wt(ω)

h(t)
≤ (1 + δ/2) θ−1/2.

Letting δ ↓ 0 and θ ↑ 1 through rationals we obtain

lim sup
t↓0

Wt(ω)

h(t)
≤ 1. (14)

For the opposite direction we need the second Borel–Cantelli lemma,
which requires independence. Fix θ ∈ (0, 1) and let

An = {Wθn −Wθn+1 ≥
√

1− θh(θn)}.

Putting x =
√

2 log n+ 2 log log 1/θ

P(An) = P

(
Wθn −Wθn+1√
θn − θn+1

≥ x

)
≥ Cx−1e−

x2

2 ≥ C ′
1

n
√

log n
,

where we use Lemma 5.17. The lower bound is a divergent series in n,
therefore the event An occur infinitely often. On the other hand by (14) (for
−Wt)

−Wθn+1 ≤ 2h(θn+1) ≤ 4θ1/2h(θn)

57



for all n ≥ N(ω). Therefore whenever An occur

Wθn(ω)

h(θn)
≥
√

1− θ − 4
√
θ.

Letting n→∞ we have

lim sup
t↓0

Wt

h(t)
≥
√

1− θ − 4
√
θ,

and the result follows by letting θ ↓ 0.

Exercise 5.40. Show that if W is SBM then for any λ

Xt = exp

{
λWt −

λ2

2
t

}
is a martingale.

6 General Markov processes

This part is from Breiman [1].

6.1 Transition probabilities and Chapman–Kolmogorov
equations

The process (Xt) is a Markov process, if for each Borel set B ∈ B(R), and
t, τR

P(Xt+τ ∈ B|Xs, s ≤ t) = P(Xt+τ ∈ B|Xt).

Choosing natural filtration Ft = σ(Xs, s ≤ t), the definition is the same
as in Subsection 5.4

Since regular conditional distributions exist, we may choose the proba-
bilities

pt2,t1(B|x) = P(Xt2 ∈ B|Xt1 = x), t2 > t1, B ∈ B,

such that

• for x fixed, pt2,t1(·|x) is a probability measure;

• for B ∈ B fixed, pt2,t1(B|·) is measurable.
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These probabilities are the transition probabilities of the Markov process
(Xt).

Let τ < s < t, B ∈ B. By the tower rule, the Markov property, and the
properties of regular conditional distribution

P(Xt ∈ B|Xτ ) = E [P(Xt ∈ B|Xτ , Xs)|Xτ ]

= E [P(Xt ∈ B|Xs)|Xτ ]

= E [h(Xs)|Xτ ]

=

∫
h(y)dP(Xs ∈ dy|Xτ )

=

∫
P(Xt ∈ B|Xs = y)P (Xs ∈ dy|Xτ )

=

∫
R
pt,s(B|y)ps,τ (dy|Xτ ).

That is

pt,τ (B|x) =

∫
pt,s(B|y)ps,τ (dy|x).

We proved the following.

Theorem 6.1 (Chapman–Kolmogorov equations). The transition probabili-
ties of a Markov process satisfies the equations

pt,τ (B|x) =

∫
pt,s(B|y)ps,τ (dy|x), τ < s < t,B ∈ B. (15)

The expression pt,τ (B|x) is the probability that starting from x in time τ
we end up in B at time t. Consider any s between τ and t. The distribution
of Xs given Xτ = x is ps,τ (·|x), that is the probability being in y is ps,τ (dy|x).
Therefore, the Chapman–Kolmogorov equation is the law of total probability
plus Markov property.

We are cheating again a bit. What we proved is that (15) holds for fixed
τ < s < t almost surely with respect to the probability P(Xτ ∈ ·). Indeed,
in the proof we calculated conditional probabilities, where each equality is
only an almost sure equality. In what follows we assume that (15) holds for
every x.

The Markov process (Xt) is stationary if the transition probabilities de-
pend only on the time increment, i.e. pt,τ (B|x) = pt−τ (B|x). Then pt(B|x) =
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pt,0(B|x), and the Chapman–Kolmogorov equations simplify to

pt+s(B|x) =

∫
pt(B|y)ps(dy|x). (16)

Assume that (Xt) is stochastically continuous at 0, that is

Xt
P−→ X0, t→ 0.

If (Xt) starts at x then its distribution is denoted by Px, and the corre-
sponding expectation is Ex, that is

Px(Xt ∈ B) = P(Xt ∈ B|X0 = x), Exf(Xt) = E [f(Xt)|X0 = x] .

Example 6.2 (Poisson process). Let Nt be a standard Poisson process. Then
Nt −Ns ∼ Poisson(t− s), so

Px(Nt = x+ k) = pt({x+ k}|x) =
tk

k!
e−t,

or, what is the same

pt(B|x) =
∑

k:x+k∈B

tk

k!
e−t.

The Chapman–Kolmogorov equation (16) become

pt+s({k}|0) =
∞∑
`=0

pt({k}|`)ps({`}|0),

which is just a reformulation of the fact that the sum of two independent
Poisson random variables is Poisson, and the parameter is the sum of the
parameters.

Example 6.3 (Wiener process). Let Wt be SBM. Then

pt(B|x) = Px(Wt ∈ B) = P0(x+Wt ∈ B) = P0(Wt ∈ B − x)

=

∫
B−x

1√
2πt

e−
y2

2t dy

=

∫
B

1√
2πt

e−
(y−x)2

2t dy.
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That is pt(B|x) is absolutely continuous with transition density pt(dy|x) =
ρt(y|x)dy

ρt(y|x) =
1√
2πt

e−
(y−x)2

2t .

The Chapman–Kolmogorov equation (16) become

pt+s(B|x) =

∫
R
pt(B|y)ρs(y|x)dy,

or for the densities

ρt+s(z|x) =

∫
R
ρt(z|y)ρs(y|x)dy.

This is a reformulation of the fact that the sum of independent normals is
normal. Recall the convolution formula for densities.

6.2 Infinitesimal generator

The infinitesimal generator of X an operator defined by

f 7→ Sf : Sf(x) = lim
t→0+

1

t
Ex [f(Xt)− f(x)] , (17)

whenever the limit exists. Its domain is denoted by D(S).
We determine the infinitesimal generator of the Poisson process and the

Wiener process.

Example 6.4 (Poisson process). Let (Nt) be a Poisson process with intensity
1, and let f be a bounded measurable function. By definition Nt − N0 ∼
Poisson(t), thus

Exf(Nt) =
∞∑
k=0

tk

k!
e−tf(k + x).

Since f is bounded the sum is finite, and as t ↓ 0

Exf(Nt) = f(x)e−t + f(x+ 1)te−t +O(t2).

Thus

Sf(x) = lim
t→0

1

t
Ex [f(Nt)− f(x)]

= lim
t→0

(
f(x)

e−t − 1

t
+ f(x+ 1)e−t

)
= f(x+ 1)− f(x).
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The limit exists for any bounded measurable function.

Example 6.5 (Wiener process). Let (Wt) be SBM and f ∈ C2
c twice contin-

uously differentiable function with compact support. Using Taylor expansion

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) + o(h2),

and since E0Wt = 0, E0W
2
t = t, we have

Exf(Wt) = E0f(x+Wt)

= E0

[
f(x) +Wtf

′(x) +
W 2
t

2
f ′′(x) + o(W 2

t )

]
= f(x) +

t

2
f ′′(x) + o(t).

Thus

Sf(x) = lim
t→0

1

t
Ex [f(Wt)− f(x)] =

f ′′(x)

2
.

We see that C2
c ⊂ D(S).

6.3 Kolmogorov equations

Backward. Let t > 0 fix, B ∈ B(R), τ > 0 small. By the tower rule and
the Markov property

P(Xt+τ ∈ B|X0 = x) = E [P(Xt+τ ∈ B|Xτ )|X0 = x] .

With the notation ϕt(x) = pt(B|x)

ϕt+τ (x) = Exϕt(Xτ ),

which reads as

1

τ
[ϕt+τ (x)− ϕt(x)] =

1

τ
Ex [ϕt(Xτ )− ϕt(x)] .

Letting τ tend to 0, we obtain

∂

∂t
ϕt(x) = (Sϕt) (x).
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Substituting back the definition of ϕ, we obtain Kolmogorov’s backward equa-
tion

∂

∂t
pt(B|x) = (Spt(B|·)) (x). (18)

Forward. Let t > 0 fix, f ∈ D(S). By the tower rule and the Markov
property

Exf(Xt+τ ) = Ex [Ex[f(Xt+τ )|Xt]] ,

which can be rewritten as∫
f(y)pt+τ (dy|x) =

∫ ∫
f(z)pτ (dz|y)pt(dy|x) =

∫
Eyf(Xτ )pt(dy|x).

Subtracting

Exf(Xt) =

∫
f(y)pt(dy|x)

and dividing by τ∫
f(y)

pt+τ (dy|x)− pt(dy|x)

τ
=

∫
1

τ
[Eyf(Xτ )− f(y)] pt(dy|x).

Letting τ ↓ 0 ∫
f(y)

∂

∂t
pt(dy|x) =

∫
(Sf)(y)pt(dy|x). (19)

The adjoint of the operator S is an operator S∗ on the space of measures
such that ∫

(Sf)(y)µ(dy) =

∫
f(y)(S∗µ)(dy).

If this holds for sufficiently many f and µ, then it is unique.
Using the definition of adjoint in (19)∫

f(y)
∂

∂t
pt(dy|x) =

∫
f(y) (S∗pt(·|x)) (dy),

from which we get Kolmogorov’s forward equation

∂

∂t
pt(B|x) = (S∗pt(·|x)) (B). (20)

63



Remark 2. The derivation of the forward equation is rather intuitive. What
kind of space is the domain D(S), and how the adjoint operator defined?
Furthermore, in (19)) we differentiated a family of measures with respect to
t. If the measure are absolutely continuous, i.e.

pt(dy|x) = ρt(y|x)dy,

then

lim
τ→0

ρt+τ (y|x)− ρt(y|x)

τ
=

∂

∂t
ρt(y|x).

In general, both for the backward and for the forward equations extra
conditions are needed. As it can be guessed from the derivation, for the
forward equation more restrictive conditions are needed.

The importance of the Kolmogorov equations (18) and (20) is that from
infinitesimal conditions (from the generator S) one can determine the evolu-
tion of the whole process, that is the transition probabilities. In most of the
cases the solution cannot be determined explicitly, only by simulation.

Example 6.6 (Poisson process). Let (Nt) be a Poisson process with intensity
1. We proved that

(Sf)(x) = f(x+ 1)− f(x).

Therefore, the backward equation reads as

∂

∂t
pt(B|x) = pt(B|x+ 1)− pt(B|x). (21)

For the forward equation we determine the adjoint of S. We need an S∗µ
such that ∫

[f(x+ 1)− f(x)]µ(dx) =

∫
f(x)(S∗µ)(dx).

From this form we can guess that

S∗µ(A) = µ(A− 1)− µ(A),

should work, where A − 1 = {a − 1 : a ∈ A}. This indeed holds, therefore
the forward equation reads as

∂

∂t
pt(B|x) = pt(B − 1|x)− pt(B|x).
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The initial condition in both cases is

p0(B|x) = δx(B) =

{
1, if x ∈ B,
0, otherwise.

In this special case we can solve the equation (21). Let x = 0 and
B = {0}. Since the process have only upwards jumps pt({0}|1) = 0,

d

dt
pt({0}|0) = −pt({0}|0),

which together with the initial condition p0 = 1 gives

pt({0}|0) = e−t.

Now B = {1} gives

d

dt
pt({1}|0) = e−t − pt({1}|0).

Multiplying by et

d

dt

(
etpt({1}|0)

)
= 1,

which with the initial condition p0({1}|0) = 0 gives

pt({1}|0) = te−t.

In general, induction gives that

pt({k}|0) =
tk

k!
e−t.

Example 6.7 (Wiener process). Let (Wt) be SBM. Since (Sf)(x) = f ′′(x)/2,
the backward equation is

∂

∂t
pt(B|x) =

1

2

∂2

∂x2
pt(B|x).

For the density pt(dy|x) = ρt(y|x)dy we get

∂

∂t
ρt(y|x) =

1

2

∂2

∂x2
ρt(y|x).
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This is the heat equation.
For the forward equation we need again the adjoint of S. Let µ be ab-

solutely continuous with respect to the Lebesgue measure, µ(dy) = g(y)dy,
and let f ∈ C2

c . Integration by parts twice gives∫
f ′′(y)g(y)dy =

∫
f(y)g′′(y)dy.

That is (S∗µ)(dy) = 1
2
g′′(y)dy. The forward equation is

∂

∂t
pt(y|x)dy =

1

2

∂2

∂y2
pt(y|x)dy,

which for the densities gives

∂

∂t
ρt(y|x) =

1

2

∂2

∂y2
ρt(y|x),

again the heat equation.
Recall that the fundamental solution to the heat equation

∂

∂t
u(t, x) =

1

2

∂2

∂x2
u(t, x)

is

F (t, x) =
1√
2πt

e−
x2

2t ,

which is exactly the transition density of the SBM.

6.4 Diffusion processes

Diffusions can be handled as solution to stochastic differential equations.
This is the probabilistic approach due to Lévy and Itô. Another more an-
alytical approach to such processes was applied by Kolmogorov and Feller.
They treated diffusions as general Markov processes and using tools from
the theory of partial differential equations, they showed that under suitable
conditions the Kolmogorov backward and forward equations have a unique
solution. Then the existence of a desired Markov process follows from Kol-
mogorov’s consistency theorem, and the continuity property of the process
can be treated by Kolmogorov’s continuity theorem (Theorem 5.8). Here we
look a bit into the latter approach.
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A diffusion process locally behaves as a Wiener process, in the sense that
it satisfies the SDE

dYt = µ(Yt)dt+ σ(Yt)dWt.

That is, for h > 0

∆Yt = Yt+h − Yt =

∫ t+h

t

µ(Ys)ds+

∫ t+h

t

σ(Ys)dWs

≈ hµ(Yt) + σ(Yt)(Wt+h −Wt),

thus

E [∆Yt|Yt = y] = µ(y)h+ o(h),

E
[
(∆Yt)

2|Yt = y
]

= σ2(y)h+ o(h).

A diffusion process (Yt) is a continuous Markov process satisfying as h ↓ 0

(i) P(|∆Yt| > ε|Yt = y) = o(h);

(ii) E (∆εYt|Yt = y) = µ(y)h+ o(h);

(iii) E ((∆εYt)
2|Yt = y) = σ2(y)h+ o(h),

where ∆Yt = Yt+h − Yt, and

∆εYt =

{
∆Yt, if |∆Yt| ≤ ε,

0, otherwise.

The definition determines the infinitesimal generator of the process. For
f ∈ C2

Exf(Yt) = Ex

[
f(x) + (Yt − x)f ′(x) + (Yt − x)2f

′′(x)

2
+ o((Yt − x)2)

]
= f(x) + tµ(x)f ′(x) + tσ2(x)

f ′′(x)

2
+ o(t).

Therefore,

(Sf)(x) = lim
t→0

1

t
Ex [f(Yt)− f(x)] = µ(x)f ′(x) + σ2(x)

f ′′(x)

2
.

Kolmogorov backward equation is

∂

∂t
pt(y|x) = µ(x)

∂

∂x
pt(y|x) +

σ2(x)

2

∂2

∂x2
pt(y|x).
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For the forward equation we need the adjoint of S. This can be de-
termined as for the SBM. Let ρt(y|x) denote the density of the process,
i.e. pt(dy|x) = ρt(y|x)dy. Let µ(dy) = g(y)dy. If f has compact support
then in the integration by parts formula the increment disappears and we
get ∫

(Sf)(y)g(y)dy =

∫ [
µ(y)f ′(y) +

σ2(y)

2
f ′′(y)

]
g(y)dy

=

∫
f(y)

[
− d

dy
(µ(y)g(y)) +

1

2

d2

dy2

(
σ2(y)g(y)

)]
dy.

Thus

(S∗pt(·|x)) (dy) =

[
− d

dy
(µ(y)ρt(y|x)) +

1

2

d2

dy2

(
σ2(y)ρt(y|x)

)]
dy,

and the forward equation is

∂

∂t
ρt(y|x) = − ∂

∂y
(µ(y)ρt(y|x)) +

1

2

∂2

∂y2

(
σ2(y)ρt(y|x)

)
.

Example 6.8 (Ornstein–Uhlenbeck process). Consider the Langevin equa-
tion

dYt = −µYt dt+ σ dWt,

where µ > 0, σ > 0, and Y0 is independent of σ(Ws : s ≥ 0).
We spell out the Kolmogorov equations. The backward is

∂

∂t
ρt(y|x) = −µx ∂

∂x
ρt(y|x) +

σ2

2

∂2

∂x2
ρt(y|x),

which is called Fokker–Planck equation. The forward is

∂

∂t
ρt(y|x) = − ∂

∂y
(−µyρt(y|x)) +

σ2

2

∂2

∂y2
ρt(y|x).

The solution to the Kolmogorov equations is given by the transition den-
sity

ρt(y|x) =

√
µ

πσ2(1− e−2µt)
exp

{
−µ(y − e−µtx)2

σ2(1− e−2µt)

}
.

It is important to emphasize that in general explicit formulas for the tran-
sition densities cannot be obtained. For simulation results the Kolmogorov
equations are important, because solutions can be approximated numerically.
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