Stochastic processes

Péter Kevei
February 15, 2023

Contents

1 Kolmogorov consistency theorem 1
1.1 Arbitrary product of measurable spaces 1
1.2 Consistency theorem 2
2 Conditional expectation 7
2.1 Existence and uniqueness 7
2.2 Conditional expectation with respect to random variable 9
2.3 Properties 10
2.4 Regular conditional probabilities 13
3 Discrete time martingales 15
3.1 Definition, properties 16
3.2 Martingale convergence theorem 17
3.3 Doob's decomposition 19
3.4 Doob's maximal inequality 19
3.5 Optional stopping theorem 23
4 Continuous time martingales 28
4.1 Definitions and simple properties 28
4.2 Martingale convergence theorem 31
4.3 Inequalities 32
4.4 Optional stopping 34
4.5 Doob-Meyer decomposition 35
5 Wiener process 36
5.1 First properties and existence 36
5.2 The space $C[0, \infty)$ 43
5.3 Donsker theorem 46
5.4 Markov property 49
5.5 Path properties 51
6 General Markov processes 58
6.1 Transition probabilities and Chapman-Kolmogorov equations 58
6.2 Infinitesimal generator 61
6.3 Kolmogorov equations 62
6.4 Diffusion processes 66

1 Kolmogorov consistency theorem

This part is from the Csörgő notes [2].

1.1 Arbitrary product of measurable spaces

Let I be an arbitrary index set, and $\mathcal{X}_{i}, i \in I$, arbitrary sets. The product

$$
\mathcal{X}_{I}=\left\{x \mid x: I \mapsto \cup_{i \in I} \mathcal{X}_{i}, \quad x(i) \in \mathcal{X}_{i}, i \in I\right\},
$$

that is the set of functions defined on I, such that $x(i) \in \mathcal{X}_{i}$.
Typical examples are $I=\{0,1, \ldots\}$ (Markov chains, or iid random variables), $I=[0, \infty)$ (Poisson process, continuous time Markov chains), and $\mathcal{X}_{i}=\mathcal{X}=\mathbb{R}$.

For $I \supset J \supset K$ define the projection

$$
\pi_{J, K}: \mathcal{X}_{J} \rightarrow \mathcal{X}_{K}
$$

such that we forget the coordinates in $J-K$, that is

$$
\pi_{J, K}(x)=\left.x\right|_{K}, \quad x \in \mathcal{X}_{J}
$$

Put $\pi_{K}=\pi_{I, K}$ and $\pi_{i}=\pi_{\{i\}}$.
In what follows let $\left(\mathcal{X}_{i}, \mathcal{F}_{i}\right)$ be measurable spaces.
The sets

$$
R=\left\{x: x(i) \in B_{i}, i \in J\right\}=\pi_{J}^{-1}\left(\prod_{i \in J} B_{i}\right)
$$

for $B_{i} \in \mathcal{F}_{i}, i \in J$, are measurable rectangles. For fix J the set of all measurable rectangles are

$$
\mathcal{R}_{J}=\left\{\pi_{J}^{-1}\left(\prod_{i \in J} B_{i}\right): B_{i} \in \mathcal{F}_{i}, i \in J\right\}
$$

and the set of all rectangles

$$
\mathcal{R}=\cup_{J \text { finite }} \mathcal{R}_{J} .
$$

Recall that for $J \subset I$ finite, the product σ-algebra $\mathcal{F}_{J}:=\prod_{i \in J} \mathcal{F}_{i}=$ $\sigma\left(\mathcal{R}_{J}\right)$, is the σ-algebra generated by the measurable rectangles. In what follows we define the product σ-algebra for arbitrary products.

Sets of the form

$$
\pi_{J}^{-1}(B) \subset \mathcal{X}_{I}, \quad \text { where } \quad B \in \mathcal{F}_{J}=\prod_{i \in J} \mathcal{F}_{i}
$$

are cylinders. Put

$$
\mathcal{C}_{J}=\left\{\pi_{J}^{-1}(B): B \in \mathcal{F}_{J}\right\}
$$

and

$$
\mathcal{C}=\cup\left\{\mathcal{C}_{J}: J \subset I, J \text { finite }\right\} .
$$

Recall that a \mathcal{A} is semialgebra on \mathcal{X} if (1) $\mathcal{X} \in \mathcal{A}$, (2) is closed under intersection, and (3) if $A \in \mathcal{A}$ then there exists $A_{1}, \ldots, A_{n} \in \mathcal{A}$ disjoint, such that $A^{c}=\cup_{i=1}^{n} A_{i}$. It is an algebra, if (1), (2) hold, if $A \in \mathcal{A}$ then $A^{c} \in \mathcal{A}$.

Lemma 1.1. (i) \mathcal{R} is semialgebra.
(ii) \mathcal{C}_{J} is σ-algebra for any finite J.
(iii) \mathcal{C} is algebra.

Proof. It is easy. Recall that the inverse image of a σ-algebra is σ-algebra.
Now we can define the product σ-algebra. Let

$$
\mathcal{F}_{I}=\prod_{i \in I} \mathcal{F}_{i}=\sigma(\mathcal{C})
$$

1.2 Consistency theorem

Let $(\Omega, \mathcal{A}, \mathbf{P})$ a probability space, and $\left(\mathcal{X}_{i}, \mathcal{F}_{i}\right), i \in I$, measurable spaces, and $X_{i}: \Omega \rightarrow \mathcal{X}_{i}$ a random element in \mathcal{X}_{i} (that is, it is $\mathcal{F}_{i}-\mathcal{A}$-measurable). Then

$$
X: \Omega \rightarrow \mathcal{X}_{I}, \quad X(\omega)(i)=X_{i}(\omega), \quad \omega \in \Omega, \quad i \in I
$$

is a random element in \mathcal{X}_{I}.
Indeed, it is enough to check measurability on a generating system, and it is easy to see that $\mathcal{F}_{I}=\sigma(\mathcal{R})$. For $\pi_{J}^{-1}\left(\prod_{i \in J} B_{i}\right) \in \mathcal{R}$

$$
X^{-1}\left(\pi_{J}^{-1}\left(\prod_{i \in J} B_{i}\right)\right)=\cap_{i \in J} X_{i}^{-1}\left(B_{i}\right) \in \mathcal{A}
$$

since X_{i} is measurable.

The random element X is a stochastic process indexed by I. Its distribution is

$$
Q=\mathbf{P} \circ X^{-1}
$$

For any $B \in \mathcal{F}_{I}$

$$
Q(B)=\mathbf{P} \circ X^{-1}(B)=\mathbf{P}(X \in B)
$$

If $J \subset I, C \in \mathcal{F}_{J}$

$$
Q \circ \pi_{J}^{-1}(C)=\mathbf{P}\left(X \in \pi_{J}^{-1}(C)\right)=\mathbf{P}\left(\left.X\right|_{J} \in C\right) .
$$

Note that Q is a measure on \mathcal{F}_{I}, while $Q \circ \pi_{J}^{-1}, J \subset I$ finite, is a measure on the finite product space $\left(\mathcal{X}_{J}, \mathcal{F}_{J}\right)$. The set of measures

$$
\left\{Q \circ \pi_{J}^{-1}: J \subset I, J \text { finite }\right\}
$$

are the finite dimensional distributions of X. For $K \subset J \subset I$

$$
\left(Q \circ \pi_{J}^{-1}\right) \circ \pi_{J, K}^{-1}=Q \circ \pi_{J}^{-1} \circ \pi_{J, K}^{-1}=Q \circ\left(\pi_{J, K} \circ \pi_{J}\right)^{-1}=Q \circ \pi_{K}^{-1} .
$$

With the notation $Q_{J}=Q \circ \pi_{J}^{-1}$ we obtained the consistency condition

$$
Q_{J} \circ \pi_{J, K}^{-1}=Q_{K} .
$$

In probabilistic terms $\mathbf{P}\left(\left.\left.X\right|_{J}\right|_{K} \in B\right)=\mathbf{P}\left(\left.X\right|_{K} \in B\right)$ for each $B \in \mathcal{F}_{K}$.
Exercise 1.2. Show that $\sigma(\mathcal{R})=\mathcal{F}_{I}$.
The measurable space $(\mathcal{X}, \mathcal{F})$ is an Euclidean space if $\mathcal{X} \in \mathcal{B}\left(\mathbb{R}^{n}\right)$, and $\mathcal{F}=\mathcal{X} \cap \mathcal{B}\left(\mathbb{R}^{n}\right)$ for some n.

Theorem 1.3 (Kolmogorov's consistency theorem). Assume that $\left(\mathcal{X}_{i}, \mathcal{F}_{i}\right)$, $i \in I$, are Euclidean spaces. For $J \subset I$ finite, let Q_{J} be a measure on the (finite) product σ-algebra \mathcal{F}_{J}. If the set of measures $\left\{Q_{J}: J \subset I, J\right.$ finite $\}$ satisfies the consistency condition

$$
\begin{equation*}
Q_{J} \circ \pi_{J, K}^{-1}=Q_{K}, \quad \forall K \subset J \subset I, J, K \text { finite }, \tag{1}
\end{equation*}
$$

then there exists a unique measure Q on the product σ-algebra \mathcal{F}_{I}, for which

$$
Q \circ \pi_{J}^{-1}=Q_{J} \quad \forall J \text { finite } .
$$

Before the proof we recall some results from measure theory.

Lemma 1.4 (Regularity). Let $\left(\mathbb{R}^{k}, \mathcal{B}\left(\mathbb{R}^{k}\right), \mu\right)$ be a finite measure space. For any $B \in \mathcal{B}\left(\mathbb{R}^{k}\right)$ and for any $\varepsilon>0$ there exists a compact $K \subset B$ such that $\mu(B-K)<\varepsilon$.

Theorem 1.5 (Charatheodory extension). Let μ_{0} be a σ-finite measure on a semialgebra \mathcal{A}. Then μ_{0} extends uniquely to a measure μ on $\sigma(\mathcal{A})$.

Theorem 1.6 (Kolmogorov's continuity). Let μ be a finitely additive measure on the algebra \mathcal{A}. It is measure if and only if $A_{n} \downarrow \emptyset, A_{n} \in \mathcal{A}$, implies $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$.

Exercise 1.7. Prove the continuity theorem.
Proof of the consistency theorem. Since $\mathcal{F}_{I}=\sigma(\mathcal{C})$ we have to define Q_{0} as

$$
\begin{equation*}
Q_{0}(C)=Q_{J}(A), \quad C=\pi_{J}^{-1}(A) \in \mathcal{C}, A \in \mathcal{F}_{J}, J \subset I \text { finite } \tag{2}
\end{equation*}
$$

and hope for the best.
First we need that Q_{0} is well-defined. Let J, K finite, $A \in \mathcal{F}_{J}, B \in \mathcal{F}_{K}$, such that

$$
C=\pi_{J}^{-1}(A)=\pi_{K}^{-1}(B)
$$

Let $L=J \cup K$. Then

$$
\pi_{L}^{-1}\left(\pi_{L, J}^{-1}(A)\right)=\pi_{J}^{-1}(A)=C=\pi_{K}^{-1}(B)=\pi_{L}^{-1}\left(\pi_{L, K}^{-1}(B)\right)
$$

This implies $\pi_{L, J}^{-1}(A)=\pi_{L, K}^{-1}(B)=: D$. By the consistency condition (1)

$$
Q_{J}(A)=Q_{L} \circ \pi_{L, J}^{-1}(A)=Q_{L}\left(\pi_{L, J}^{-1}(A)\right)=Q_{L}(D)=Q_{K}(B)
$$

that is the definition is unique.
Next we show that Q_{0} is finitely additive. Let $C, D \in \mathcal{C}$ disjoint, $C \in \mathcal{C}_{J}$, $D \in \mathcal{C}_{K}$. Then $C, D \in \mathcal{C}_{L}$, with $L=J \cup K$, and $C=\pi_{L}^{-1}(A), D=\pi_{L}^{-1}(B)$. Since $C \cap D=\emptyset$ we have $A \cap B=\emptyset$. Thus

$$
\begin{aligned}
Q_{0}(C \cup D) & =Q_{0}\left(\pi_{L}^{-1}(A) \cup \pi_{L}^{-1}(B)\right)=Q_{0}\left(\pi_{L}^{-1}(A \cup B)\right) \\
& =Q_{L}(A \cup B)=Q_{L}(A)+Q_{L}(B) \\
& =Q_{0}(C)+Q_{0}(D),
\end{aligned}
$$

showing the additivity.

Therefore Q_{0} is a finitely additive finite measure on \mathcal{C}. Therefore, by the continuity theorem, to show that Q_{0} is in fact a measure we need that $C_{1}, C_{2}, \ldots \in \mathcal{C}$, such that $C_{n} \downarrow \emptyset$, implies $Q_{0}\left(C_{n}\right) \rightarrow 0$. Equivalently, if

$$
\begin{equation*}
C_{1}, C_{2}, \ldots \in \mathcal{C}, C_{n} \downarrow \lim _{n \rightarrow \infty} Q_{0}\left(C_{n}\right)=\inf _{n \geq 1} Q_{0}\left(C_{n}\right)=: 2 \varepsilon>0 \tag{3}
\end{equation*}
$$

then $\cap_{n=1}^{\infty} C_{n} \neq \emptyset$. This is the difficult part.
In what follows we assume $\left(\mathcal{X}_{i}, \mathcal{F}_{i}\right)=(\mathbb{R}, \mathcal{B})$. Then $\left(\mathcal{X}_{I}, \mathcal{F}_{I}\right)=\left(\mathbb{R}^{I}, \mathcal{B}^{I}\right)$.
Let C_{1}, C_{2}, \ldots a sequence satisfying (3). Then there exist B_{1}, B_{2}, \ldots

$$
C_{n}=\pi_{J_{n}}^{-1}\left(B_{n}\right), \quad B_{n} \in \mathcal{B}^{J_{n}}, \quad J_{n} \subset I, \quad J_{1} \subset J_{2} \subset \ldots, \quad\left|J_{n}\right|=k_{n}
$$

where $0<k_{1}<k_{2}<\ldots$. Indeed, smaller B_{n} 's can be extended by some factors of \mathbb{R} if necessary. Choosing

$$
\left\{\widetilde{C}_{1}, \widetilde{C}_{2}, \ldots\right\}=\{\underbrace{\mathbb{R}^{I}, \ldots, \mathbb{R}^{I}}_{k_{1}-1}, \underbrace{C_{1}, \ldots, C_{1}}_{k_{2}-k_{1}}, \ldots, \underbrace{C_{n}, \ldots, C_{n}}_{k_{n+1}-k_{n}}, \ldots\},
$$

we may also assume that $k_{n}=n$. We suppress the \sim.
That is for each $n \in \mathbb{N}$

$$
C_{n}=\pi_{J_{n}}^{-1}\left(B_{n}\right), \quad B_{n} \in \mathcal{B}^{J_{n}}, \quad J_{n} \subset I, \quad J_{1} \subset J_{2} \subset \ldots, \quad\left|J_{n}\right|=n .
$$

By the regularity lemma there exists $K_{n} \in \mathbb{R}^{J_{n}}$ compact (bounded, closed)

$$
K_{n} \subset B_{n}, \quad Q_{J_{n}}\left(B_{n}-K_{n}\right)<\frac{\varepsilon}{2^{n}} .
$$

Since $C_{n}=\cap_{k=1}^{n} C_{k}$,

$$
\begin{aligned}
Q_{0}\left(C_{n}\right) & =Q_{0}\left(\cap_{k=1}^{n} C_{k}\right)=Q_{0}\left(\cap_{k=1}^{n} \pi_{J_{k}}^{-1}\left(B_{k}\right)\right) \\
& =Q_{0}\left(\cap_{k=1}^{n}\left[\pi_{J_{n}}^{-1} \circ \pi_{J_{n}, J_{k}}^{-1}\left(B_{k}\right)\right]\right)=Q_{0}\left(\pi_{J_{n}}^{-1}\left(\cap_{k=1}^{n} \pi_{J_{n}, J_{k}}^{-1}\left(B_{k}\right)\right)\right) \\
& =Q_{J_{n}}\left(\cap_{k=1}^{n} \pi_{J_{n}, J_{k}}^{-1}\left(B_{k}\right)\right) .
\end{aligned}
$$

Using that $\cap A_{k}-\cap B_{k} \subset \cup\left(A_{k}-B_{k}\right)$

$$
\begin{aligned}
& Q_{J_{n}}\left(\cap_{k=1}^{n} \pi_{J_{n}, J_{k}}^{-1}\left(K_{k}\right)\right) \\
& =Q_{0}\left(C_{n}\right)-\left\{Q_{J_{n}}\left(\cap_{k=1}^{n} \pi_{J_{n}, J_{k}}^{-1}\left(B_{k}\right)\right)-Q_{J_{n}}\left(\cap_{k=1}^{n} \pi_{J_{n}, J_{k}}^{-1}\left(K_{k}\right)\right)\right\} \\
& \geq 2 \varepsilon-Q_{J_{n}}\left(\cap_{k=1}^{n} \pi_{J_{n}, J_{k}}^{-1}\left(B_{k}\right)-\cap_{k=1}^{n} \pi_{J_{n}, J_{k}}^{-1}\left(K_{k}\right)\right) \\
& \geq 2 \varepsilon-Q_{J_{n}}\left(\cup_{k=1}^{n} \pi_{J_{n}, J_{k}}^{-1}\left(B_{k}-K_{k}\right)\right) \\
& \geq 2 \varepsilon-\sum_{k=1}^{n} Q_{J_{n}}\left(\pi_{J_{n}, J_{k}}^{-1}\left(B_{k}-K_{k}\right)\right)=2 \varepsilon-\sum_{k=1}^{n} Q_{J_{k}}\left(B_{k}-K_{k}\right) \\
& \geq 2 \varepsilon-\sum_{k=1}^{n} \frac{\varepsilon}{2^{k}} \geq 2 \varepsilon-\sum_{k=1}^{\infty} \frac{\varepsilon}{2^{k}}=\varepsilon>0 .
\end{aligned}
$$

That is

$$
\cap_{k=1}^{n} \pi_{J_{n}, J_{k}}^{-1}\left(K_{k}\right) \neq \emptyset, \quad n=1,2, \ldots
$$

Therefore, for each n there exists $\left(x_{n, 1}, \ldots, x_{n, n}\right)$ such that $\left(x_{n, 1}, \ldots, x_{n, k}\right) \in$ $K_{k}, k=1, \ldots, n$. Since $\left(x_{n, 1}\right)_{n=1}^{\infty} \subset K_{1}$, and K_{1} is compact, by the BolzanoWeierstrass theorem there exists a subsequence $\left(n_{j}^{(1)}\right)_{j}$ and $x_{1} \in K_{1} \subset \mathbb{R}^{J_{1}}$ such that $\lim _{j \rightarrow \infty} x_{n_{j}^{(1)}, 1}=x_{1}$. We can choose a further subsequence $\left(n_{j}^{(2)}\right)_{j}$ of $n_{j}^{(1)}$ such that $\lim _{j \rightarrow \infty} x_{n_{j}^{(2)}, 2}=x_{2}$ for some x_{2} for which $\left(x_{1}, x_{2}\right) \in K_{2} \subset \mathbb{R}^{J_{2}}$. Continuing the process we obtain a point $\left(x_{1}, x_{2}, \ldots\right)$ such that $\left(x_{1}, \ldots, x_{k}\right) \in$ K_{k} for $k=1,2, \ldots$ Let $x \in \mathbb{R}^{I}$ such that $\pi_{J_{k}}(x)=\left(x_{1}, \ldots, x_{k}\right), k=1,2, \ldots$, and the other coordinates are arbitrary. Then

$$
x \in \cap_{k=1}^{\infty} \pi_{J_{k}}^{-1}\left(K_{k}\right) \subset \cap_{k=1}^{\infty} \pi_{J_{k}}^{-1}\left(B_{k}\right)=\cap_{k=1}^{\infty} C_{k},
$$

proving $\cap_{k=1}^{\infty} C_{k} \neq \emptyset$, thus the statement.
As an important corollary, we obtain the coordinate representation of a stochastic process.

Theorem 1.8 (Kolmogorov's existence theorem). Under the conditions of the consistency theorem there exists a probability space $(\Omega, \mathcal{A}, \mathbf{P})$ and a stochastic process $X: \Omega \rightarrow \mathcal{X}_{I}, X(\omega)(i)=X_{i}(\omega), \omega \in \Omega, i \in I$, such that the finite dimensional distributions of $Q=\mathbf{P} \circ X^{-1}$ is the given collection of consistent measures

$$
\left\{Q \circ \pi_{J}^{-1}: J \subset I, J \text { finite }\right\} .
$$

Proof. Choose $(\Omega, \mathcal{A}, \mathbf{P})=\left(\mathcal{X}_{I}, \mathcal{F}_{I}, Q\right)$, and $X: \mathcal{X}_{I} \rightarrow \mathcal{X}_{I}: x \mapsto x$.

2 Conditional expectation

This is a from Csörgő [2] and Durrett [3].

2.1 Existence and uniqueness

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space, and $\mathcal{G} \subset \mathcal{A}$ a sub- σ-algebra. Let X be an integrable random variable, $\mathbf{E}|X|<\infty$. The conditional expectation of X given the σ-algebra \mathcal{G} is a random variable $\mathbf{E}[X \mid \mathcal{G}]$ which is
(i) \mathcal{G} measurable and integrable,
(ii) for any $G \in \mathcal{G}$

$$
\int_{G} \mathbf{E}[X \mid \mathcal{G}] \mathrm{d} \mathbf{P}=\int_{G} X \mathrm{~d} \mathbf{P} .
$$

Note that conditional expectation is a random variable. Therefore, all equalities, inequalities involving conditional expectation are meant almost surely.

The conditional probability of A given \mathcal{G} is defined by

$$
\mathbf{P}(A \mid \mathcal{G})=\mathbf{E}[\mathbb{I}(A) \mid \mathcal{G}] .
$$

Example 2.1. If $\mathcal{G}=\{\emptyset, \Omega\}$ then $\mathbf{E}[X \mid \mathcal{G}]=\mathbf{E} X$, while if $\mathcal{G}=\mathcal{A}$ (or more generally, X is \mathcal{G}-measurable) then $\mathbf{E}[X \mid \mathcal{G}]=X$.

If X is independent of the σ-algebra \mathcal{G}, then $\mathbf{E}[X \mid \mathcal{G}]=\mathbf{E} X$.
Theorem 2.2. Conditional expectation exists and it is unique.
Proof. Existence. First recall the Radon-Nikodym theorem. Let μ, ν be measure on the measurable space $(\mathcal{X}, \mathcal{F})$. Then ν is absolute continuous with respect to $\mu, \nu \ll \mu$, if $\mu(A)=0$ implies $\nu(A)=0$. The Radon-Nikodym theorem states that whenever $\nu \ll \mu$ then there exists a measurable function f such that

$$
\nu(A)=\int_{A} f \mathrm{~d} \mu
$$

Then $f=\frac{\mathrm{d} \nu}{\mathrm{d} \mu}$ is called the Radon-Nikodym derivative of ν with respect to μ.
Let's go back to our setup. First assume that $X \geq 0$, and define a new measure ν on (Ω, \mathcal{G}) as

$$
\nu(G)=\int_{G} X \mathrm{~d} \mathbf{P}, \quad G \in \mathcal{G} .
$$

Clearly, $\nu \ll \mathbf{P}$. Therefore, there exists $f \mathcal{G}$-measurable, for which

$$
\nu(G)=\int_{G} f \mathrm{~d} \mathbf{P} .
$$

Then $f=\mathbf{E}[X \mid \mathcal{G}]$ satisfies (i) and (ii) in the definition above.
In the general case write $X=X^{+}-X^{-}$, and apply the result above.
Uniqueness. Let Y, Z be random variables satisfying (i) and (ii). Choose $G=\{Y>Z\} \in \mathcal{G}$. Then

$$
\int_{G} Y \mathrm{~d} \mathbf{P}=\int_{G} Z \mathrm{~d} \mathbf{P},
$$

implying $\mathbf{P}(G)=0$. Symmetry gives the statement.
We need some results from measure theory. A π-system is a collection of sets closed under intersection. A class of sets \mathcal{L} on Ω is λ-system if
(i) $\emptyset, \Omega \in \mathcal{L}$;
(ii) if $A, B \in \mathcal{L}$ and $A \subset B$ then $B-A \in \mathcal{L}$; (i.e. closed under proper difference)
(iii) $A_{n} \uparrow, A_{n} \in \mathcal{L}$ implies $\cup_{n} A_{n} \in \mathcal{L}$ (closed under monotone union).

Exercise 2.3. Let μ and ν be finite measure on (Ω, \mathcal{A}) such that $\mu(\Omega)=$ $\nu(\Omega)$. Show that

$$
\mathcal{L}=\{A: \mu(A)=\nu(A)\}
$$

is λ-system.
The following result and its proof is similar to the monotone class theorem, but it more useful.

Theorem $2.4(\pi-\lambda$ theorem $)$. Let \mathcal{C} be a π-system. Then $\sigma(\mathcal{C})=\lambda(\mathcal{C})$.
It is enough to check the defining integral condition (ii) on a generating π-system.

Proposition 2.5. Let Z be \mathcal{G}-measurable, \mathcal{C} be a π-system such that $\sigma(\mathcal{C})=$ \mathcal{G}. If

$$
\begin{equation*}
\int_{C} Z \mathrm{~d} \mathbf{P}=\int_{C} X \mathrm{~d} \mathbf{P} \tag{4}
\end{equation*}
$$

for each $C \in \mathcal{C}$, then $Z=\mathbf{E}[X \mid \mathcal{G}]$.

Proof. Let \mathcal{L} be the set of all sets C for which (4) holds. Then, by assumption $\mathcal{C} \subset \mathcal{L}$. It is easy to check that \mathcal{L} is a λ-system. The π - λ-theorem gives the result.

We also frequently use the following simple lemma.
Lemma 2.6. Let \mathcal{G} be a sub- σ-algebra, $X, Y \mathcal{G}$-measurable. Then $X \leq Y$ a.s. iff

$$
\int_{G} X \mathrm{~d} \mathbf{P} \leq \int_{G} Y \mathrm{~d} \mathbf{P} \quad \forall G \in \mathcal{G}
$$

2.2 Conditional expectation with respect to random variable

Let Y be a random variable. Then

$$
\mathbf{E}[X \mid Y]=\mathbf{E}[X \mid \sigma(Y)] .
$$

The next lemma implies that $\mathbf{E}[X \mid Y]$ is a function of Y.
Lemma 2.7. Let Y be a random element on $(\mathcal{Y}, \mathcal{F})$, and let Z be a $\sigma(Y)$ measurable random variable. Then there exists an \mathcal{F}-measurable function $g: \mathcal{Y} \rightarrow \mathbb{R}$, such that $Z=g(Y)$ a.s.

Proof. Writing $Z=Z_{+}-Z_{-}$, we may assume that $Z \geq 0$. Consider a sequence of $\sigma(Y)$-simple functions

$$
Z_{m}=\sum_{i=1}^{k_{m}} c_{m, i} \mathbb{I}\left(A_{m, i}\right), \quad A_{m, i} \in \sigma(Y)
$$

such that $Z_{m} \uparrow Z$. Since $A_{m, i}=Y^{-1}\left(F_{m, i}\right)$, for some $F_{m, i} \in \mathcal{F}$, we see that

$$
Z_{m}=\sum_{i=1}^{m} c_{m, i} \mathbb{I}\left(Y \in F_{m, i}\right)=: g_{m}(Y)
$$

Clearly, g_{m} is \mathcal{F}-measurable, and $g_{m}(Y(\omega)) \uparrow Z(\omega)$ a.s. Let

$$
g(y)=\limsup _{m \rightarrow \infty} g_{m}(y)
$$

Then g is measurable, and $g(Y)=\lim \sup _{m \rightarrow \infty} g_{m}(Y)=Z$, as claimed.

Since $\mathbf{E}[X \mid Y]$ is $\sigma(Y)$-measurable (by definition), there exists a g_{X} measurable such that $\mathbf{E}[X \mid Y]=g_{X}(Y)$ a.s. The conditional expectation of X given $Y=y$ is

$$
\mathbf{E}[X \mid Y=y]=g_{X}(y), \quad y \in \mathcal{Y} .
$$

Note that the event $\{Y=y\}$ has probability 0 for continuous Y, therefore the definition above does not make sense in the old (elementary) definition of conditional probability.

By the definition, for any $F \in \mathcal{F}$

$$
\begin{aligned}
\int_{\{Y \in F\}} X \mathrm{~d} \mathbf{P} & =\int_{\{Y \in F\}} \mathbf{E}[X \mid Y] \mathrm{d} \mathbf{P}=\int_{\{Y \in F\}} g_{X}(Y) \mathrm{d} \mathbf{P} \\
& =\int_{F} g_{X}(y) \mu_{Y}(\mathrm{~d} y)=\int_{F} \mathbf{E}[X \mid Y=y] \mu_{Y}(\mathrm{~d} y) .
\end{aligned}
$$

For a real random variable, with $F=\mathbb{R}$

$$
\mathbf{E} X=\int_{\mathbb{R}} \mathbf{E}[X \mid Y=y] \mu_{Y}(\mathrm{~d} y)
$$

In particular, if Y is discrete

$$
\mathbf{E} X=\sum_{j} \mathbf{E}\left[X \mid Y=y_{j}\right] \mathbf{P}\left(Y=y_{j}\right)
$$

while if it is continuous with density h

$$
\mathbf{E} X=\int_{\mathbb{R}} \mathbf{E}[X \mid Y=y] h(y) \mathrm{d} y
$$

2.3 Properties

Theorem 2.8. Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space, $\mathcal{G} \subset \mathcal{A}$ a sub- σ-algebra, X, Y, X_{n} are integrable random variables, and $a, b \in \mathbb{R}$.
(i) (linearity) $\mathbf{E}[a X+b Y \mid \mathcal{G}]=a \mathbf{E}[X \mid \mathcal{G}]+b \mathbf{E}[Y \mid \mathcal{G}]$.
(ii) (monotonicity) If $X \leq Y$ then $\mathbf{E}[X \mid \mathcal{G}] \leq \mathbf{E}[Y \mid \mathcal{G}]$.
(iii) $|\mathbf{E}[X \mid \mathcal{G}]| \leq \mathbf{E}[|X| \mid \mathcal{G}]$.
(iv) (monotone convergence) $0 \leq X_{n} \uparrow X$ a.s., then $\mathbf{E}\left[X_{n} \mid \mathcal{G}\right] \uparrow \mathbf{E}[X \mid \mathcal{G}]$.
(v) If $0 \geq X_{n} \downarrow X$ a.s., then $\mathbf{E}\left[X_{n} \mid \mathcal{G}\right] \downarrow \mathbf{E}[X \mid \mathcal{G}]$.
(vi) (conditional Fatou) If $X_{n} \geq 0$ and $\liminf _{n \rightarrow \infty} X_{n}$ is integrable, then

$$
\mathbf{E}\left[\liminf _{n \rightarrow \infty} X_{n} \mid \mathcal{G}\right] \leq \liminf _{n \rightarrow \infty} \mathbf{E}\left[X_{n} \mid \mathcal{G}\right] .
$$

(vii) (conditional Lebesgue's dominated convergence) If $\lim _{n \rightarrow \infty} X_{n}=X$ a.s., and $\left|X_{n}\right| \leq Y$ a.s., for all $n \in \mathbb{N}$, with an integrable Y then $\lim _{n \rightarrow \infty} \mathbf{E}\left[X_{n} \mid \mathcal{G}\right]=\mathbf{E}[X \mid \mathcal{G}]$.
(viii) If $\lim _{n \rightarrow \infty} X_{n}=X$ a.s., and $\mathbf{E}\left[\sup _{n}\left|X_{n}\right|\right]<\infty$, then $\mathbf{E}\left[X_{n} \mid \mathcal{G}\right] \rightarrow$ $\mathbf{E}[X \mid \mathcal{G}]$.
(ix) If Z is \mathcal{G}-measurable, X and $Z X$ are integrable, then

$$
\mathbf{E}[Z X \mid \mathcal{G}]=Z \mathbf{E}[X \mid \mathcal{G}] .
$$

(x) (tower rule) If $\mathcal{G}_{1} \subset \mathcal{G}_{2}$ sub- σ-algebras then

$$
\mathbf{E}\left[\mathbf{E}\left[X \mid \mathcal{G}_{2}\right] \mid \mathcal{G}_{1}\right]=\mathbf{E}\left[X \mid \mathcal{G}_{1}\right]=\mathbf{E}\left[\mathbf{E}\left[X \mid \mathcal{G}_{1}\right] \mid \mathcal{G}_{2}\right] .
$$

(xi) (conditional Jensen inequality) If φ is convex and $\mathbf{E}|X|<\infty, \mathbf{E}|\varphi(X)|<$ ∞, then

$$
\varphi(\mathbf{E}[X \mid \mathcal{G}]) \leq \mathbf{E}[\varphi(X) \mid \mathcal{G}] .
$$

Proof. (i) The RHS is \mathcal{G}-measurable, and satisfies the integral equation defining the LHS.
(ii) Both sides are \mathcal{G}-measurable, thus it is enough to prove that

$$
\int_{G} \mathbf{E}[X \mid \mathcal{G}] \mathrm{d} \mathbf{P} \leq \int_{G} \mathbf{E}[Y \mid \mathcal{G}] \mathrm{d} \mathbf{P}
$$

for any $G \in \mathcal{G}$. This follows from the defining integral equation of the conditional expectation.
(iii) follows from (ii).
(iv) From (ii) we see that $\mathbf{E}\left[X_{n} \mid \mathcal{G}\right]$ is increasing, therefore it has a \mathcal{G} measurable limit, say Z. Monotone convergence theorem implies that Z satisfies the defining integral equation of $\mathbf{E}[X \mid \mathcal{G}]$.
(v) follows from (iv).
(vi) Put $Y_{n}=\inf _{m \geq n} X_{m}$. Then $Y_{n} \uparrow \liminf _{n \rightarrow \infty} X_{n}$, thus by (iv)

$$
\mathbf{E}\left[Y_{n} \mid \mathcal{G}\right] \uparrow \mathbf{E}\left[\liminf _{n \rightarrow \infty} X_{n} \mid \mathcal{G}\right] .
$$

Simply $Y_{n} \leq X_{n}$, thus by (ii) $\mathbf{E}\left[Y_{n} \mid \mathcal{G}\right] \leq \mathbf{E}\left[X_{n} \mid \mathcal{G}\right]$, so

$$
\liminf \mathbf{E}\left[Y_{n} \mid \mathcal{G}\right] \leq \liminf \mathbf{E}\left[X_{n} \mid \mathcal{G}\right]
$$

(vii) By assumption $Z_{n}:=\sup _{m \geq n}\left|X_{m}-X\right| \downarrow 0$ a.s., and by Lebesgue's dominated convergence theorem, $\mathbf{E} \bar{Z}_{n} \rightarrow 0$. Then

$$
\left|\mathbf{E}\left[X_{n} \mid \mathcal{G}\right]-\mathbf{E}[X \mid \mathcal{G}]\right| \leq \mathbf{E}\left[\left|X_{n}-X\right| \mid \mathcal{G}\right] \leq \mathbf{E}\left[Z_{n} \mid \mathcal{G}\right] .
$$

Since $Z_{n} \downarrow 0$, we have that $\mathbf{E}\left[Z_{n} \mid \mathcal{G}\right] \downarrow V$, for some V nonnegative, \mathcal{G} measurable. Then

$$
\mathbf{E} V \leq \mathbf{E} Z_{n} \rightarrow 0
$$

implying that $V=0$ a.s.
(viii) follows from (vii) with $Y=\sup \left|X_{n}\right|$.
(ix) As usual we may assume that X, Z are nonnegative. We show that $Z \mathbf{E}[X \mid \mathcal{G}]$ satisfies the defining properties of $\mathbf{E}[Z X \mid \mathcal{G}]$. Measurability is clear. If $Z=\mathbb{I}_{A}, A \in \mathcal{G}$, then

$$
\int_{G} \mathbb{I}_{A} \mathbf{E}[X \mid \mathcal{G}] \mathrm{d} \mathbf{P}=\int_{A \cap G} \mathbf{E}[X \mid \mathcal{G}] \mathrm{d} \mathbf{P}=\int_{A \cap G} X \mathrm{~d} \mathbf{P}=\int_{G} \mathbb{I}_{A} X \mathrm{~d} \mathbf{P}
$$

Thus the statement holds for indicators. Using linearity and monotone convergence the statement follows.
(x) Since $\mathbf{E}\left[X \mid \mathcal{G}_{1}\right]$ is \mathcal{G}_{2}-measurable, the second equality follows. For the first equality, for $G \in \mathcal{G}_{1}$

$$
\int_{G} \mathbf{E}\left[\mathbf{E}\left[X \mid \mathcal{G}_{2}\right] \mid \mathcal{G}_{1}\right] \mathrm{d} \mathbf{P}=\int_{G} \mathbf{E}\left[X \mid \mathcal{G}_{2}\right] \mathrm{d} \mathbf{P}=\int_{G} X \mathrm{~d} \mathbf{P}
$$

as claimed, where the second equality holds since $G \in \mathcal{G}_{2}$.
(xi) By convexity, for any x, a

$$
\varphi(x) \geq \varphi(a)+\varphi^{\prime}(a)(x-a) .
$$

Thus

$$
\varphi(X) \geq \varphi(\mathbf{E}[X \mid \mathcal{G}])+\varphi^{\prime}(\mathbf{E}[X \mid \mathcal{G}])(X-\mathbf{E}[X \mid \mathcal{G}])
$$

Take conditional expectation $\mathbf{E}[\cdot \mid \mathcal{G}]$ and note that on the RHS $\varphi^{\prime}(\mathbf{E}[X \mid \mathcal{G}])$ is \mathcal{G}-measurable. If φ is not differentiable, take left derivative, which exists.

Exercise 2.9 (Chebyshev's inequality). Prove that

$$
\mathbf{P}(|X| \geq x \mid \mathcal{G}) \leq \frac{\mathbf{E}\left[X^{2} \mid \mathcal{G}\right]}{x^{2}}
$$

Theorem 2.10. Assume that $\mathbf{E} X^{2}<\infty$. Then

$$
\inf _{Y \mathcal{G}-\text { measurable }} \mathbf{E}(X-Y)^{2}=\mathbf{E}(X-\mathbf{E}[X \mid \mathcal{G}])^{2} ;
$$

that is $\mathbf{E}[X \mid \mathcal{G}]$ is that \mathcal{G}-measurable random variable which minimizes the error $\mathbf{E}(X-Y)^{2}$.

This means that the conditional expectation is a projection to

$$
L^{2}(\mathcal{G})=\left\{Z: \Omega \rightarrow \mathbb{R}, \mathbf{E} Z^{2}<\infty, Z \mathcal{G}-\text { measurable }\right\}
$$

Proof. For $Z \in L^{2}(\mathcal{G})$

$$
\mathbf{E}(Z \mathbf{E}[X \mid \mathcal{G}])=\mathbf{E}(Z X)
$$

that is

$$
\mathbf{E}(Z(X-\mathbf{E}[X \mid \mathcal{G}]))=0
$$

Thus for $Y \in L^{2}(\mathcal{G})$

$$
\begin{aligned}
\mathbf{E}\left[(X-Y)^{2}\right] & =\mathbf{E}\left[(X-\mathbf{E}[X \mid \mathcal{G}]+\mathbf{E}[X \mid \mathcal{G}]-Y)^{2}\right] \\
& =\mathbf{E}\left[(X-\mathbf{E}[X \mid \mathcal{G}])^{2}\right]+\mathbf{E}\left[(\mathbf{E}[X \mid \mathcal{G}]-Y)^{2}\right]
\end{aligned}
$$

Thus we see that the minimum is attained at $Y=\mathbf{E}[X \mid \mathcal{G}]$.

2.4 Regular conditional probabilities

This is from Durrett [3].
Let $\mathcal{G} \subset \mathcal{A}$ be a sub- σ-algebra, and consider for $A \in \mathcal{A}$ the conditional probabilities $\mathbf{P}(A \mid \mathcal{G})=\mathbf{E}\left[\mathbb{I}_{A} \mid \mathcal{G}\right]$. Since $0 \leq \mathbb{I}_{A} \leq 1$,

$$
\begin{equation*}
\mathbf{P}(A \mid \mathcal{G}) \in[0,1] \quad \text { a.s. } \tag{5}
\end{equation*}
$$

Furthermore, for disjoint $A_{i} \in \mathcal{A}, i=1,2, \ldots$, we have

$$
\begin{equation*}
\mathbf{P}\left(\cup_{i=1}^{\infty} A_{i} \mid \mathcal{G}\right)=\sum_{i=1}^{\infty} \mathbf{P}\left(A_{i} \mid \mathcal{G}\right) \quad \text { a.s. } \tag{6}
\end{equation*}
$$

Therefore, $\mathbf{P}(\cdot \mid \mathcal{G})$ behaves as a probability measure. However, both (5) and (6) hold almost surely. That is, there is an exceptional set N_{A}, which is a \mathbf{P}-null set, $\mathbf{P}\left(N_{A}\right)=0$, such that (5) holds for $\omega \notin N_{A}$. The \mathbf{P}-null set N_{A} may depend on A. In general, a σ-algebra has more than countable infinitely many sets (indeed, it is either finite, or at least continuum). Thus these null set may pile up to a large set. The same problem appears in (6). Under some general conditions we can guarantee that the bad points cannot pile up.

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space, $X: \Omega \rightarrow S$ a random element in (S, \mathcal{S}), and \mathcal{G} be a sub- σ-algebra of \mathcal{A}. The regular conditional distribution for X given \mathcal{G} is a function $\mu: \Omega \times \mathcal{S} \rightarrow[0,1]$ such that
(i) for each $A \in \mathcal{A}$ fix, $\mathbf{P}(X \in A \mid \mathcal{G})(\omega)=\mu(\omega, A)$ a.s.;
(ii) Almost surely $A \mapsto \mu(\omega, A)$ is a probability measure on (S, \mathcal{S}).

If $S=\Omega$ and X is the identity map, μ is a regular conditional probability.
A measurable space (S, \mathcal{S}) is nice, if there is a 1-1 map $\phi: S \rightarrow \mathbb{R}$ such that ϕ, ϕ^{-1} are measurable. If S is a Borel subset of a complete separable metric space, and \mathcal{S} are the Borel sets, then (S, \mathcal{S}) is nice.

Theorem 2.11. Regular conditional distribution exist if (S, \mathcal{S}) is nice.
Proof. We prove only in the special case $(S, \mathcal{S})=(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. The general case is almost identical, with some technical difficulties.

Consider the conditional probabilities $\mathbf{P}(X \leq q \mid \mathcal{G}), q \in \mathbb{Q}$. For each $q \in \mathbb{Q}$ there is \mathbf{P}-null set N_{q}, such that $\mathbf{P}(X \leq q \mid \mathcal{G})(\omega) \in[0,1]$ for $\omega \notin N_{q}$. Similarly, for each $q<r$ there exists a \mathbf{P}-null set $N_{q, r}$ such that for each $\omega \notin N_{q, r}$

$$
\mathbf{P}(X \leq q \mid \mathcal{G})(\omega) \leq \mathbf{P}(X \leq r \mid \mathcal{G})(\omega)
$$

Set

$$
N=\cup_{q \in \mathbb{Q}} N_{q} \cup \cup_{q<r \in \mathbb{Q}} N_{q, r} .
$$

Then $\mathbf{P}(N)=0$ and $\mathbf{P}(X \leq q \mid \mathcal{G})(\omega) \in[0,1]$, and it is nondecreasing in $q \in \mathbb{Q}$ for $\omega \notin N$. Let

$$
G(x, \omega)=\inf \{\mathbf{P}(X \leq q \mid \mathcal{G})(\omega): q>x\} .
$$

If $\omega \notin N$ then $G(x, \omega)$ is a distribution function in x.
Furthermore, since $\mathbf{P}\left(X \leq q_{n} \mid \mathcal{G}\right) \downarrow \mathbf{P}(X \leq x \mid \mathcal{G})$ as $q_{n} \downarrow x$ we see that $G(x, \omega)=\mathbf{P}(X \leq x \mid \mathcal{G})(\omega)$ a.s.

Taking $\mathcal{G}=\sigma(Y)$, we see that $\mathbf{P}(X \in A \mid \mathcal{G})$ is a measurable function of Y, for each A. This can be done also simultaneously, as above.

Theorem 2.12. Let X, Y be random elements in the nice space (S, \mathcal{S}), and let $\mathcal{G}=\sigma(Y)$. Then there exists $\mu: S \times \mathcal{S} \rightarrow[0,1]$ such that
(i) for each $A \in \mathcal{S}, \mu(Y(\omega), A)=\mathbf{P}(X \in A \mid Y)(\omega)$ a.s.
(ii) almost surely $A \mapsto \mu(Y(\omega), A)$ is a probability measure on (S, \mathcal{S}).

Proof. The proof is similar to the previous one. Again assume $(S, \mathcal{S})=$ $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

As above, we can find random variables $G(q, \omega)$ nondecreasing in q outside of \mathbf{P}-null set N, such that $G(q, \omega)=\mathbf{P}(X \leq q \mid Y)(\omega)$, a.s., $q \in \mathbb{Q}$. Since the latter is $\sigma(Y)$-measurable, $G(q, \omega)=H(q, Y(\omega))$. Choosing

$$
F(x, y)=\inf \{H(q, y): q>x\}
$$

we can show that $F(x, Y(\omega))=\mathbf{P}(X \leq x \mid Y)(\omega)$. This defines a measure, since $F(\cdot, y)$ is nondecreasing.

Existence of regular conditional distribution allows us to compute conditional expectations simultaneously, and also shows the connection to usual expectation.

Theorem 2.13. Let μ be a regular conditional distribution for X given \mathcal{G}. Let $f: S \rightarrow \mathbb{R}$ measurable with $\mathbf{E}|f(X)|<\infty$. Then

$$
\mathbf{E}[f(X) \mid \mathcal{G}]=\int f(x) \mu(\omega, \mathrm{d} x) \quad \text { a.s. }
$$

Proof. The result holds for indicators, by definition. Linearity and monotone convergence implies the statement, as usual.

3 Discrete time martingales

First part of discrete time martingales are mainly from Durrett [3].

3.1 Definition, properties

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space. A filtration is an increasing sequence of sub- σ-algebras $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots \subset \mathcal{F}_{n} \subset \ldots$ A sequence of random variables $\left(X_{n}\right)_{n}$ is adapted to the filtration $\left(\mathcal{F}_{n}\right)$ if X_{n} is \mathcal{F}_{n}-measurable. The sequence $\left(X_{n}, \mathcal{F}_{n}\right)$ is a martingale, or $\left(X_{n}\right)$ is martingale with respect to $\left(\mathcal{F}_{n}\right)$, if
(i) $\mathbf{E}\left|X_{n}\right|<\infty$;
(ii) $\left(X_{n}\right)$ is adapted;
(iii) $\mathbf{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}$.

For a submartingale (supermartingale) conditions (i) and (ii) hold, and (iii) hold with $\geq(\leq)$.

If the filtration is not specified then $\left(X_{n}\right)$ is martingale meant as it is martingale with respect to the natural filtration $\left(\mathcal{F}_{n}\right)$, where $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.

Clearly, if $\left(X_{n}\right)$ is a submartingale then $\left(-X_{n}\right)$ is a supermartingale, therefore it is enough to prove statements for submartingales.

Example 3.1. Let X, X_{1}, \ldots iid random variables with $\mathbf{E} X=0$, and put $S_{n}=X_{1}+\ldots+X_{n}$. Then $\left(S_{n}\right)$ is a martingale. If $\mathbf{E} X^{2}<\infty$ then $\left(S_{n}^{2}\right)$ is a submartingale.

If X, X_{1}, \ldots are iid nonnegative random variables, $\mathbf{E} X=1$, then $\left(R_{n}\right)_{n}$ is a martingale, where $R_{n}=\prod_{i=1}^{n} X_{i}$.

Proposition 3.2. If $\left(X_{n}\right)$ is a submartingale then $\mathbf{E}\left[X_{n} \mid \mathcal{F}_{m}\right] \geq X_{m}$ for any $n>m$. Equality holds for martingales.

Proposition 3.3. (i) Let $\left(X_{n}, \mathcal{F}_{n}\right)$ be a martingale and φ be a convex function such that $\mathbf{E}\left|\varphi\left(X_{n}\right)\right|<\infty$. Then $\varphi\left(X_{n}\right)$ is a submartingale.
(ii) Let $\left(X_{n}, \mathcal{F}_{n}\right)$ be a submartingale and φ be a nondecreasing convex function such that $\mathbf{E}\left|\varphi\left(X_{n}\right)\right|<\infty$. Then $\varphi\left(X_{n}\right)$ is a submartingale.

Proof. It follows from Jensen's inequality.
Corollary 3.4. If $\left(X_{n}\right)$ is a submartingale then $\left(\left(X_{n}-a\right)_{+}\right)$is a submartingale. If $\left(X_{n}\right)$ is a supermartingale then $\left(X_{n} \wedge a\right)_{n}$ is a supermartingale.

3.2 Martingale convergence theorem

A sequence $\left(H_{n}\right)$ is predictable if H_{n} is \mathcal{F}_{n-1}-measurable. Let $\left(H_{n}\right)$ be predictable and $\left(X_{n}\right)$ be adapted. Then

$$
(H \cdot X)_{n}=\sum_{k=1}^{n} H_{m}\left(X_{m}-X_{m-1}\right) .
$$

Note that this is a discrete stochastic integral.
Theorem 3.5. Let $\left(X_{n}\right)$ be a submartingale and $\left(H_{n}\right)$ be predictable, nonnegative, and bounded. Then $(H \cdot X)_{n}$ is a submartingale.

Proof. Follows from the submartingale property.
An integer valued random variable τ is a stopping time, if $\{\tau=n\} \in \mathcal{F}_{n}$.
Corollary 3.6. Let τ be a stopping time, and $\left(X_{n}\right)$ a submartingale. Then $\left(X_{\tau \wedge n}\right)$ is a submartingale.

Proof. Let $H_{n}=\mathbb{I}(\tau \geq n)$. Then $\left(H_{n}\right)$ is predictable, thus $\left((H \cdot X)_{n}=\right.$ $\left.X_{\tau \wedge n}-X_{0}\right)_{n}$ is a submartingale.

Let $\left(X_{n}\right)$ be a submartingale, $a<b$. Let $\tau_{0}=-1$, and

$$
\begin{aligned}
& \tau_{2 k-1}=\min \left\{m>\tau_{2 k-2}: X_{m} \leq a\right\}, \\
& \tau_{2 k}=\min \left\{m>\tau_{2 k-1}: X_{m} \geq b\right\}
\end{aligned}
$$

Then τ_{k} 's are stopping times. So

$$
H_{m}= \begin{cases}1, & \text { if } \tau_{2 k-1}<m \leq \tau_{2 k} \text { for some } k \tag{7}\\ 0, & \text { otherwise }\end{cases}
$$

is predictable. By definition $X\left(\tau_{2 k-1}\right) \leq a$ and $X\left(\tau_{2 k}\right) \geq b$, thus between $\tau_{2 k-1}$ and $\tau_{2 k}$ the process $\left(X_{n}\right)$ crosses the strip $[a, b]$. This is an upcrossing. Let $U_{n}=\max \left\{k: \tau_{2 k} \leq n\right\}$ is the number of upcrossings up to time n.

Lemma 3.7 (Upcrossing lemma). Let $\left(X_{n}\right)$ be a submartingale, $a<b$. Then

$$
(b-a) \mathbf{E} U_{n} \leq \mathbf{E}\left(X_{n}-a\right)_{+}-\mathbf{E}\left(X_{0}-a\right)_{+} .
$$

Proof. Define $Y_{n}=a+\left(X_{n}-a\right)_{+}$. This is a submartingale, which upcrosses $[a, b]$ the same number of times as $\left(X_{n}\right)$ does. Recalling the definition of H from (7) we have $(b-a) U_{n} \leq(H \cdot Y)_{n}$. Indeed, each upcrossing has at least $b-a$ contribution, and the last incomplete one has a nonnegative contribution (because of changing X to Y).

Let $K_{n}=1-H_{n}$. Since $Y_{n}-Y_{0}=(H \cdot Y)_{n}+(K \cdot Y)_{n}$, and

$$
\mathbf{E}(K \cdot Y)_{n} \geq \mathbf{E}(K \cdot Y)_{0}=0
$$

we have

$$
\mathbf{E}(H \cdot Y)_{n} \leq \mathbf{E}\left(Y_{n}-Y_{0}\right),
$$

and the result follows.
A consequence of the previous lemma we obtain the following.
Theorem 3.8 (Martingale convergence theorem). Let $\left(X_{n}\right)$ be a submartingale with $\sup \mathbf{E} X_{n}^{+}<\infty$. Then $\lim _{n \rightarrow \infty} X_{n}$ converges almost surely to a X with $\mathbf{E}|X|<\infty$.

Proof. Fix $a<b$. Since $(X-a)_{+} \leq X_{+}+|a|$ we have

$$
\mathbf{E} U_{n} \leq \frac{|a|+\mathbf{E} X_{n}^{+}}{b-a}
$$

Let $U=\lim _{n \rightarrow \infty} U_{n}$. Clearly, U_{n} is nondecreasing, so the limit exists. By the assumptions $\mathbf{E} U<\infty$, in particular U is finite almost surely. This holds for any $a<b$, the set

$$
A=\cup_{a, b \in \mathbb{Q}\{ }\left\{\lim \inf X_{n}<a<b<\lim \sup X_{n}\right\}
$$

has probability 0. If $\omega \notin A$ then $\lim X_{n}(\omega)$ exists. By Fatou, $\mathbf{E} X^{*} \leq$ $\lim \inf \mathbf{E} X_{n}^{+}<\infty$, so X is finite a.s. Furthermore,

$$
\mathbf{E} X_{n}^{-}=\mathbf{E} X_{n}^{+}-\mathbf{E} X_{n} \leq \mathbf{E} X_{n}^{+}-\mathbf{E} X_{0},
$$

which implies

$$
\mathbf{E} X^{-} \leq \liminf _{n \rightarrow \infty} \mathbf{E} X_{n}^{-} \leq \sup \mathbf{E} X_{n}^{+}-\mathbf{E} X_{0}<\infty
$$

3.3 Doob's decomposition

A submartingale is informally a stochastically increasing sequence. It can be decomposed to a martingale part, which corresponds to a fair game, and a predictable almost surely nondecreasing part.

Theorem 3.9 (Doob's decomposition). Let $\left(X_{n}\right)$ be a submartingale. There exists a unique martingale $\left(M_{n}\right)$, and a predictable nondecreasing sequence $\left(A_{n}\right)$, with $A_{0}=0$ such that $X_{n}=M_{n}+A_{n}$.
Proof. Existence. Under the stated properties

$$
\mathbf{E}\left[X_{n} \mid \mathcal{F}_{n-1}\right]=M_{n-1}+A_{n}=X_{n-1}-A_{n-1}+A_{n} .
$$

Therefore, we must have

$$
A_{n}=\sum_{k=1}^{n} \mathbf{E}\left[X_{n}-X_{n-1} \mid \mathcal{F}_{n-1}\right]
$$

and $M_{n}=X_{n}-A_{n}$. It is easy to see that this indeed works.
Uniqueness follows easily.

3.4 Doob's maximal inequality

This part is mainly from Csörgő [2].
Our first optional stopping theorem is the following.
Theorem 3.10. Let $\left(X_{n}\right)_{n}$ be a submartingale and let τ be a bounded stopping time, i.e. $\tau \leq k$ a.s. for some $k \in \mathbb{N}$. Then

$$
\mathbf{E} X_{0} \leq \mathbf{E} X_{\tau} \leq \mathbf{E} X_{k}
$$

Proof. We proved that the stopped process $\left(X_{n \wedge \tau}\right)_{n}$ is submartingale, thus

$$
\mathbf{E} X_{0}=\mathbf{E} X_{\tau \wedge 0} \leq \mathbf{E} X_{\tau \wedge k}=\mathbf{E} X_{\tau} .
$$

For the other direction, put $K_{n}=\mathbb{I}(\tau<n)=\mathbb{I}(\tau \leq n-1)$. Then K_{n} is $\mathcal{F}_{n-1^{-}}$ measurable, so $\left(K_{n}\right)_{n}$ is predictable. Therefore $(K \cdot X)_{n}$ is submartingale, where

$$
(K \cdot X)_{n}=\sum_{i=1}^{n} \mathbb{I}(\tau \leq i-1)\left(X_{i}-X_{i-1}\right)=X_{n}-X_{\tau \wedge n} .
$$

That is

$$
\mathbf{E} X_{k}-\mathbf{E} X_{\tau}=\mathbf{E}(K \cdot X)_{k} \geq \mathbf{E}(K \cdot X)_{0}=0
$$

An easy consequence is Doob's maximal inequality.
Theorem 3.11 (Doob's maximal inequality). Let $\left(X_{k}, \mathcal{F}_{k}\right)_{k}$ be a submartingale, and put

$$
M_{n}=\max _{1 \leq k \leq n} X_{k} .
$$

Then for any $x>0$

$$
x \mathbf{P}\left(M_{n} \geq x\right) \leq \int_{\left\{M_{n} \geq x\right\}} X_{n} \mathrm{~d} \mathbf{P} \leq \mathbf{E} X_{n}^{+}
$$

where $a^{+}=\max \{a, 0\}$.
Proof. The second inequality is obvious.
Let $\tau=\min \left\{\min \left\{k: X_{k} \geq x, k=1,2, \ldots, n\right\}, n\right\}$. Then τ is a bounded stopping time. Since $X_{\tau} \geq x$ on $\left\{M_{n} \geq x\right\}$

$$
x \mathbf{P}\left\{M_{n} \geq x\right\} \leq \int_{\left\{M_{n} \geq x\right\}} X_{\tau} \mathrm{d} \mathbf{P}
$$

By Theorem $3.10 \mathbf{E} X_{\tau} \leq \mathbf{E} X_{n}$, and $X_{\tau}=X_{n}$ on the event $\left\{M_{n}<x\right\}$, thus

$$
\int_{\left\{M_{n} \geq x\right\}} X_{\tau} \mathrm{d} \mathbf{P} \leq \int_{\left\{M_{n} \geq x\right\}} X_{n} \mathrm{~d} \mathbf{P}
$$

proving the statement.
We obtain a new proof for Kolmogorov's maximal inequality.
Example 3.12 (Kolmogorov's maximal inequality). Let ξ, ξ_{1}, \ldots be independent random variables with $\mathbf{E} \xi_{i}=0$, and $\mathbf{E} \xi_{i}^{2}=\sigma_{i}^{2}<\infty$. Then $X_{n}=\sum_{i=1}^{n} \xi_{i}$ is a martingale with respect to the natural filtration. Therefore $\left(X_{n}^{2}\right)_{n}$ is a submartingale and

$$
\begin{aligned}
\mathbf{P}\left(\max _{1 \leq k \leq n}\left|X_{k}\right| \geq x\right) & =\mathbf{P}\left(\max _{1 \leq k \leq n} X_{k}^{2} \geq x^{2}\right) \\
& \leq x^{-2} \mathbf{E} X_{n}^{2}=x^{-2} \sum_{i=1}^{n} \sigma_{i}^{2}
\end{aligned}
$$

For an infinite sequence we obtain the following.

Corollary 3.13. If $\left(X_{k}, \mathcal{F}_{k}\right)$ is a submartingale and $x>0$, then

$$
\mathbf{P}\left(\sup _{n} X_{n} \geq x\right) \leq \frac{1}{x} \sup _{n} \mathbf{E} X_{n}^{+} .
$$

Proof. Follows from the previous result combined with the monotone convergence theorem.

Exercise 3.14. Prove the corollary.
For the L^{p} version we need a lemma.
Lemma 3.15. Let X, Y be nonnegative random variables such that

$$
\mathbf{P}(X \geq x) \leq \frac{1}{x} \int_{\{X \geq x\}} Y \mathrm{~d} \mathbf{P}, \quad x>0
$$

Then for any $p>1$

$$
\mathbf{E} X^{p} \leq\left(\frac{p}{p-1}\right)^{p} \mathbf{E} Y^{p}
$$

Proof. Note the for a nonnegative random variable X

$$
\mathbf{E} X^{p}=\int_{0}^{\infty} p x^{p-1}[1-F(x)] \mathrm{d} x,
$$

where $F(x)=\mathbf{P}(X \leq x)$ is the distribution function of X. Indeed,

$$
\begin{aligned}
\mathbf{E} X^{p} & =\int_{\Omega} X^{p} \mathrm{~d} \mathbf{P}=\int_{\Omega} \int_{0}^{\infty} \mathbb{I}(x<X(\omega)) p x^{p-1} \mathrm{~d} x \mathrm{~d} \mathbf{P}(\omega) \\
& =\int_{0}^{\infty} p x^{p-1}[1-F(x)] \mathrm{d} x .
\end{aligned}
$$

The result follows using Hölder's inequality as

$$
\begin{aligned}
\mathbf{E} X^{p} & =\int_{0}^{\infty} p x^{p-1}[1-F(x)] \mathrm{d} x \\
& \leq \int_{0}^{\infty} p x^{p-1} \frac{1}{x} \int_{\{X \geq x\}} Y(\omega) \mathrm{d} \mathbf{P}(\omega) \mathrm{d} x \\
& =\int_{0}^{\infty} \int_{\Omega} p x^{p-2} \mathbb{I}(X(\omega) \geq x) Y(\omega) \mathrm{d} \mathbf{P}(\omega) \mathrm{d} x \\
& =\int_{\Omega} Y(\omega)\left(\int_{0}^{X(\omega)} p x^{p-2} \mathrm{~d} x\right) \mathrm{d} \mathbf{P}(\omega) \\
& =\int_{\Omega} Y X^{p-1} \frac{p}{p-1} \mathrm{~d} \mathbf{P} \\
& \leq \frac{p}{p-1}\left(\mathbf{E} Y^{p}\right)^{1 / p}\left(\mathbf{E} X^{(p-1) q}\right)^{1 / q} \\
& =\frac{p}{p-1}\left(\mathbf{E} Y^{p}\right)^{1 / p}\left(\mathbf{E} X^{p}\right)^{1 / q}
\end{aligned}
$$

where p and q are conjugate exponents, i.e. $1 / p+1 / q=1$.
Theorem 3.16 (L^{p} maximal inequality). (i) Let $\left(X_{k}\right)_{k=1}^{n}$ be a nonnegative submartingale and $p \in(1, \infty)$. Then

$$
\mathbf{E} \max \left\{X_{1}^{p}, \ldots, X_{n}^{p}\right\} \leq\left(\frac{p}{p-1}\right)^{p} \mathbf{E} X_{n}^{p}
$$

(ii) Let $\left(X_{k}\right)_{k=1}^{\infty}$ be a nonnegative submartingale and $p \in(1, \infty)$. Then

$$
\mathbf{E} \sup _{n \in \mathbb{N}} X_{n}^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sup _{n \in \mathbb{N}} \mathbf{E} X_{n}^{p}
$$

Proof. Statement (i) follows from Doob's maximal inequality and Lemma 3.15.
(ii) follows from (i) and the monotone convergence theorem as

$$
\begin{aligned}
\mathbf{E} \sup _{n} X_{n}^{p} & =\lim _{n \rightarrow \infty} \mathbf{E} \max _{1 \leq k \leq n} X_{k}^{p} \\
& \leq \liminf _{n \rightarrow \infty}\left(\frac{p}{p-1}\right)^{p} \mathbf{E} X_{n}^{p} \\
& \leq\left(\frac{p}{p-1}\right)^{p} \sup _{n} \mathbf{E} X_{n}^{p} .
\end{aligned}
$$

3.5 Optional stopping theorem

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability measure and $\left(\mathcal{F}_{n}\right)_{n}$ a filtration on it. Recall that a random variable $\tau: \Omega \rightarrow \mathbb{N}$ is stopping time, if $\{\tau \leq n\} \in \mathcal{F}_{n}$ for each $n \in \mathbb{N}$.

We already used the following simple observation.
Proposition 3.17. The following are equivalent.
(i) τ is stopping time;
(ii) $\{\tau>n\} \in \mathcal{F}_{n}$ for each $n \in \mathbb{N}$;
(iii) $\{\tau=n\} \in \mathcal{F}_{n}$ for each $n \in \mathbb{N}$.

Exercise 3.18. Prove this result.
Let τ be a stopping time. The σ-algebra of the events prior to τ, or short pre- τ-sigma algebra is defined as

$$
\begin{equation*}
\mathcal{F}_{\tau}=\left\{A \in \mathcal{F}: A \cap\{\tau \leq n\} \in \mathcal{F}_{n}, n=1,2, \ldots\right\} . \tag{8}
\end{equation*}
$$

It is easy to see that \mathcal{F}_{τ} is indeed a σ-algebra. Clearly, $\Omega \in \mathcal{F}_{\tau}$, and if $A \in \mathcal{F}_{\tau}$, then
$A^{c} \cap\{\tau \leq n\}=(\Omega-A) \cap\{\tau \leq n\}=\{\tau \leq n\}-(A \cap\{\tau \leq n\}) \in \mathcal{F}_{n}, n \in \mathbb{N}$.
Finally, if $A_{1}, A_{2}, \ldots \in \mathcal{F}_{\tau}$, then

$$
\left(\cup_{k=1}^{\infty} A_{k}\right) \cap\{\tau \leq n\}=\cup_{k=1}^{\infty}\left(A_{k} \cap\{\tau \leq n\}\right) \in \mathcal{F}_{n}
$$

for any $n=1,2, \ldots$.
Exercise 3.19. Show that if $\tau \equiv k$ for some $k \in \mathbb{N}$ then $\mathcal{F}_{\tau}=\mathcal{F}_{k}$, so the notation is consistent.

Some simple properties are summarized in the next statement.
Lemma 3.20. Let σ, τ be stopping times.
(i) τ is \mathcal{F}_{τ}-measurable.
(ii) $\sigma \wedge \tau=\min (\sigma, \tau)$ and $\sigma \vee \tau=\max (\sigma, \tau)$ are stopping times.
(iii) If $\sigma \leq \tau$, then $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$.
(iv) If $\left(X_{n}\right)_{n}$ is an adapted sequence then X_{τ} is \mathcal{F}_{τ}-measurable.

Theorem 3.21 (Optional stopping theorem, Doob). Let $\left(X_{n}\right)_{n}$ be a submartingale, and $\sigma \leq \tau$ stopping times such that

$$
\begin{equation*}
\mathbf{E}\left(\left|X_{\sigma}\right|\right)<\infty, \quad \mathbf{E}\left(\left|X_{\tau}\right|\right)<\infty \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \int_{\{\tau>n\}}\left|X_{n}\right| \mathrm{d} \mathbf{P}=0 \tag{10}
\end{equation*}
$$

Then $\mathbf{E}\left(X_{\tau} \mid \mathcal{F}_{\sigma}\right) \geq X_{\sigma}$ almost surely.
Furthermore, if $\left(X_{n}\right)_{n}$ is martingale then $\mathbf{E}\left(X_{\tau} \mid \mathcal{F}_{\sigma}\right)=X_{\sigma}$.
Clearly, conditions (9) and (10) hold if the stopping times are bounded.
Proof. Since X_{σ} is \mathcal{F}_{σ}-measurable, $X_{\sigma}=\mathbf{E}\left(X_{\sigma} \mid \mathcal{F}_{\sigma}\right)$, therefore it is enough to show that

$$
\mathbf{E}\left(X_{\tau}-X_{\sigma} \mid \mathcal{F}_{\sigma}\right) \geq 0
$$

This is the same as

$$
\begin{equation*}
\int_{A}\left(X_{\tau}-X_{\sigma}\right) \mathrm{d} \mathbf{P} \geq 0 \text { for all } A \in \mathcal{F}_{\sigma} \tag{11}
\end{equation*}
$$

First assume that τ is bounded, that is $\tau \leq m$ for some m. For any $A \in \mathcal{F}_{\sigma}$

$$
A \cap\{\sigma<k \leq \tau\}=A \cap\{\sigma \leq k-1\} \cap\{\tau>k-1\} \in \mathcal{F}_{k-1}, \quad k \geq 2
$$

thus

$$
\begin{aligned}
& \int_{A}\left(X_{\tau}-X_{\sigma}\right) \mathrm{d} \mathbf{P} \\
& =\int_{A}\left(\sum_{k=\sigma+1}^{\tau}\left(X_{k}-X_{k-1}\right)\right) \mathrm{d} \mathbf{P} \\
& =\int_{A}\left(\sum_{k=2}^{m} \mathbb{I}(\sigma<k \leq \tau)\left(X_{k}-X_{k-1}\right)\right) \mathrm{d} \mathbf{P} \\
& =\sum_{k=2}^{m} \int_{A \cap\{\sigma<k \leq \tau\}}^{m}\left(X_{k}-X_{k-1}\right) \mathrm{d} \mathbf{P} \\
& =\sum_{k=2}^{m} \int_{A \cap\{\sigma<k \leq \tau\}} \mathbf{E}\left(X_{k}-X_{k-1} \mid \mathcal{F}_{k-1}\right) \mathrm{d} \mathbf{P} \geq 0
\end{aligned}
$$

proving (11).
Consider the general case. For any n we can write

$$
\begin{aligned}
& \int_{A}\left(X_{\tau}-X_{\sigma}\right) \mathrm{d} \mathbf{P} \\
& =\int_{A}\left(X_{\tau \wedge n}-X_{\sigma \wedge n}\right) \mathrm{d} \mathbf{P}+\int_{A}\left(X_{\tau}-X_{\tau \wedge n}\right) \mathrm{d} \mathbf{P}-\int_{A}\left(X_{\sigma}-X_{\sigma \wedge n}\right) \mathrm{d} \mathbf{P} .
\end{aligned}
$$

On the event $\{\sigma \geq n\}$ we have $X_{\tau \wedge n}=X_{n}=X_{\sigma \wedge n}$, therefore

$$
\begin{equation*}
\int_{A}\left(X_{\tau \wedge n}-X_{\sigma \wedge n}\right) \mathrm{d} \mathbf{P}=\int_{A \cap\{\sigma<n\}}\left(X_{\tau \wedge n}-X_{\sigma \wedge n}\right) \mathrm{d} \mathbf{P} \geq 0, \quad n \in \mathbb{N}, \tag{12}
\end{equation*}
$$

where the inequality follows from the previous case.
By condition (10) there exists a sequence $n_{k} \rightarrow \infty$ such that

$$
\lim _{k \rightarrow \infty} \int_{\left\{\tau>n_{k}\right\}}\left|X_{n_{k}}\right| \mathrm{d} \mathbf{P}=0
$$

It is enough to show that on this subsequence the second and third terms in decomposition (12) tends to 0 . For the second term

$$
\begin{aligned}
\left|\int_{A}\left(X_{\tau}-X_{\tau \wedge n_{k}}\right) \mathrm{d} \mathbf{P}\right| & =\left|\int_{A \cap\left\{\tau>n_{k}\right\}}\left(X_{\tau}-X_{\tau \wedge n_{k}}\right) \mathrm{d} \mathbf{P}\right| \\
& \leq \int_{A \cap\left\{\tau>n_{k}\right\}}\left(\left|X_{\tau}\right|+\left|X_{n_{k}}\right|\right) \mathrm{d} \mathbf{P} \\
& \leq \int_{\left\{\tau>n_{k}\right\}}\left|X_{\tau}\right| \mathrm{d} \mathbf{P}+\int_{\left\{\tau>n_{k}\right\}}\left|X_{n_{k}}\right| \mathrm{d} \mathbf{P} .
\end{aligned}
$$

Similarly, for the third term

$$
\begin{aligned}
\left|\int_{A}\left(X_{\sigma}-X_{\sigma \wedge n_{k}}\right) \mathrm{d} \mathbf{P}\right| & =\left|\int_{A \cap\left\{\sigma>n_{k}\right\}}\left(X_{\sigma}-X_{n_{k}}\right) \mathrm{d} \mathbf{P}\right| \\
& \leq \int_{\left\{\sigma>n_{k}\right\}}\left|X_{\sigma}\right| \mathrm{d} \mathbf{P}+\int_{\left\{\tau>n_{k}\right\}}\left|X_{n_{k}}\right| \mathrm{d} \mathbf{P} .
\end{aligned}
$$

Using (9) both upper bounds tend to 0 .
Corollary 3.22. Assume that $\left(X_{n}\right)$ is (super-, sub-) martingale, τ is a stopping time, $\mathbf{E}\left(\left|X_{\tau}\right|\right)<\infty$ and (10) holds. Then
(i) $\mathbf{E}\left(X_{\tau} \mid \mathcal{F}_{1}\right) \leq X_{1}$ and $\mathbf{E}\left(X_{\tau}\right) \leq \mathbf{E}\left(X_{1}\right)$ for supermartingales;
(ii) $\mathbf{E}\left(X_{\tau} \mid \mathcal{F}_{1}\right) \geq X_{1}$ and $\mathbf{E}\left(X_{\tau}\right) \geq \mathbf{E}\left(X_{1}\right)$ for submartingales;
(iii) $\mathbf{E}\left(X_{\tau} \mid \mathcal{F}_{1}\right)=X_{1}$ and $\mathbf{E}\left(X_{\tau}\right)=\mathbf{E}\left(X_{1}\right)$ for martingales.

Some conditions are needed for the optional stopping to hold.
Example 3.23 (Simple symmetric random walk). Let $\xi, \xi_{1}, \xi_{2}, \ldots$ are iid random variables with $\mathbf{P}(\xi= \pm 1)=1 / 2$. Let $S_{0}=1$ and $S_{n}=S_{n-1}+\xi_{n}$. Then $\left(S_{n}\right)$ is martingale. Let $\tau=\min \left\{n: S_{n}=0\right\}$. Then τ is a stopping time and the martingale $\left(S_{\tau \wedge n}\right)_{n}$ tends to 0 a.s. The optional stopping does not hold as $S_{\tau} \equiv 0$ a.s., while $S_{0}=1$. Clearly, condition (10) does not hold.

Theorem 3.24 (Wald identity). Let X, X_{1}, X_{2}, \ldots be iid random variables with $\mathbf{E} X=\mu \in \mathbb{R}$, and let τ be a stopping time with $\mathbf{E}(\tau)<\infty$. Put $S_{n}=X_{1}+\cdots+X_{n}, n \in \mathbb{N}$. Then $\mathbf{E}\left(S_{\tau}\right)=\mu \mathbf{E}(\tau)$.

Proof. First assume $X \geq 0$. We have

$$
\begin{aligned}
\mathbf{E}\left(S_{\tau}\right) & =\mathbf{E}\left(\sum_{k=1}^{\infty} \mathbb{I}(\tau \geq k) X_{k}\right) \\
& =\sum_{k=1}^{\infty} \mathbf{E}\left(\mathbb{I}(\tau \geq k) X_{k}\right) \\
& =\sum_{k=1}^{\infty} \mathbf{E} \mathbb{I}(\tau \geq k) \mathbf{E}\left(X_{k}\right) \\
& =\mu \sum_{k=1}^{\infty} \mathbf{P}(\tau \geq k) \\
& =\mu \mathbf{E}(\tau) .
\end{aligned}
$$

To see the general case consider the decomposition $S_{\tau}=S_{\tau}^{(+)}-S_{\tau}^{(-)}$where

$$
S_{\tau}^{(+)}=\sum_{k=1}^{\infty} X_{k}^{+} \mathbb{I}(\tau \geq k)
$$

and

$$
S_{\tau}^{(-)}=\sum_{k=1}^{\infty} X_{k}^{-} \mathbb{I}(\tau \geq k)
$$

As a simple application of the optional stopping problem we consider the gambler's ruin problem. There is an elementary but longer way to derive these formulas.

Example 3.25 (Gambler's ruin). Let X, X_{1}, X_{2}, \ldots be iid random variables such that $\mathbf{P}(X=1)=p=1-\mathbf{P}(X=-1), 0<p<1$, and put $S_{n}=$ $X_{1}+\cdots+X_{n}, n \in \mathbb{N}$. Fix $a, b \in \mathbb{N}$ and let

$$
\tau=\tau_{a, b}(p)=\inf \left\{n: S_{n} \geq b \text { or } S_{n} \leq-a\right\}
$$

with the convention $\inf \emptyset=\infty$. Let $\left(\mathcal{F}_{n}\right)$ be the natural filtration, i.e. $\mathcal{F}_{n}=$ $\sigma\left(X_{1}, \ldots, X_{n}\right), n \in \mathbb{N}$.

It is easy to show that $\mathbf{P}(\tau<\infty)=1$, and τ is a stopping time. Furthermore, $\left|S_{\tau}\right| \leq \max (a, b)$, in particular $\mathbf{E}\left|S_{\tau}\right|<\infty$ and

$$
\liminf _{n \rightarrow \infty} \int_{\{\tau>n\}}\left|S_{n}\right| \mathrm{d} \mathbf{P} \leq \liminf _{n \rightarrow \infty} \max (a, b) \mathbf{P}(\tau>n)=0
$$

First assume that $p=1 / 2$. Then $\mathbf{E} X=0$ and $\left(S_{n}\right)$ is a martingale. Therefore, by the optional stopping theorem

$$
\begin{aligned}
0 & =\mathbf{E} S_{0}=\mathbf{E} S_{\tau}=-a \mathbf{P}\left(S_{\tau}=-a\right)+b \mathbf{P}\left(S_{\tau}=b\right) \\
& =-a\left(1-\mathbf{P}\left(S_{\tau}=b\right)\right)+b \mathbf{P}\left(S_{\tau}=b\right)
\end{aligned}
$$

Thus

$$
\mathbf{P}\left(S_{\tau}=b\right)=\frac{a}{a+b} \quad \text { and } \quad \mathbf{P}\left(S_{\tau}=-a\right)=\frac{b}{a+b}
$$

Using that $\left(S_{n}^{2}-n\right)$ is a martingale, we can determine $\mathbf{E} \tau$. Since

$$
0=\mathbf{E}\left(S_{0}^{2}-0\right)=\mathbf{E}\left(S_{\tau}^{2}-\tau\right)
$$

we obtain

$$
\mathbf{E} \tau=\mathbf{E} S_{\tau}^{2}=a^{2} \mathbf{P}\left(S_{\tau}=-a\right)+b^{2} \mathbf{P}\left(S_{\tau}=b\right)=a^{2} \frac{b}{a+b}+b^{2} \frac{a}{a+b}=a b
$$

The case $p \neq 1 / 2$ is different. Introduce

$$
Z_{n}=s^{S_{n}}=\prod_{k=1}^{n} s^{X_{k}}
$$

with $s=(1-p) / p=1 / r$. Then $\left(Z_{n}\right)$ is a martingale and

$$
Z_{\tau}=s^{b} \mathbb{I}\left(S_{n}=b\right)+s^{-a} \mathbb{I}\left(S_{n}=-a\right) \leq s^{b}+s^{-a}
$$

thus $\mathbf{E} Z_{\tau}<\infty$ and

$$
\liminf _{n \rightarrow \infty} \int_{\{\tau>n\}}\left|Z_{n}\right| \mathrm{d} \mathbf{P} \leq\left(s^{b}+s^{-a}\right) \liminf _{n \rightarrow \infty} \mathbf{P}\{\tau>n\}=0
$$

Again, by the optional sampling theorem

$$
\begin{aligned}
& s^{-a} \mathbf{P}\left(S_{\tau}=-a\right)+s^{b}\left(1-\mathbf{P}\left(S_{\tau}=-a\right)\right) \\
& =s^{-a} \mathbf{P}\left(S_{\tau}=-a\right)+s^{b} \mathbf{P}\left(S_{\tau}=b\right) \\
& =\mathbf{E}\left(s^{S_{\tau}}\right)=\mathbf{E}\left(Z_{\tau}\right) \\
& =\mathbf{E}\left(Z_{1}\right)=\mathbf{E}\left(s^{X}\right)=1
\end{aligned}
$$

Rearranging we obtain

$$
\mathbf{P}\left(S_{\tau}=-a\right)=\frac{1-s^{b}}{s^{-a}-s^{b}} \frac{r^{b}}{r^{b}}=\frac{r^{b}-1}{r^{a+b}-1}=\frac{1-r^{b}}{1-r^{a+b}}
$$

To obtain $\mathbf{E} \tau$, using the Wald identity

$$
\mathbf{E} S_{\tau}=(2 p-1) \mathbf{E} \tau
$$

from which

$$
\mathbf{E} \tau=\frac{1}{2 p-1} \mathbf{E} S_{\tau}=\frac{1}{2 p-1}\left[-a \mathbf{P}\left(S_{\tau}=-a\right)+b \mathbf{P}\left(S_{\tau}=b\right)\right]
$$

Exercise 3.26. Show that $\tau<\infty$ a.s.

4 Continuous time martingales

4.1 Definitions and simple properties

This part is from Karatzas and Shreve [4].
Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space and $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ a filtration, i.e. an increasing sequence of σ-algebras. The time horizon is either finite or infinite, $t \in[0, T]$ or $t \in[0, \infty)$.

In what follows we always assume that the filtration satisfies the usual conditions:
(i) \mathcal{F}_{0} contains the \mathbf{P}-null sets;
(ii) $\left(\mathcal{F}_{t}\right)_{t}$ is right-continuous, i.e. $\cap_{s>t} \mathcal{F}_{s}=: \mathcal{F}_{t+}=\mathcal{F}_{t}$.

Let $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ be stochastic processes. The process Y is a modification of X if $X_{t}=Y_{t}$ a.s. for any fix t, i.e. $\mathbf{P}\left(X_{t}=Y_{t}\right)=1$ for each $t \geq 0$. The processes X and Y are indistinguishable if their sample path are the same almost surely, i.e.

$$
\mathbf{P}\left(X_{t}=Y_{t}, t \geq 0\right)=1
$$

They have the same finite dimensional distributions if for all $0 \leq t_{1}<t_{2}<$ $\ldots<t_{n}<\infty$ and $A \in \mathcal{B}\left(\mathbb{R}^{n}\right)$

$$
\mathbf{P}\left(\left(X_{t_{1}}, \ldots, X_{t_{n}}\right) \in A\right)=\mathbf{P}\left(\left(Y_{t_{1}}, \ldots, Y_{t_{n}}\right) \in A\right) .
$$

Example 4.1. Let U be uniform $(0,1)$, and $X_{t} \equiv 0, t \in[0,1]$, and $Y_{t}=$ $\mathbb{I}(U=t)$. Then Y is a modification of X, but they are not indistinguishable, since

$$
\mathbf{P}\left(X_{t}=Y_{t}, t \geq 0\right)=0
$$

The process $\left(X_{t}\right)_{t}$ is adapted to the filtration $\left(\mathcal{F}_{t}\right)_{t}$, if X_{t} is \mathcal{F}_{t}-measurable for each $t \geq 0$. The process $\left(X_{t}, \mathcal{F}_{t}\right)_{t}$ is a martingale if
(i) $\left(X_{t}\right)_{t}$ is adapted to $\left(\mathcal{F}_{t}\right)_{t}$;
(ii) $\mathbf{E}\left|X_{t}\right|<\infty$ for all $t \geq 0$;
(iii) $\mathbf{E}\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s}$ a.s. for all $t \geq s$.

It is sub- or supermartingale if (i) and (ii) holds, and (iii) holds with \geq or \leq instead of $=$.

A random variable $\tau: \Omega \rightarrow[0, \infty)$ is a stopping time if $\{\tau \leq t\} \in \mathcal{F}_{t}$. The σ-algebra of the events prior to τ, or pre- τ - σ-algebra is

$$
\mathcal{F}_{\tau}=\left\{A \in \mathcal{F}: A \cap\{\tau \leq t\} \in \mathcal{F}_{t} \text { for all } t \geq 0\right\}
$$

Exercise 4.2. Show that \mathcal{F}_{τ} is indeed a σ-algebra.
The next result is obvious, but very useful.
Proposition 4.3. Let $\left(X_{t}, \mathcal{F}_{t}\right)$ be a (sub-, super-) martingale. Then for any sequence $0 \leq t_{0}<t_{1}<\ldots<t_{N}<\infty$ the process $\left(X_{t_{n}}, \mathcal{F}_{t_{n}}\right)_{n=0}^{N}$ is a discrete time martingale.

Lemma 4.4. Let σ, τ be stopping times.
(i) τ is \mathcal{F}_{τ}-measurable.
(ii) If $\tau \equiv t$ then $\mathcal{F}_{\tau}=\mathcal{F}_{t}$.
(iii) $\sigma \wedge \tau=\min (\sigma, \tau)$ and $\sigma \vee \tau=\max (\sigma, \tau)$ are stopping times.
(iv) If $\sigma \leq \tau$, then $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$.
(v) If $\left(X_{t}\right)_{t}$ is right-continuous and adapted then X_{τ} is \mathcal{F}_{τ}-measurable.

Exercise 4.5. Prove the lemma.
Remark 1. In continuous time the technical details are trickier.
The process $\left(X_{t}\right)_{t}$ is adapted to $\left(\mathcal{F}_{t}\right)_{t}$, if X_{t} is \mathcal{F}_{t}-measurable, and it is progressively measurable with respect to $\left(\mathcal{F}_{t}\right)_{t}$, if for all $t \geq 0$ and $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$

$$
\left\{(s, \omega): s \leq t, X_{s}(\omega) \in A\right\} \in \mathcal{B}([0, t]) \otimes \mathcal{F}_{t}
$$

where \mathcal{B} stands for the Borel sets, and \otimes is the product σ-algebra. In what follows we always need progressive measurability, adaptedness is not enough.

The next statement says that the situation is not too bad.
Proposition 4.6. If $\left(X_{t}\right)_{t}$ is right continuous and adapted, then it is progressively measurable.

Example 4.7 (Poisson process). A Poisson process with intensity $\lambda>0$ is an adapted integer valued RCLL (right continuous with left limits) process $N=\left(N_{t}, \mathcal{F}_{t}\right)_{t \geq 0}$ such that
(i) N has independent increments, that is $N_{t}-N_{s}$ is independent of \mathcal{F}_{s} for any $s<t$,
(ii) $N_{0}=0$ a.s.,
(iii) $N_{t}-N_{s} \sim \operatorname{Poisson}(\lambda(t-s))$.

Exercise 4.8. Show that $\left(N_{t}-\lambda t\right)$ is martingale.
Proposition 4.9. Let $\left(X_{t}\right)$ be a martingale, and φ a convex function such that $\mathbf{E}\left|\varphi\left(X_{t}\right)\right|<\infty$ for all $t \geq 0$. Then $\left(\varphi\left(X_{t}\right)\right)$ is submartingale.

Furthermore if $\left(X_{t}\right)$ is a submartingale and φ nondecreasing and convex that $\mathbf{E}\left|\varphi\left(X_{t}\right)\right|<\infty$ for all $t \geq 0$, then $\left(\varphi\left(X_{t}\right)\right)$ is a submartingale.

Example 4.10 (Wiener process). The Wiener process or standard Brownian motion is an adapted process $W=\left(W_{t}, \mathcal{F}_{t}\right)_{t \geq 0}$ such that
(i) W has independent increments, that is $W_{t}-W_{s}$ is independent of \mathcal{F}_{s} for any $s<t$,
(ii) $W_{0}=0$ a.s.,
(iii) $W_{t}-W_{s} \sim \mathrm{~N}(0, t-s)$,
(iv) W_{t} has continuous sample path.

Exercise 4.11. Show that $\left(W_{t}\right)$ and $\left(W_{t}^{2}-t\right)$ are martingales.

4.2 Martingale convergence theorem

Consider an adapted stochastic process $\left(X_{t}\right)_{t \geq 0}$. Fix $a<b$, and a finite set $F \subset[0, \infty)$. Let U_{F} denote the number of upcrossings of the interval $[a, b]$ by the restricted process $\left(X_{t}\right)_{t \in F}$. Formally, let $\tau_{0}=0$, and

$$
\begin{aligned}
\tau_{2 k-1} & =\min \left\{t \in F: t \geq \tau_{2 k-2}, X_{t}<a\right\}, \\
\tau_{2 k} & =\min \left\{t \in F: t \geq \tau_{2 k-1}, X_{t}>b\right\} .
\end{aligned}
$$

The number of upcrossings on F is

$$
U_{F}(a, b)=U_{F}=\max \left\{k: \tau_{2 k}<\infty\right\} .
$$

We can extend the definition of infinite sets $I \subset[0, \infty)$ as

$$
U_{I}=\sup \left\{U_{F}: F \subset I, F \text { finite }\right\}
$$

We have the upcrossing inequality.
Theorem 4.12 (Upcrossing inequality). Let $\left(X_{t}\right)$ be a right-continuous submartingale. For any $a<b$ and $0 \leq S \leq T<\infty$

$$
(b-a) \mathbf{E} U_{[S, T]} \leq \mathbf{E}\left(X_{T}-a\right)^{+}-\mathbf{E}\left(X_{S}-a\right)^{+}
$$

Proof. Consider an enumeration of the countable set $\mathbb{Q} \cap[S, T]$ as

$$
\mathbb{Q} \cap[S, T]=\left\{q_{1}, q_{2}, \ldots\right\},
$$

and let $F_{n}=\left\{q_{1}, \ldots, q_{n}\right\} \cup\{S, T\}$. Then $\left(X_{t}, \mathcal{F}_{t}\right)_{t \in F_{n}}$ is a discrete time submartingale, therefore, by the upcrossing inequality

$$
(b-a) \mathbf{E} U_{F_{n}} \leq \mathbf{E}\left(X_{T}-a\right)^{+}-\mathbf{E}\left(X_{S}-a\right)^{+} .
$$

Since F_{n} is increasing, $U_{F_{n}}$ is increasing, and by the right-continuity of $\left(X_{t}\right)$

$$
\lim _{n \rightarrow \infty} U_{F_{n}}=U_{[S, T]} \quad \text { a.s. }
$$

In particular, $U_{[S, T]}$ is measurable, and by the monotone convergence theorem the result follows.

Theorem 4.13 (Martingale convergence theorem). Let $\left(X_{t}\right)$ be a rightcontinuous submartingale such that

$$
\sup _{t \geq 0} \mathbf{E}\left(X_{t}^{+}\right)<\infty
$$

Then $\lim _{t \rightarrow \infty} X_{t}=X$ exists a.s. and $\mathbf{E}|X|<\infty$.
Proof. By the upcrossing inequality and the monotone convergence theorem for any $a<b$

$$
\mathbf{E} U_{[0, \infty)}(a, b) \leq \frac{\sup _{t \geq 0} \mathbf{E} X_{t}^{+}+|a|}{b-a}
$$

Therefore, for any $a<b$ the upcrossings $U_{[0, \infty)}(a, b)$ are a.s. finite. Thus almost surely the upcrossings are finite for all $a<b$ rationals, implying the existence of the limit.

The integrability of the limit follows from Fatou's lemma.
Exercise 4.14. Let $\left(X_{t}\right)$ be a right-continuous nonnegative submartingale. Show that the following are equivalent:
(i) $\left(X_{t}\right)$ is uniformly integrable;
(ii) converges in L^{1};
(iii) converges a.s. to an integrable random variable X_{∞}, such that $\left(X_{t}\right)_{t \in[0, \infty]}$ is a submartingale.

4.3 Inequalities

Theorem 4.15 (Doob's maximal inequality). Let $\left(X_{t}\right)$ be a right-continuous submartingale.
(i) For any $0<S<T<\infty, x>0$

$$
x \mathbf{P}\left(\sup _{S \leq t \leq T} X_{t} \geq x\right) \leq \mathbf{E} X_{T}^{+} .
$$

(ii) If $\left(X_{t}\right)$ is nonnegative and $p>1$ then

$$
\mathbf{E}\left(\sup _{S \leq t \leq T} X_{t}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \mathbf{E} X_{T}^{p}
$$

Proof. (i): Let F_{n} be as above. Then $\left(X_{t}, \mathcal{F}_{t}\right)_{t \in F_{n}}$ is a discrete time martingale. Therefore, by Doob's maximal inequality

$$
y \mathbf{P}\left(\sup _{t \in F_{n}} X_{t}>y\right) \leq \mathbf{E} X_{T}^{+}
$$

Right-continuity implies

$$
\left\{\sup _{S \leq t \leq T} X_{t}>y\right\}=\cup_{n=1}^{\infty}\left\{\sup _{t \in F_{n}} X_{t}>y\right\}
$$

and the union is increasing. Letting $n \rightarrow \infty$

$$
y \mathbf{P}\left(\sup _{S \leq t \leq T} X_{t}>y\right) \leq \mathbf{E} X_{T}^{+}
$$

Letting $y \uparrow x$ the result follows.
Part (ii) follows as in the discrete time case.
Exercise 4.16. Let N be a Poisson process with intensity $\lambda>0$. Show that for any $c>0$

$$
\limsup _{t \rightarrow \infty} \mathbf{P}\left(\sup _{0 \leq s \leq t}\left(N_{s}-\lambda s\right) \geq c \sqrt{\lambda t}\right) \leq \frac{1}{c \sqrt{2 \pi}}
$$

and

$$
\limsup _{t \rightarrow \infty} \mathbf{P}\left(\inf _{0 \leq s \leq t}\left(N_{s}-\lambda s\right) \leq-c \sqrt{\lambda t}\right) \leq \frac{1}{c \sqrt{2 \pi}}
$$

Show that for any $0<S<T<\infty$

$$
\mathbf{E} \sup _{S \leq t \leq T}\left(\frac{N_{t}}{t}-\lambda\right)^{2} \leq \frac{4 T \lambda}{S^{2}}
$$

Corollary 4.17. Let N be a Poisson process with intensity $\lambda>0$. Then

$$
\lim _{t \rightarrow \infty} \frac{N_{t}}{t}=\lambda \quad \text { a.s. }
$$

Proof. By Chebyshev's inequality

$$
\mathbf{P}\left(\left|t^{-1} N_{t}-\lambda\right|>\varepsilon\right) \leq \frac{\operatorname{Var}\left(N_{t}\right)}{t^{2} \varepsilon^{2}}=\frac{\lambda}{\varepsilon^{2} t}
$$

By the first Borel-Cantelli-lemma almost surely

$$
\lim _{n \rightarrow \infty} \frac{N_{2^{n}}}{2^{n}}=\lambda
$$

So on a subsequence we are done. In between we have

$$
\begin{aligned}
\mathbf{P}\left(\sup _{2^{n} \leq t \leq 2^{n+1}}\left|t^{-1} N_{t}-\lambda\right|>\varepsilon\right) & \leq \frac{\mathbf{E}\left(\sup _{2^{n} \leq t \leq 2^{n+1}}\left|t^{-1} N_{t}-\lambda\right|\right)^{2}}{\varepsilon^{2}} \\
& \leq \frac{42^{n+1} \lambda}{2^{2 n} \varepsilon^{2}}=2^{-n} \frac{8 \lambda}{\varepsilon^{2}}
\end{aligned}
$$

Applying Borel-Cantelli again, we are done.

4.4 Optional stopping

Let $\left(X_{t}, \mathcal{F}_{t}\right)_{t \in[0, \infty)}$ be a right-continuous submartingale. It has a last element X_{∞}, if X_{∞} is measurable with respect to the σ-algebra $\mathcal{F}_{\infty}=\sigma\left(\cup_{t \geq 0} \mathcal{F}_{t}\right)$, $\mathbf{E}\left|X_{\infty}\right|<\infty$ and for all $t \geq 0 \mathbf{E}\left[X_{\infty} \mid \mathcal{F}_{t}\right] \geq X_{t}$ a.s.

If we work on the finite time horizon $[0, T], T<\infty$, then the submartingale $\left(X_{t}\right)_{t \in[0, T]}$ has a last element X_{T} (by definition!).

Theorem 4.18 (Optional stopping). Let $\left(X_{t}, \mathcal{F}_{t}\right)_{t \geq 0}$ be a right-continuous submartingale with last element X_{∞}. Let $\sigma \leq \tau$ be stopping times. Then

$$
\mathbf{E}\left[X_{\tau} \mid \mathcal{F}_{\sigma}\right] \geq X_{\sigma} \quad \text { a.s. }
$$

Proof. Assume that τ is bounded, i.e. $\tau \leq K$. Let

$$
\sigma_{n}(\omega)=k / 2^{n}, \quad \text { if } \sigma(\omega) \in\left[(k-1) / 2^{n}, k / 2^{n}\right)
$$

and define τ_{n} similarly. Then σ_{n} and τ_{n} are stopping times, and $\sigma_{n} \leq \tau_{n}$. We can apply the optional stopping theorem for the submartingale $\left(X_{k / 2^{n}}, \mathcal{F}_{k / 2^{n}}\right)$, and stopping times σ_{n}, τ_{n}. Then

$$
\mathbf{E}\left[X_{\tau_{n}} \mid \mathcal{F}_{\sigma_{n}}\right] \geq X_{\sigma_{n}}
$$

that is for $A \in \mathcal{F}_{\sigma_{n}}$

$$
\int_{A} X_{\tau_{n}} \mathrm{~d} \mathbf{P} \geq \int_{A} X_{\sigma_{n}} \mathrm{~d} \mathbf{P}
$$

Since $\sigma_{n} \geq \sigma$ for each $n, \mathcal{F}_{\sigma_{n}} \supset \mathcal{F}_{\sigma}$. Therefore, for $A \in \mathcal{F}_{\sigma}$

$$
\int_{A} X_{\tau_{n}} \mathrm{~d} \mathbf{P} \geq \int_{A} X_{\sigma_{n}} \mathrm{~d} \mathbf{P} .
$$

By the right-continuity $X_{\tau_{n}} \rightarrow X_{\tau}$ and $X_{\sigma_{n}} \rightarrow X_{\sigma}$ a.s. This combined with the uniform integrability implies

$$
\int_{A} X_{\tau} \mathrm{d} \mathbf{P} \geq \int_{A} X_{\sigma} \mathrm{d} \mathbf{P}
$$

proving the result.
Exercise 4.19. Prove that σ_{n}, τ_{n} are indeed stopping times.

4.5 Doob-Meyer decomposition

The Doob-Meyer decomposition is the continuous time analogue of the Doob's decomposition of submartingales. While the latter is basically trivial, the Doob-Meyer decomposition is highly nontrivial, and needs further assumptions.

Recall that a class \mathcal{D} of random variables are uniformly integrable, if for any $\varepsilon>0$ there exists $K>0$ such that for all $X \in \mathcal{D}$

$$
\int_{|X|>K}|X| \mathrm{d} \mathbf{P}<\varepsilon
$$

Put

$$
\mathcal{S}_{a}=\{\tau: \tau \text { stopping time }, \tau \leq a\} .
$$

The adapted process $\left(X_{t}\right)$ belongs to the class DL is for any $a>0$ the class $\left\{X_{\tau}\right\}_{\tau \in \mathcal{S}_{a}}$ of random variables is uniformly integrable.

Theorem 4.20 (Doob-Meyer decomposition). Let the filtration \mathcal{F}_{t} satisfy the usual conditions, and let $\left(X_{t}\right)_{t}$ be a right-continuous submartingale in DL. Then there exist $\left(M_{t}\right)$ and $\left(A_{t}\right)$ such that $\left(M_{t}\right)$ is a martingale, $\left(A_{t}\right)$ is an adapted nondecreasing right-continuous process with $A_{0} \equiv 0$, and

$$
X_{t}=M_{t}+A_{t}, \quad t \geq 0
$$

Furthermore, the decomposition is unique.

Example 4.21. If $\left(N_{t}\right)$ is a Poisson process with intensity $\lambda>0$, then it is a submartingale. Its Doob-Meyer decomposition is

$$
N_{t}=\left(N_{t}-\lambda t\right)+\lambda t
$$

If $\left(W_{t}\right)$ is a standard Brownian motion, then $\left(W_{t}^{2}\right)$ is a submartingale and its Doob-Meyer decomposition is

$$
W_{t}^{2}=\left(W_{t}^{2}-t\right)+t
$$

5 Wiener process

This part is from Karatzas and Shreve [4].

5.1 First properties and existence

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space. Then $W=\left(W_{t}, \mathcal{F}_{t}\right)_{t \geq 0}$ is a Wiener process or standard Brownian motion if
(W1) $W_{0}=0$ a.s.,
(W2) W has independent increments, that is $W_{t}-W_{s}$ is independent of \mathcal{F}_{s} for any $s<t$,
(W3) $W_{t}-W_{s} \sim \mathrm{~N}(0, t-s)$,
(W4) W_{t} has continuous sample path.
Exercise 5.1. Show that (W2) and (W3) with $s=0$ (i.e. $W_{t} \sim \mathrm{~N}(0, t)$) implies (W3).

Proposition 5.2. (i) $\mathbf{E}\left(W_{t}\right)=0$ for all t.
(ii) $\operatorname{Cov}\left(W_{s}, W_{t}\right)=\mathbf{E}\left(W_{s} W_{t}\right)=\min (s, t)=: s \wedge t, s, t \geq 0$.
(iii) For any $k \in \mathbb{N}$ and $0 \leq t_{1}<\cdots<t_{k}$, the random vector $\left(W_{t_{1}}, \ldots, W_{t_{k}}\right)$ has a multivariate normal distribution with mean 0 and covariance

$$
\Sigma=\Sigma_{t_{1}, \ldots, t_{k}}=\left(\begin{array}{cccc}
t_{1} & t_{1} & \cdots & t_{1} \\
t_{1} & t_{2} & \cdots & t_{2} \\
\vdots & \vdots & \ddots & \vdots \\
t_{1} & t_{2} & \cdots & t_{k}
\end{array}\right)
$$

Proof. Part (i) and (ii) are trivial. For part (iii) note that by the independent increment property the components of

$$
X=\left(W_{t_{1}}, W_{t_{2}}-W_{t_{1}}, \ldots, W_{t_{k}}-W_{t_{k-1}}\right)^{\top}
$$

are independent normal random variables. Therefore X is a multivariate normal. Since

$$
\left(W_{t_{1}}, \ldots, W_{t_{k}}\right)^{\top}=A X
$$

the statement follows from the fact that a linear transformation of a multivariate normal is normal with covariance matrix $A \operatorname{Cov}(X) A^{\top}$.

Let $\left(X_{t}\right)$ be a stochastic process with finite second moment. Then $m(t)=$ $\mathbf{E} X_{t}$ is the mean value and $r(s, t)=\operatorname{Cov}\left(X_{s}, X_{t}\right)=\mathbf{E}\left(\left[X_{s}-m(s)\right]\left[X_{t}-\right.\right.$ $m(t)])$, is the covariance function.

Clearly r is symmetric, and nonnegative definite, i.e.

$$
\sum_{j=1}^{k} \sum_{\ell=1}^{k} c_{j} c_{\ell} r\left(t_{j}, t_{\ell}\right) \geq 0, \quad k \in \mathbb{N}, t_{1}, \ldots, t_{k} \in T, c_{1}, \ldots, c_{k} \in \mathbb{R}
$$

Definition 5.3. The stochastic process $\left(X_{t}\right)$ is a Gaussian process with mean function $m(t)$ and covariance function $r(t, s)$ if for any $k \in \mathbb{N}$ and t_{1}, \ldots, t_{k} the random vector $\left(X_{t_{1}}, \ldots, X_{t_{k}}\right)$ has multivariate normal distribution with mean $\left(m\left(t_{1}\right), \ldots, m\left(t_{k}\right)\right)$ and covariance $\left(r\left(t_{j}, t_{\ell}\right)\right)_{j, \ell=1}^{k}$.

A simple, but not very interesting example to a Gaussian process is $X_{t}=$ $a(t) Z+b(t)$, where $Z \sim N(0,1)$.

We proved that the Wiener process $\left(W_{t}\right)$ is a Gaussian process with mean $m(t) \equiv 0$ and covariance function $r(s, t)=\min (s, t)$. This could be the definition of the Wiener process.

Proposition 5.4. Let $\left(W_{t}\right)$ be a continuous Gaussian process with mean 0 and covariance function $r(s, t)=\min (s, t)$. Then $\left(W_{t}\right)$ is a Wiener process.

Exercise 5.5. Prove the statement.
Exercise 5.6. Let $(W(t))$ be SBM. Show that
(i) $W_{1}(t)=W(c+t)-W(c), t \geq 0$;
(ii) $W_{2}(t)=\sqrt{c} W(t / c), t \geq 0$;
(iii) $W_{3}(t)=t W(1 / t)$
are SBM.
Kolmogorov's consistency theorem yields the existence of Gaussian processes.

Theorem 5.7. Let $\mathbb{T} \subset \mathbb{R}$, and let $m(t)$ be an arbitrary function and $r(s, t) a$ nonnegative definite function. Then there exists a Gaussian process $\left(X_{t}\right)_{t \in \mathbb{T}}$ with mean function m and covariance function r.

Therefore, apart from continuity, we have a Wiener process. That is, we have a probability space $\left(\mathbb{R}^{[0, \infty)}, \mathcal{B}^{[0, \infty)}, \mathbf{P}\right)$ and a stochastic process $\left(\widetilde{W}_{t}(\omega)=\right.$ $\left.\omega_{t}\right)_{t \geq 0}$, which satisfies (W1)-(W3).

Let $C=C[0, \infty)$ be the space of continuous function on $[0, \infty)$. We have to show that $\mathbf{P}(\widetilde{W} \in C)=1$. The problem is that C does not belong to the product σ-algebra $\mathcal{B}^{[0, \infty)}$. Indeed, it can be shown that

$$
\mathcal{B}^{[0, \infty)}=\cup\left\{\pi_{K}^{-1}\left(\mathcal{B}^{K}\right): K \subset[0, \infty), K \text { countable }\right\}
$$

Therefore, if $C \in \mathcal{B}^{[0, \infty)}$, then $C=\pi_{K}^{-1}\left(\mathcal{B}^{K}\right)$ for some countable $K \subset[0, \infty)$. But continuity cannot be determined from the values of the function on a countable set. Similarly,

$$
\left\{\omega \in \mathbb{R}^{[0, \infty)}: \sup _{0 \leq t \leq 1} \omega_{t} \leq x\right\}, \quad x \in \mathbb{R}
$$

is not $\mathcal{B}^{[0, \infty)}$-measurable, so we cannot define $\sup _{t \in[0,1]} \widetilde{W}_{t}$.
Thus the setup in Kolmogorov's consistency theorem cannot deal with continuous processes. We need a different approach.

Recall that Y is a modification of X if $X_{t}=Y_{t}$ a.s. for any fix t, i.e. $\mathbf{P}\left(X_{t}=\right.$ $\left.Y_{t}\right)=1$ for each $t \geq 0$.
Theorem 5.8 (Kolmogorov continuity theorem). Let $\left(X_{t}\right)_{t \in[0, T]}$ be a stochastic process on $(\Omega, \mathcal{A}, \mathbf{P})$, such that for some positive constants α, β, C

$$
\mathbf{E}\left|X_{t}-X_{s}\right|^{\alpha} \leq C|t-s|^{1+\beta}, \quad 0 \leq s, t \leq T
$$

Then X has a continuous modification \widetilde{X} which is Hölder continuous with exponent γ for every $\gamma \in(0, \beta / \alpha)$, that is for some $h(\omega)$ a.s. positive random variable and $\delta>0$

$$
\mathbf{P}\left(\left\{\omega: \sup _{0<t-s<h(\omega)} \frac{\widetilde{X}_{t}(\omega)-\widetilde{X}_{s}(\omega)}{|t-s|^{\gamma}} \leq \delta\right\}\right)=1
$$

Proof. We can assume that $T=1$. By Chebyshev

$$
\mathbf{P}\left(\left|X_{t}-X_{s}\right|>\varepsilon\right) \leq \varepsilon^{-\alpha} \mathbf{E}\left|X_{t}-X_{s}\right|^{\alpha} \leq C \varepsilon^{-\alpha}|t-s|^{1+\beta}
$$

in particular $X_{t} \rightarrow X_{s}$ in probability as $t \rightarrow s$. Fix $\gamma \in(0, \beta / \alpha)$. Then

$$
\begin{aligned}
& \mathbf{P}\left(\max _{1 \leq k \leq 2^{n}}\left|X_{k 2^{-n}}-X_{(k-1) 2^{-n}}\right|>2^{-\gamma n}\right) \\
& \leq 2^{n} \mathbf{P}\left(\left|X_{k 2^{-n}}-X_{(k-1) 2^{-n}}\right|>2^{-\gamma n}\right) \\
& \leq 2^{n} C 2^{-\alpha \gamma n} 2^{-n(1+\beta)} \\
& =C 2^{-n(\beta-\alpha \gamma)} .
\end{aligned}
$$

By the first Borel-Cantelli lemma with probability 1 only finitely many of the events

$$
\max _{1 \leq k \leq 2^{n}}\left|X_{k 2^{-n}}-X_{(k-1) 2^{-n}}\right|>2^{-\gamma n}
$$

occur. That is, there is a set Ω_{0} with $\mathbf{P}\left(\Omega_{0}\right)=1$, and a threshold $n_{0}(\omega)$ (depending on $\omega!$) such that for $\omega \in \Omega_{0}$

$$
\max _{1 \leq k \leq 2^{n}}\left|X_{k 2^{-n}}-X_{(k-1) 2^{-n}}\right| \leq 2^{-\gamma n}, \quad n \geq n_{0}(\omega)
$$

Fix $\omega \in \Omega_{0}$. Put $D_{n}=\left\{k 2^{-n}: k=0,1, \ldots, 2^{n}\right\}$, and $D=\cup_{n} D_{n}$. Then for $n \geq n_{0}(\omega)$ and $m>n$ induction gives that

$$
\left|X_{t}(\omega)-X_{s}(\omega)\right| \leq 2 \sum_{j=n+1}^{m} 2^{-\gamma j}, \quad t, s \in D_{m},|t-s| \leq 2^{-n}
$$

This implies that $\left(X_{t}(\omega)\right)_{t \in D}$ is uniformly continuous in $t \in D$. Indeed, for any $t, s \in D$ with $0<t-s<h(\omega)=2^{-n_{0}(\omega)}$ there is an $n \geq n_{0}$ such that $2^{-n-1} \leq t-s<2^{-n}$, thus

$$
\left|X_{t}(\omega)-X_{s}(\omega)\right| \leq 2 \sum_{j=n+1}^{\infty} 2^{-\gamma j}=2^{-\gamma(n+1)} \frac{2}{1-2^{-\gamma}} \leq|t-s|^{\gamma} \frac{2}{1-2^{-\gamma}}
$$

Informally, we proved that $\left(X_{t}\right)$ behaves regularly on D. We define \widetilde{X}. If $\omega \notin \Omega_{0}$ let $\widetilde{X}(\omega)=0$, (or anything). If $\omega \in \Omega_{0}$ and $t \in D$ let $\widetilde{X}_{t}(\omega)=X_{t}(\omega)$, while if $t \notin D$ choose a sequence $s_{n} \in D$ such that $s_{n} \rightarrow t$ and let

$$
\widetilde{X}_{t}(\omega)=\lim _{n \rightarrow \infty} X_{s_{n}}(\omega)
$$

By the uniform continuity and the Cauchy criteria the limit on the right-hand side exist.

The a.s. uniqueness of the stochastic limit together with the stochastic continuity of X implies that \widetilde{X} is a modification of X.

Exercise 5.9 (Random fields). A random field is a collection of random variables indexed by a partially ordered set. Let $\left(X_{t}\right)_{t \in[0, T]^{d}}$ be a random field satisfying

$$
\mathbf{E}\left|X_{t}-X_{s}\right|^{\alpha} \leq C\|t-s\|^{d+\beta}
$$

for some positive constants. Show that there exists a continuous modification \widetilde{X} which is Hölder continuous with exponent γ for every $\gamma \in(0, \beta / \alpha)$, that is for some $h(\omega)$ a.s. positive random variable and $\delta>0$

$$
\mathbf{P}\left(\omega: \sup _{0<\|t-s\|<h(\omega)} \frac{\widetilde{X}_{t}(\omega)-\widetilde{X}_{s}(\omega)}{\|t-s\|^{\gamma}} \leq \delta\right)=1 .
$$

Exercise 5.10. Show that if $W_{t}-W_{s} \sim N(0, t-s)$ then for any $n>0$

$$
\mathbf{E}\left|W_{t}-W_{s}\right|^{2 n}=C_{n}|t-s|^{n},
$$

where $C_{n}=\mathbf{E}\left(Z^{2 n}\right), Z \sim N(0,1)$.
Corollary 5.11. Wiener process exists.
Proof. We need only the continuity part. The condition of Kolmogorov continuity theorem holds with $\alpha=2 n$ and $\beta=n-1$ for any $n>1$. Thus there exists a continuous modification on $[0, N]$, for any $N \in \mathbb{N}$. Necessarily, $X^{N_{1}}$ and $X^{N_{2}}$ agrees a.s. for any fix $t \in\left[0, N_{1} \wedge N_{2}\right]$, which allows us to extend the process to $[0, \infty)$.

In fact, we proved that the Wiener process is locally γ-Hölder continuous for any $\gamma<1 / 2$.

Exercise 5.12. Let $\left(N_{t}\right)$ be a Poisson process with intensity 1. Compute the order $\mathbf{E}\left|N_{t}-N_{s}\right|^{\alpha}$ for $t-s$ small. (Thus the condition in the continuity theorem holds for $\beta=0$. Well, of course, Poisson processes are not continuous.)

More generally, we obtain a result on continuity of Gaussian processes.

Theorem 5.13. Let $\left(X_{t}\right)$ be a Gaussian process with continuous mean function m, and covariance function r. If there exist positive constants δ, C such that for all s, t

$$
r(t, t)-2 r(s, t)+r(s, s) \leq C|t-s|^{\delta}
$$

then $\left(X_{t}\right)$ has a continuous modification which is locally γ-Hölder continuous for any $\gamma \in(0, \delta / 2)$.

Proof. Subtracting the mean function we may and do assume that $m(t) \equiv 0$. Simply

$$
\operatorname{Var}\left(X_{t}-X_{s}\right)=r(t, t)-2 r(s, t)+r(s, s)=\sigma^{2}(s, t)
$$

therefore

$$
\mathbf{E}\left|X_{t}-X_{s}\right|^{\alpha}=\mathbf{E}|Z|^{\alpha} \sigma(s, t)^{\alpha},
$$

with $Z \sim N(0,1)$. Thus

$$
\mathbf{E}\left|X_{t}-X_{s}\right|^{\alpha} \leq C|t-s|^{\delta \alpha / 2}
$$

which implies that the condition of the continuity theorem holds with $\alpha>0$, $\beta=\delta \alpha / 2-1$. Letting $\alpha \rightarrow \infty$ the result follows.

Exercise 5.14 (Fractional Brownian motion). Fractional Brownian motion with Hurst index $H \in(0,1)$ is a Gaussian process $(B(t))$ with mean function $m(t) \equiv 0$ and covariance function

$$
r(s, t)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

Note that $H=1 / 2$ corresponds to the usual Brownian motion.
(i) Show that it is self-similar, i.e. $B(a t) \sim a^{H} B(t)$.
(ii) Show that it has stationary increments: $B(t)-B(s) \sim B(t-s)$.
(iii) Prove that a continuous modification exists, which is γ-Hölder for any $\gamma<H$. (That is H is the 'roughness parameter': for small H the process strongly oscillates, while for H close to 1 the paths are almost smooth.)
(iv) Are the increments independent?

Exercise 5.15. Let $\left(X_{t}\right)_{t \in[0,1]}$ be a continuous Gaussian process with mean 0 and covariance function $r(s, t)$. Show that $Y=\int_{0}^{1} X_{t} \mathrm{~d} t \sim N\left(0, \sigma^{2}\right)$, where

$$
\sigma^{2}=\int_{0}^{1} \int_{0}^{1} r(s, t) \mathrm{d} s \mathrm{~d} t .
$$

Show that $Y_{t}=\int_{0}^{t} X_{s} \mathrm{~d} s$ is a Gaussian process. Determine its covariance function.

A version of the continuity theorem is the following.
Theorem 5.16. Let $T \subset \mathbb{R}$ finite or infinite interval, and $\left(X_{t}\right)_{t \in T}$ a stochastic process such that for $\delta>0$ small enough

$$
\mathbf{P}\left(\left|X_{t}-X_{s}\right| \geq g(\delta)\right) \leq h(\delta) \quad \text { whenever }|s-t|<\delta, s, t \in T
$$

where g and h are continuous function such that

$$
\sum_{n=1}^{\infty} g\left(2^{-n}\right)<\infty, \quad \sum_{n=1}^{\infty} 2^{n} h\left(2^{-n}\right)<\infty
$$

Then X has a continuous modification.
Recall that

$$
\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

is the standard normal density function, and

$$
\Phi(x)=\int_{-\infty}^{x} \varphi(y) \mathrm{d} y
$$

is the standard normal distribution function.
Lemma 5.17. For any $x>0$

$$
\left(\frac{1}{x}-\frac{1}{x^{3}}\right) \varphi(x) \leq 1-\Phi(x) \leq \frac{1}{x} \varphi(x)
$$

and

$$
\lim _{x \rightarrow \infty} \frac{1-\Phi(x)}{\frac{1}{x} \varphi(x)}=1
$$

Proof. The first follows from integrating the inequality

$$
\left(1-\frac{3}{y^{4}}\right) \varphi(y) \leq \varphi(y) \leq\left(1+\frac{1}{y^{2}}\right) \varphi(y)
$$

on (x, ∞). The second is immediate from the first.

Using Theorem 5.16 we obtain a better criteria for continuity.
Corollary 5.18. Let $T \subset \mathbb{R}$ be a finite or infinite interval and let $\left(X_{t}\right)_{t \in T}$ be a Gaussian process with continuous mean function m, and covariance function r such that for δ small enough

$$
\sup _{|s-t| \leq \delta}(r(t, t)-2 r(s, t)+r(s, s)) \leq C(-\log \delta)^{-3(1+\alpha)}
$$

for some $C>0, \alpha>0$. Then $\left(X_{t}\right)$ has a continuous modification.

5.2 The space $C[0, \infty)$

As SBM is continuous, its natural space is the space of continuous functions. Instead of a collection of random variables a stochastic process $\left(W_{t}\right)$ can be understood as a random element of a function space.

Recall that ρ is a metric if on S
(i) $\rho \geq 0, \rho\left(\omega_{1}, \omega_{2}\right)=0$ iff $\omega_{1}=\omega_{2}$;
(ii) symmetric;
(iii) the triangle inequality holds, i.e.

$$
\rho\left(\omega_{1}, \omega_{2}\right) \leq \rho\left(\omega_{1}, \omega_{3}\right)+\rho\left(\omega_{2}, \omega_{3}\right)
$$

Then (S, ρ) is a metric space.
The sequence $\left(x_{n}\right)$ is Cauchy if for each $\varepsilon>0$ there exist $n_{0}(\varepsilon)$ such that $\rho\left(x_{m}, x_{n}\right) \leq \varepsilon$ for all $m, n \geq n_{0}$. The space (S, ρ) is complete if every Cauchy sequence converges. A set $A \subset S$ is dense, if for any $x \in S$ there exists a sequence $\left(x_{n}\right) \subset A$ such that $x_{n} \rightarrow x$. The space (S, ρ) is separable if there exists a countable dense subset.

Let $C[0, \infty)$ denote the space of continuous real functions on $[0, \infty)$ with metric

$$
\rho\left(\omega_{1}, \omega_{2}\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \max _{t \in[0, n]}\left(\left|\omega_{1}(t)-\omega_{2}(t)\right| \wedge 1\right) .
$$

Proposition 5.19. ρ is a metric, and $(C[0, \infty), \rho)$ is a complete separable metric space.

Proof. It is clear that ρ is a metric. Fix a Cauchy sequence $\left(x_{n}\right)$. For any fix $N \in \mathbb{N}$ the limit $\lim _{n \rightarrow \infty} x_{n}(t)=x_{\infty}(t)$ exists for $t \in[0, N]$, and it is continuous. Thus x_{∞} exists and continuous.

To find a countable dense subset consider functions which are 0 for $t \geq n$, are rational at k / n for $k=0,1, \ldots, n^{2}-1$, and linear between.

If (S, ρ) is a metric space we can define open sets. The σ-algebra generated by open sets is the Borel- σ-algebra $\mathcal{B}(S)$. With this $(S, \mathcal{B}(S)$) is a measurable space.

If $(\Omega, \mathcal{A}, \mathbf{P})$ is a probability space and $(S, \mathcal{B}(S))$ is a measurable space then a measurable $X: \Omega \rightarrow S$ is a random variable / random element in S. It induces a probability measure $\mathbf{P} \circ X^{-1}$ on S as

$$
\mathbf{P} \circ X^{-1}(B)=\mathbf{P}(X \in B)=\mathbf{P}(\{\omega: X(\omega) \in B\})
$$

Let $\left(P_{n}\right)$ be a sequence of probability measure on $(S, \mathcal{B}(S))$ and P another measure on it. Then P_{n} converges weakly to $P, P_{n} \xrightarrow{w} P$, if

$$
\lim _{n \rightarrow \infty} \int_{S} f(s) \mathrm{d} P_{n}(s)=\int_{S} f(s) \mathrm{d} P(s)
$$

for every continuous real function f. Note that the limit measure is necessarily a probability measure.

Let X_{n} and X be random elements in S, defined possibly on different probability spaces. The sequence $\left(X_{n}\right)$ converges in distribution to X if the corresponding induced measures converge weakly. Equivalently,

$$
\mathbf{E} f\left(X_{n}\right) \rightarrow \mathbf{E} f(X)
$$

for all continuous and bounded f.
Assume that $X_{n} \rightarrow X$ in distribution. For any $0 \leq t_{1}<\ldots<t_{k}$ consider the projection $\pi_{t_{1}, \ldots, t_{k}}: C[0, \infty) \rightarrow \mathbb{R}^{k}$

$$
\pi_{t_{1}, \ldots, t_{k}}(\omega)=\left(\omega\left(t_{1}\right), \ldots, \omega\left(t_{k}\right)\right)
$$

This is clearly continuous. For a continuous bounded function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ the composite function $f\left(\pi_{t_{1}, \ldots, t_{k}}\right)$ is bounded and continuous. Therefore, by the definition of convergence in distribution

$$
\mathbf{E} f\left(\pi_{t_{1}, \ldots, t_{k}}\left(X_{n}\right)\right) \rightarrow \mathbf{E} f\left(\pi_{t_{1}, \ldots, t_{k}}(X)\right)
$$

that is

$$
\mathbf{E} f\left(X_{n}\left(t_{1}\right), \ldots, X_{n}\left(t_{k}\right)\right) \rightarrow \mathbf{E} f\left(X\left(t_{1}\right), \ldots, X\left(t_{k}\right)\right)
$$

That is, for any $0 \leq t_{1}<\ldots<t_{k}$

$$
\left(X_{n}\left(t_{1}\right), \ldots, X_{n}\left(t_{k}\right)\right) \xrightarrow{\mathcal{D}}\left(X\left(t_{1}\right), \ldots, X\left(t_{k}\right)\right) .
$$

This means that the finite dimensional distributions converge.
We proved the following.
Proposition 5.20. If $\left(X_{n}\right)$ converges in distribution to X then all finite dimensional distributions converge.

The converse is not true in general.
Example 5.21. Let

$$
X_{n}(t)=n t \mathbb{I}_{\left[0,(2 n)^{-1}\right]}(t)+(1-n t) \mathbb{I}_{\left((2 n)^{-1}, n^{-1}\right]}(t), \quad t \geq 0 .
$$

Then all finite dimensional distributions converge to the corresponding finite dimensional distributions of $X \equiv 0$. However, convergence as a process does not hold.

In what follows we try to understand what goes wrong in the example above, and state a converse of the Proposition above.

A family of probability measures Π on $(S, \mathcal{B}(S))$ is tight if for every $\varepsilon>0$ there exists a compact set $K \subset S$ such that $P(K) \geq 1-\varepsilon$ for all $P \in \Pi$. The family Π is relatively compact if each sequence of elements from Π contains a convergent subsequence. A family of random elements is tight (relatively compact) if the family of induced measures is tight (relatively compact).

Theorem 5.22 (Prohorov). Let Π be a family of probability measures on a complete separable metric space S. Then Π is tight if and only if it is relatively compact.

The modulus of continuity plays an important role in characterization of tightness on C. Fix $T>0$ and $\delta>0$, and let $\omega \in C[0, \infty)$. The modulus of continuity on $[0, T]$

$$
m^{T}(\omega, \delta)=\max \{|\omega(s)-\omega(t)|:|s-t| \leq \delta, 0 \leq s, t \leq T\}
$$

Exercise 5.23. Show that m^{T} is continuous in $\omega \in C[0, \infty)$ under the metric ρ, is nondecreasing in δ, and $\lim _{\delta \downarrow 0} m^{T}(\omega, \delta)=0$ for each $\omega \in C[0, T)$.

Theorem 5.24 (Arselà-Ascoli). A set $A \subset C[0, \infty)$ has compact closure if and only if the following two conditions hold:
(i) $\sup _{\omega \in A}|\omega(0)|<\infty$;
(ii) for every $T>0$

$$
\limsup _{\delta \downarrow 0} \sup _{\omega \in A} m^{T}(\omega, \delta)=0 .
$$

Now we can characterize tightness of probability measures.
Theorem 5.25. A sequence $\left(P_{n}\right)$ of probability measures on $(C[0, \infty), \mathcal{B})$ is tight if and only if the following two conditions hold:
(i) $\lim _{\lambda \uparrow \infty} \sup _{n \geq 1} P_{n}(\omega:|\omega(0)|>\lambda)=0$;
(ii) for all $T>0$ and $\varepsilon>0$

$$
\limsup _{\delta \downarrow 0} \sup _{n \geq 1} P_{n}\left(\omega: m^{T}(\omega, \delta)>\varepsilon\right)=0 .
$$

Theorem 5.26. Let $\left(X_{n}\right)$ be a tight sequence of continuous processes such that its finite dimensional distributions converge. Then the sequence of induced measures $\left(P_{n}\right)$ converge weakly to a measure P such that the coordinate mapping $W_{t}(\omega)=\omega_{t}$ on $C[0, \infty)$ satisfies

$$
\left(X_{n}\left(t_{1}\right), \ldots, X_{n}\left(t_{k}\right)\right) \xrightarrow{\mathcal{D}}\left(W\left(t_{1}\right), \ldots, W\left(t_{k}\right)\right),
$$

for any $0 \leq t_{1}<\ldots<t_{k}<\infty, k \geq 1$.
Proof. Tightness is the same as relative compactness. Therefore, every subsequence contains a further convergent subsequence. Because of the convergence of finite dimensional distributions any two limit measure has the same finite dimensional distributions. But finite dimensional distributions determine the measure.

5.3 Donsker theorem

Let $\xi, \xi_{1}, \xi_{2}, \ldots$ be iid random variables with $\mathbf{E} \xi=0, \mathbf{E} \xi^{2}=\sigma^{2} \in(0, \infty)$, and let $S_{n}=\sum_{i=1}^{n} \xi_{i}$ denote the partial sum. Define the continuous time process $\left(Y_{t}\right)_{t \geq 0}$ as

$$
Y_{t}=S_{\lfloor t\rfloor}+(t-\lfloor t\rfloor) \xi_{\lfloor t\rfloor+1}
$$

where $\lfloor\cdot\rfloor$ stands for the usual integer part. For $n \in \mathbb{N}$ define the scaled process

$$
X_{t}^{(n)}=\frac{1}{\sigma \sqrt{n}} Y_{n t}, \quad t \geq 0 .
$$

Then $X_{t}^{(n)}-X_{s}^{(n)}$ for $s, t \in \mathbb{N} / n$ is independent of $\sigma\left(\xi_{1}, \ldots, \xi_{s n}\right)$, and by the CLT its distribution tends to $N(0, t-s)$.

Theorem 5.27 (Invariance principle of Donsker). Let P_{n} denote the measure on $\left(C[0, \infty), \mathcal{B}(C[0, \infty))\right.$) induced by $X^{(n)}$. Then P_{n} converges weakly to a measure P_{\star}. Under P_{\star} the coordinate mapping $W_{t}(\omega)=\omega(t), \omega \in C[0, \infty)$ is $S B M$.

Proof. According to Theorem 5.26 we have to show that $\left(X^{(n)}\right)$ is tight and the finite dimensional distributions converge to those of a SBM.

To prove tightness we have to show that the conditions of Theorem 5.25 hold for P_{n}. This can be done by proving some maximal inequalities. We skip this part.

We prove the convergence of finite dimensional distributions. Fix $d \in \mathbb{N}$ and $0 \leq t_{1}<\ldots<t_{d}<\infty$. We have to show that

$$
\left(X_{t_{1}}^{(n)}, \ldots, X_{t_{d}}^{(n)}\right) \xrightarrow{\mathcal{D}}\left(W_{t_{1}}, \ldots, W_{t_{d}}\right) .
$$

To ease notation let $d=2$ and $\left(t_{1}, t_{2}\right)=(s, t)$. We want to show that

$$
\left(X_{s}^{(n)}, X_{t}^{(n)}\right) \xrightarrow{\mathcal{D}}\left(W_{s}, W_{t}\right) .
$$

By the definition of $X^{(n)}$

$$
\left\|\left(X_{s}^{(n)}, X_{t}^{(n)}\right)-\frac{1}{\sigma \sqrt{n}}\left(S_{\lfloor s n\rfloor}, S_{\lfloor t n\rfloor}\right)\right\| \xrightarrow{\mathbf{P}} 0,
$$

therefore it is enough to show that

$$
\frac{1}{\sigma \sqrt{n}}\left(S_{\lfloor s n\rfloor}, S_{\lfloor t n\rfloor}\right) \xrightarrow{\mathcal{D}}\left(W_{s}, W_{t}\right) .
$$

By Lévy's CLT

$$
\frac{1}{\sigma \sqrt{n}}\left(S_{\lfloor s n\rfloor}, S_{\lfloor t n\rfloor}-S_{\lfloor s n\rfloor}\right) \xrightarrow{\mathcal{D}}\left(\sqrt{s} Z, \sqrt{t-s} Z^{\prime}\right),
$$

Figure 1: Simulation of 3 independent SBM
where Z, Z^{\prime} are independent $N(0,1)$. Therefore

$$
\frac{1}{\sigma \sqrt{n}}\left(S_{\lfloor s n\rfloor}, S_{\lfloor t n\rfloor}\right) \xrightarrow{\mathcal{D}}\left(\sqrt{s} Z, \sqrt{s} Z+\sqrt{t-s} Z^{\prime}\right) \stackrel{\mathcal{D}}{=}\left(W_{s}, W_{t}\right),
$$

as claimed.
In the proof above we used the following simple statements.
Exercise 5.28. Let $\left(X_{n}\right)$ be a sequence of random elements in the metric space (S_{1}, ρ_{1}) converging in distribution to X. Let $\varphi: S_{1} \rightarrow S_{2}$ be continuous, where $\left(S_{2}, \rho_{2}\right)$ is another metric space. Show that $\varphi\left(X_{n}\right)$ converges in distribution to $\varphi(X)$.

Exercise 5.29. Let $\left(X_{n}\right),\left(Y_{n}\right)$ be random elements in the separable metric space (S, ρ) defined on the same probability space. Show that if X_{n} converges in distribution to X and $\rho\left(X_{n}, Y_{n}\right) \rightarrow 0$ in probability then Y_{n} converges in distribution to X.

As a consequence of Donsker's invariance principle we obtain limit result for the path of random walks. Let us restrict to the interval $[0,1]$ and consider the space $C[0,1]$ with the supremum norm. Consider the continuous
functional

$$
f: C[0,1] \rightarrow \mathbb{R} ; \omega \mapsto \max _{t \in[0,1]} \omega(t) .
$$

Since $X^{(n)} \rightarrow W$ in distribution (in $C[0,1]$) we have that $f\left(X^{(n)}\right) \rightarrow f(W)$ in distribution (in \mathbb{R} !). That is

$$
\mathbf{P}\left(\max _{t \in[0,1]} X_{t}^{(n)} \leq x\right) \rightarrow \mathbf{P}\left(\max _{t \in[0,1]} W_{t} \leq x\right)
$$

for each $x \in \mathbb{R}$ (well, only for continuity point of the limit, but it is continuous). By the definition of $X^{(n)}$ we can rewrite the RHS to get

$$
\mathbf{P}\left(\max _{k \leq n} S_{k} \leq \sqrt{n} \sigma x\right) \rightarrow \mathbf{P}\left(\max _{t \in[0,1]} W_{t} \leq x\right)
$$

Next we determine the LHS. Using the reflection principle

$$
\begin{aligned}
& \mathbf{P}\left(\max _{t \in[0,1]} W_{t}>x\right) \\
& =\mathbf{P}\left(\max _{t \in[0,1]} W_{t}>x, W_{1}>x\right)+\mathbf{P}\left(\max _{t \in[0,1]} W_{t}>x, W_{1}<x\right) \\
& =2 \mathbf{P}\left(\max _{t \in[0,1]} W_{t}>x, W_{1}>x\right) \\
& =2 \mathbf{P}\left(W_{1}>x\right)=2(1-\Phi(x)) .
\end{aligned}
$$

Summarizing

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\max _{k \leq n} S_{k} \leq \sqrt{n} \sigma x\right)=2 \Phi(x)-1
$$

5.4 Markov property

Assume that we have a SBM $\left(W_{t}\right)$ and we know everything up to time s. Conditioned on that information, what is the distribution of $W_{t}, t>s$?

Formally, $\left(W_{t}, \mathcal{F}_{t}\right)$ is a SBM, and we are interested in the conditional probabilities

$$
\mathbf{P}\left(W_{t} \in A \mid \mathcal{F}_{s}\right)
$$

Since $W_{t}=W_{s}+W_{t}-W_{s}$, where W_{s} is \mathcal{F}_{s}-measurable and $W_{t}-W_{s}$ is independent of \mathcal{F}_{s}, we obtain

$$
\mathbf{P}\left(W_{t} \in A \mid \mathcal{F}_{s}\right)=\mathbf{P}\left(W_{t} \in A \mid W_{s}\right)=\mathbf{P}_{W_{s}}\left(W_{t-s} \in A\right),
$$

where $\mathbf{P}_{x}\left(W_{u} \in A\right)=\mathbf{P}\left(W_{u} \in A \mid W_{0}=x\right)$, that is under $\mathbf{P}_{x} W$ is a SBM starting at x. That is knowing the whole past up to s gives no more information than knowing only W_{s}. This is the Markov property.

To make the previous argument formal we need the following.
Exercise 5.30. Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space, $\mathcal{G} \subset \mathcal{A}$ a sub- σ-algebra, and X, Y random variables such that X is independent of \mathcal{G} and Y is \mathcal{G} measurable. Then

$$
\mathbf{P}(X+Y \in A \mid \mathcal{G})=\mathbf{P}(X+Y \in A \mid Y) \quad \mathbf{P}-\text { a.s. }
$$

and

$$
\mathbf{P}(X+Y \in A \mid Y=y)=\mathbf{P}(X+y \in A) \quad \mathbf{P} Y^{-1}-\text { a.s. }
$$

For the latter note that for some $\sigma(Y) / \mathcal{B}(\mathbb{R})$-measurable h

$$
\mathbf{P}(X+Y \in A \mid Y)=h(Y)
$$

So the latter statement claims that $h(y)=\mathbf{P}(X+y \in A)$ a.s. with respect to the induced measure $\mathbf{P} Y^{-1}$.

A (d-dimensional) adapted process $\left(X_{t}\right)$ is Markov process with initial distribution μ if
(i) $\mathbf{P}\left(X_{0} \in A\right)=\mu(A)$;
(ii) $\mathbf{P}\left(X_{t+s} \in A \mid \mathcal{F}_{s}\right)=\mathbf{P}\left(X_{t+s} \in A \mid X_{s}\right)$, for all A and $t, s>0$.

Sometimes it is more convenient to work with various initial distributions. A Markov family is an adapted process $\left(X_{t}\right)$ together with a family of probability measures $\left(\mathbf{P}_{x}\right)$ such that
(i) $\mathbf{P}_{x}\left(X_{0}=x\right)=1$;
(ii) $\mathbf{P}_{x}\left(X_{t+s} \in A \mid \mathcal{F}_{s}\right)=\mathbf{P}_{x}\left(X_{t+s} \in A \mid X_{s}\right)$;
(iii) $\mathbf{P}_{x}\left(X_{t+s} \in A \mid X_{s}=y\right)=\mathbf{P}_{y}\left(X_{t} \in A\right) \mathbf{P}_{x} X_{s}^{-1}$-a.s.

For a given $\omega \in \Omega$ denote $X_{s+\text {. the function }} X_{s+t}$, that is we shift the path by s. The property in the definition of Markov process easily extends to path.

Proposition 5.31. For a Markov family for any $F \in \mathcal{B}\left(\mathbb{R}^{[0, \infty)}\right)$
(i) $\mathbf{P}_{x}\left(X_{s+} \in F \mid \mathcal{F}_{s}\right)=\mathbf{P}_{x}\left(X_{s+.} \in F \mid X_{s}\right)$;
(ii) $\mathbf{P}_{x}\left(X_{s+.} \in F \mid X_{s}=y\right)=\mathbf{P}_{y}(X . \in F) \mathbf{P}_{x} X_{s}^{-1}$-a.s.

The proof goes by the usual technical machinery. The sets F satisfying the above properties forms a λ-system and it contains the finite dimensional cylinders.

Markov property states that the process restarts at fixed times t. Sometimes we need to restart the process at stopping times τ. This property is the strong Markov property.

A (d-dimensional) adapted process $\left(X_{t}\right)$ is strong Markov process with initial distribution μ if
(i) $\mathbf{P}\left(X_{0} \in A\right)=\mu(A)$;
(ii) $\mathbf{P}\left(X_{\tau+t} \in A \mid \mathcal{F}_{\tau}\right)=\mathbf{P}\left(X_{t} \in A \mid X_{\tau}\right)$, for all A and stopping time τ.

Similarly, a strong Markov family is an adapted process $\left(X_{t}\right)$ together with a family of probability measures \mathbf{P}_{x} such that
(i) $\mathbf{P}_{x}\left(X_{0}=x\right)=1$;
(ii) $\mathbf{P}_{x}\left(X_{\tau+t} \in A \mid \mathcal{F}_{\tau}\right)=\mathbf{P}_{x}\left(X_{\tau+t} \in A \mid X_{\tau}\right)$ for all A and stopping time τ;
(iii) $\mathbf{P}_{x}\left(X_{\tau+t} \in A \mid X_{\tau}=y\right)=\mathbf{P}_{y}\left(X_{t} \in A\right) \mathbf{P}_{x} X_{\tau}^{-1}$-a.s. for all A and stopping time τ;

Proposition 5.32. For a strong Markov family for any $F \in \mathcal{B}\left((\mathbb{R})^{[0, \infty)}\right)$
(i) $\mathbf{P}_{x}\left(X_{\tau+} \in F \mid \mathcal{F}_{\tau}\right)=\mathbf{P}_{x}\left(X_{\tau+.} \in F \mid X_{\tau}\right)$;
(ii) $\mathbf{P}_{x}\left(X_{\tau+} \in F \mid X_{\tau}=x\right)=\mathbf{P}_{x}(X . \in F) \mathbf{P}_{x} X_{\tau}^{-1}$-a.s.

We proved that SBM is Markov. In fact, it is strong Markov.
Theorem 5.33. SBM is a strong Markov process.

5.5 Path properties

Theorem 5.34. Almost surely the sample path of a SBM is not monotone in any interval.

Proof. Let

$$
A=\{\omega: W(\cdot, \omega) \text { is monotone on some interval }\}
$$

Clearly

$$
A=\cup_{r, s \in \mathbb{Q}}\{\omega: W(\cdot, \omega) \text { is monotone on }[r, s]\}
$$

Since this is a countable union it is enough to prove that each event has probability zero. To ease notation choose $r=0, s=1$, and put

$$
B=\{\omega: W(\cdot, \omega) \text { is nondecreasing on }[0,1]\} .
$$

We have
$B=\cap_{n=1}^{\infty}\{\omega: W((i+1) / n, \omega) \geq W(i / n, \omega), i=0,1, \ldots, n-1\}=: \cap_{n=1}^{\infty} B_{n}$.
By the independent increment property

$$
\mathbf{P}\left(B_{n}\right)=\prod_{i=0}^{n-1} \mathbf{P}(W((i+1) / n) \geq W(i / n))=2^{-n}
$$

which implies that $\mathbf{P}(B)=0$ as claimed.
For any interval $[a, b]$ let $\Pi_{n}=\left\{a=t_{0}<t_{1}<\ldots<t_{n}=b\right\}$ a partition with mesh

$$
\left\|\Pi_{n}\right\|=\max \left\{t_{i}-t_{i-1}: i=1,2, \ldots, n\right\}
$$

We determine the quadratic variation of the Wiener process.
Theorem 5.35. Let $\Pi_{n}=\left\{a=t_{0}<t_{1}<\ldots<t_{n}=b\right\}$, $n=1,2, \ldots, a$ sequence of partitions of $[a, b]$ such that $\left\|\Pi_{n}\right\| \rightarrow 0$. Then

$$
\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2} \xrightarrow{L^{2}} b-a
$$

Proof. Assume that $[a, b]=[0,1]$. We have to show that

$$
\mathbf{E}\left(\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}-1\right)^{2} \longrightarrow 0
$$

Using $1=\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)$ we have

$$
\begin{align*}
& \mathbf{E}\left(\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}-1\right)^{2}= \tag{13}\\
& \sum_{i, j=1}^{n} \mathbf{E}\left(\left[\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right]\left[\left(W_{t_{j}}-W_{t_{j-1}}\right)^{2}-\left(t_{j}-t_{j-1}\right)\right]\right)
\end{align*}
$$

If $i \neq j$ then $W_{t_{i}}-W_{t_{i-1}}$ and $W_{t_{j}}-W_{t_{j-1}}$ are independent. Therefore

$$
\mathbf{E}\left[\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right]=0,
$$

so the mixed products in (13) are 0 . Using that $W_{t}-W_{s} \sim N(0, t-s)$ we obtain

$$
\begin{aligned}
\mathbf{E}\left(\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}-1\right)^{2} & =\sum_{i=1}^{n} \mathbf{E}\left[\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right]^{2} \\
& =\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{2} \mathbf{E}\left[\left(\frac{W_{t_{i}}-W_{t_{i-1}}}{\sqrt{t_{i}-t_{i-1}}}\right)^{2}-1\right]^{2} \\
& =\mathbf{E}\left(Z^{2}-1\right)^{2} \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{2},
\end{aligned}
$$

where $Z \sim N(0,1)$. Since

$$
\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{2} \leq\left\|\Pi_{n}\right\| \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)=\left\|\Pi_{n}\right\| \rightarrow 0
$$

the proof is ready.
Under some extra conditions a.s. convergence hold. Recall that in general neither L^{2} convergence nor a.s. convergence implies the other. Moreover, L^{2} convergence implies a.s. convergence on a subsequence. However, if $\sum_{n=1}^{\infty}\left\|\Pi_{n}\right\|<\infty$ then the Borel-Cantelli lemma implies a.s. convergence.

Exercise 5.36. Let $\Pi_{n}=\left\{a=t_{0}<t_{1}<\ldots<t_{n}=b\right\}, n=1,2, \ldots$, a sequence of partitions of $[a, b]$ such that $\sum_{n=1}^{\infty}\left\|\Pi_{n}\right\|<\infty$. Then a.s.

$$
\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2} \longrightarrow b-a
$$

Corollary 5.37. Let $\left(\Pi_{n}\right)$ be a sequence of partitions of the interval $[a, b]$ such that $\sum_{n=1}^{\infty}\left\|\Pi_{n}\right\|<\infty$. Then $\sum_{i=1}^{n}\left|W_{t_{i}}-W_{t_{i-1}}\right| \rightarrow \infty$ a.s.

Proof. Clearly,

$$
\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2} \leq \sup _{1 \leq i \leq n}\left|W_{t_{i}}-W_{t_{i-1}}\right| \sum_{i=1}^{n}\left|W_{t_{i}}-W_{t_{i-1}}\right|
$$

The left-hand side converges to $b-a$ a.s. on a subsequence. On the righthand side the first factor goes to 0 a.s. by the continuity of the Wiener process. (Recall that continuous function is uniformly continuous on compacts.) Therefore the second term necessarily tends to infinity.

We proved that the sample path of W are Hölder continuous with exponent $<1 / 2$, and that the sample path are not of bounded variation. These results suggest that the trajectories are quite irregular. In fact, they are a.s. nowhere differentiable.

Theorem 5.38 (Paley, Wiener, Zygmund (1933)). Almost surely the path $W(\cdot, \omega)$ is nowhere differentiable.

Proof. For $n, k \in \mathbb{N}$ consider

$$
\begin{aligned}
X_{n k}=\max \{ & \left|W\left(k 2^{-n}\right)-W\left((k-1) 2^{-n}\right)\right|,\left|W\left((k+1) 2^{-n}\right)-W\left(k 2^{-n}\right)\right|, \\
& \left.\left|W\left((k+2) 2^{-n}\right)-W\left((k+1) 2^{-n}\right)\right|\right\} .
\end{aligned}
$$

Using the independent increment property and the scale invariance

$$
\mathbf{P}\left(X_{n k} \leq \varepsilon\right)=\left(\mathbf{P}\left(\left|W\left(1 / 2^{n}\right)\right| \leq \varepsilon\right)\right)^{3} \leq\left(2 \cdot 2^{n / 2} \varepsilon\right)^{3}
$$

Putting $Y_{n}=\min _{1 \leq k \leq n 2^{n}} X_{n k}$ we obtained

$$
\mathbf{P}\left(Y_{n} \leq \varepsilon\right) \leq \sum_{k=1}^{n 2^{n}} \mathbf{P}\left(X_{n k} \leq \varepsilon\right)<n 2^{n}\left(2 \cdot 2^{n / 2} \varepsilon\right)^{3} .
$$

Introduce the event

$$
A=\{\omega: W(\cdot, \omega) \text { is somewhere differentiable }\} .
$$

If $\omega \in A$ then there exist $t=t(\omega)$ such that $W^{\prime}(t, \omega)=D(\omega) \in \mathbb{R}$. Thus

$$
\lim _{s \rightarrow t}\left|\frac{W(s, \omega)-W(t, \omega)}{s-t}\right|=|D(\omega)|<\infty .
$$

Therefore there exists $\delta(\omega)=\delta(\omega, t)>0$ such that for $|s-t|<\delta(\omega)$

$$
|W(s, \omega)-W(t, \omega)| \leq(|D(\omega)|+1)|s-t| .
$$

Let $n_{0}(\omega)=n_{0}(\omega, t)$ so large that

$$
2^{-n_{0}(\omega)}<\frac{\delta(\omega)}{2}, \quad n_{0}(\omega) \geq \max \{4(|D(\omega)|+1), t+1\}
$$

Fix $n \geq n_{0}(\omega)$ and let

$$
\frac{k(\omega)}{2^{n}} \leq t<\frac{k(\omega)+1}{2^{n}} .
$$

Then

$$
\max \left\{\left|t-\frac{j}{2^{n}}\right|: j=k(\omega)-1, k(\omega), k(\omega)+1, k(\omega)+2\right\} \leq \frac{2}{2^{n}}<\delta(\omega)
$$

thus

$$
\begin{aligned}
X_{n, k(\omega)}(\omega) & \leq \max \left\{\left|W\left(\frac{j}{2^{n}}, \omega\right)-W(t, \omega)\right|+\left|W\left(\frac{j-1}{2^{n}}, \omega\right)-W(t, \omega)\right|\right\} \\
& \leq 2(|D(\omega)|+1) \frac{2}{2^{n}}=4(|D(\omega)|+1) \frac{1}{2^{n}} \leq \frac{n}{2^{n}}
\end{aligned}
$$

where the max is taken on the set $j \in\{k(\omega), k(\omega)+1, k(\omega)+2\}$.
Since $k(\omega) \leq n 2^{n}$, we obtained

$$
Y_{n}(\omega)=\min _{1 \leq k \leq n 2^{n}} X_{n k}(\omega) \leq n / 2^{n}
$$

Thus $\omega \in A$ implies $\omega \in A_{n}=\left\{\omega: Y_{n}(\omega) \leq n / 2^{n}\right\}$ for all $n \geq n_{0}(\omega)$ so

$$
\begin{aligned}
\omega \in \liminf _{n \rightarrow \infty} A_{n} & =\cup_{n=1}^{\infty} \cap_{m=n}^{\infty} A_{m} \\
& =\left\{\omega: \omega \in A_{k} \text { except finitely many } k\right\}
\end{aligned}
$$

That is $A \subset B:=\liminf _{n \rightarrow \infty} A_{n}$. Using the Fatou lemma

$$
\begin{aligned}
\mathbf{P}(B) & \leq \liminf _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mathbf{P}\left(Y_{n} \leq \frac{n}{2^{n}}\right) \\
& \leq \liminf _{n \rightarrow \infty} n 2^{n}\left(2 \cdot 2^{n / 2} \frac{n}{2^{n}}\right)^{3}=0
\end{aligned}
$$

So $A \subset B$ and $\mathbf{P}(B)=0$ as claimed.

Note that we don't claim that $A \in \mathcal{A}$. Now we see the usefulness of the usual conditions. The usual conditions include that \mathcal{F}_{0} contains the null-sets of \mathcal{A}.

Let

$$
Z(\omega)=\{t: W(t, \omega)=0\}
$$

denote the set of zeros. Let λ be the Lebesgue measure. By Fubini

$$
\begin{aligned}
\mathbf{E} \lambda(Z) & =\int_{\Omega} \lambda(Z(\omega)) \mathbf{P}(\mathrm{d} \omega) \\
& =\int_{\Omega} \int_{\mathbb{R}} \mathbb{I}(W(t, \omega)=0) \mathrm{d} t \mathbf{P}(\mathrm{~d} \omega) \\
& =\int_{\mathbb{R}} \mathbf{P}(W(t, \omega)=0) \mathrm{d} t=0 .
\end{aligned}
$$

Since $\lambda(Z) \geq 0$ this implies $\lambda(Z)=0$ a.s.
Theorem 5.39 (Khinchin, 1933). For almost every ω

$$
\limsup _{t \downarrow 0} \frac{W_{t}(\omega)}{\sqrt{2 t \log \log 1 / t}}=1 \quad \text { and } \quad \liminf _{t \downarrow 0} \frac{W_{t}(\omega)}{\sqrt{2 t \log \log 1 / t}}=-1 \text {, }
$$

and

$$
\limsup _{t \rightarrow \infty} \frac{W_{t}(\omega)}{\sqrt{2 t \log \log t}}=1 \quad \text { and } \quad \liminf _{t \rightarrow \infty} \frac{W_{t}(\omega)}{\sqrt{2 t \log \log t}}=-1 .
$$

Proof. By symmetry it is enough to prove the limsup results, and since $\left(t W_{1 / t}\right)$ is SBM it is enough to prove at 0 .

Let

$$
X_{t}=\exp \left\{\lambda W_{t}-\frac{\lambda^{2}}{2} t\right\}
$$

This is a martingale, therefore by the maximal inequality

$$
\mathbf{P}\left(\max _{s \in[0, t]}\left(W_{s}-\frac{\lambda}{2} s\right) \geq \beta\right)=\mathbf{P}\left(\max _{s \in[0, t]} X_{s} \geq e^{\lambda \beta}\right) \leq e^{-\lambda \beta} .
$$

Put $h(t)=\sqrt{2 t \log \log (1 / t)}$. Fix $\theta, \delta \in(0,1)$. Choose $\lambda=(1+\delta) \theta^{-n} h\left(\theta^{n}\right)$, $\beta=h\left(\theta^{n}\right) / 2$, and $t=\theta^{n}$. Then

$$
\mathbf{P}\left(\max _{s \in[0, t]}\left(W_{s}-\frac{\lambda}{2} s\right) \geq \beta\right) \leq e^{-\lambda \beta}=(n \log 1 / \theta)^{-(1+\delta)}
$$

This is summable, therefore by the Borel-Cantelli lemma there exists $N(\omega)$, and $\Omega_{\delta, \theta}$ with $\mathbf{P}\left(\Omega_{\delta, \theta}\right)=1$ such that

$$
\max _{s \in\left[0, \theta^{n}\right]}\left(W_{s}-\frac{1+\delta}{2} s \theta^{-n} h\left(\theta^{n}\right)\right) \leq \frac{1}{2} h\left(\theta^{n}\right) \quad \text { for } n \geq N(\omega)
$$

Thus for $t \in\left(\theta^{n+1}, \theta^{n}\right]$

$$
W_{t}(\omega) \leq \max _{s \in\left[0, \theta^{n}\right]} W_{s}(\omega) \leq(1+\delta / 2) h\left(\theta^{n}\right) \leq(1+\delta / 2) \theta^{-1 / 2} h(t)
$$

Therefore for $n \geq N(\omega)$

$$
\sup _{t \in\left(\theta^{n+1}, \theta^{n}\right]} \frac{W_{t}(\omega)}{h(t)} \leq(1+\delta / 2) \theta^{-1 / 2}
$$

which implies as $n \rightarrow \infty$

$$
\limsup _{t \downarrow 0} \frac{W_{t}(\omega)}{h(t)} \leq(1+\delta / 2) \theta^{-1 / 2}
$$

Letting $\delta \downarrow 0$ and $\theta \uparrow 1$ through rationals we obtain

$$
\begin{equation*}
\limsup _{t \downarrow 0} \frac{W_{t}(\omega)}{h(t)} \leq 1 \tag{14}
\end{equation*}
$$

For the opposite direction we need the second Borel-Cantelli lemma, which requires independence. Fix $\theta \in(0,1)$ and let

$$
A_{n}=\left\{W_{\theta^{n}}-W_{\theta^{n+1}} \geq \sqrt{1-\theta} h\left(\theta^{n}\right)\right\}
$$

Putting $x=\sqrt{2 \log n+2 \log \log 1 / \theta}$

$$
\mathbf{P}\left(A_{n}\right)=\mathbf{P}\left(\frac{W_{\theta^{n}}-W_{\theta^{n+1}}}{\sqrt{\theta^{n}-\theta^{n+1}}} \geq x\right) \geq C x^{-1} e^{-\frac{x^{2}}{2}} \geq C^{\prime} \frac{1}{n \sqrt{\log n}}
$$

where we use Lemma 5.17. The lower bound is a divergent series in n, therefore the event A_{n} occur infinitely often. On the other hand by (14) (for $\left.-W_{t}\right)$

$$
-W_{\theta^{n+1}} \leq 2 h\left(\theta^{n+1}\right) \leq 4 \theta^{1 / 2} h\left(\theta^{n}\right)
$$

for all $n \geq N(\omega)$. Therefore whenever A_{n} occur

$$
\frac{W_{\theta^{n}}(\omega)}{h\left(\theta^{n}\right)} \geq \sqrt{1-\theta}-4 \sqrt{\theta}
$$

Letting $n \rightarrow \infty$ we have

$$
\limsup _{t \downarrow 0} \frac{W_{t}}{h(t)} \geq \sqrt{1-\theta}-4 \sqrt{\theta}
$$

and the result follows by letting $\theta \downarrow 0$.
Exercise 5.40. Show that if W is SBM then for any λ

$$
X_{t}=\exp \left\{\lambda W_{t}-\frac{\lambda^{2}}{2} t\right\}
$$

is a martingale.

6 General Markov processes

This part is from Breiman [1].

6.1 Transition probabilities and Chapman-Kolmogorov equations

The process $\left(X_{t}\right)$ is a Markov process, if for each Borel set $B \in \mathcal{B}(\mathbb{R})$, and $t, \tau \mathbb{R}$

$$
\mathbf{P}\left(X_{t+\tau} \in B \mid X_{s}, s \leq t\right)=\mathbf{P}\left(X_{t+\tau} \in B \mid X_{t}\right)
$$

Choosing natural filtration $\mathcal{F}_{t}=\sigma\left(X_{s}, s \leq t\right)$, the definition is the same as in Subsection 5.4

Since regular conditional distributions exist, we may choose the probabilities

$$
p_{t_{2}, t_{1}}(B \mid x)=\mathbf{P}\left(X_{t_{2}} \in B \mid X_{t_{1}}=x\right), \quad t_{2}>t_{1}, B \in \mathcal{B},
$$

such that

- for x fixed, $p_{t_{2}, t_{1}}(\cdot \mid x)$ is a probability measure;
- for $B \in \mathcal{B}$ fixed, $p_{t_{2}, t_{1}}(B \mid \cdot)$ is measurable.

These probabilities are the transition probabilities of the Markov process $\left(X_{t}\right)$.

Let $\tau<s<t, B \in \mathcal{B}$. By the tower rule, the Markov property, and the properties of regular conditional distribution

$$
\begin{aligned}
\mathbf{P}\left(X_{t} \in B \mid X_{\tau}\right) & =\mathbf{E}\left[\mathbf{P}\left(X_{t} \in B \mid X_{\tau}, X_{s}\right) \mid X_{\tau}\right] \\
& =\mathbf{E}\left[\mathbf{P}\left(X_{t} \in B \mid X_{s}\right) \mid X_{\tau}\right] \\
& =\mathbf{E}\left[h\left(X_{s}\right) \mid X_{\tau}\right] \\
& =\int h(y) \mathrm{d} \mathbf{P}\left(X_{s} \in \mathrm{~d} y \mid X_{\tau}\right) \\
& =\int \mathbf{P}\left(X_{t} \in B \mid X_{s}=y\right) \mathbf{P}\left(X_{s} \in \mathrm{~d} y \mid X_{\tau}\right) \\
& =\int_{\mathbb{R}} p_{t, s}(B \mid y) p_{s, \tau}\left(\mathrm{~d} y \mid X_{\tau}\right) .
\end{aligned}
$$

That is

$$
p_{t, \tau}(B \mid x)=\int p_{t, s}(B \mid y) p_{s, \tau}(\mathrm{~d} y \mid x)
$$

We proved the following.
Theorem 6.1 (Chapman-Kolmogorov equations). The transition probabilities of a Markov process satisfies the equations

$$
\begin{equation*}
p_{t, \tau}(B \mid x)=\int p_{t, s}(B \mid y) p_{s, \tau}(\mathrm{~d} y \mid x), \quad \tau<s<t, B \in \mathcal{B} \tag{15}
\end{equation*}
$$

The expression $p_{t, \tau}(B \mid x)$ is the probability that starting from x in time τ we end up in B at time t. Consider any s between τ and t. The distribution of X_{s} given $X_{\tau}=x$ is $p_{s, \tau}(\cdot \mid x)$, that is the probability being in y is $p_{s, \tau}(\mathrm{~d} y \mid x)$. Therefore, the Chapman-Kolmogorov equation is the law of total probability plus Markov property.

We are cheating again a bit. What we proved is that (15) holds for fixed $\tau<s<t$ almost surely with respect to the probability $\mathbf{P}\left(X_{\tau} \in \cdot\right)$. Indeed, in the proof we calculated conditional probabilities, where each equality is only an almost sure equality. In what follows we assume that (15) holds for every x.

The Markov process $\left(X_{t}\right)$ is stationary if the transition probabilities depend only on the time increment, i.e. $p_{t, \tau}(B \mid x)=p_{t-\tau}(B \mid x)$. Then $p_{t}(B \mid x)=$
$p_{t, 0}(B \mid x)$, and the Chapman-Kolmogorov equations simplify to

$$
\begin{equation*}
p_{t+s}(B \mid x)=\int p_{t}(B \mid y) p_{s}(\mathrm{~d} y \mid x) \tag{16}
\end{equation*}
$$

Assume that $\left(X_{t}\right)$ is stochastically continuous at 0 , that is

$$
X_{t} \xrightarrow{\mathbf{P}} X_{0}, \quad t \rightarrow 0 .
$$

If $\left(X_{t}\right)$ starts at x then its distribution is denoted by \mathbf{P}_{x}, and the corresponding expectation is \mathbf{E}_{x}, that is

$$
\mathbf{P}_{x}\left(X_{t} \in B\right)=\mathbf{P}\left(X_{t} \in B \mid X_{0}=x\right), \quad \mathbf{E}_{x} f\left(X_{t}\right)=\mathbf{E}\left[f\left(X_{t}\right) \mid X_{0}=x\right]
$$

Example 6.2 (Poisson process). Let N_{t} be a standard Poisson process. Then $N_{t}-N_{s} \sim \operatorname{Poisson}(t-s)$, so

$$
\mathbf{P}_{x}\left(N_{t}=x+k\right)=p_{t}(\{x+k\} \mid x)=\frac{t^{k}}{k!} e^{-t}
$$

or, what is the same

$$
p_{t}(B \mid x)=\sum_{k: x+k \in B} \frac{t^{k}}{k!} e^{-t} .
$$

The Chapman-Kolmogorov equation (16) become

$$
p_{t+s}(\{k\} \mid 0)=\sum_{\ell=0}^{\infty} p_{t}(\{k\} \mid \ell) p_{s}(\{\ell\} \mid 0),
$$

which is just a reformulation of the fact that the sum of two independent Poisson random variables is Poisson, and the parameter is the sum of the parameters.

Example 6.3 (Wiener process). Let W_{t} be SBM. Then

$$
\begin{aligned}
p_{t}(B \mid x) & =\mathbf{P}_{x}\left(W_{t} \in B\right)=\mathbf{P}_{0}\left(x+W_{t} \in B\right)=\mathbf{P}_{0}\left(W_{t} \in B-x\right) \\
& =\int_{B-x} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{y^{2}}{2 t}} \mathrm{~d} y \\
& =\int_{B} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{(y-x)^{2}}{2 t}} \mathrm{~d} y .
\end{aligned}
$$

That is $p_{t}(B \mid x)$ is absolutely continuous with transition density $p_{t}(\mathrm{~d} y \mid x)=$ $\rho_{t}(y \mid x) \mathrm{d} y$

$$
\rho_{t}(y \mid x)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{(y-x)^{2}}{2 t}} .
$$

The Chapman-Kolmogorov equation (16) become

$$
p_{t+s}(B \mid x)=\int_{\mathbb{R}} p_{t}(B \mid y) \rho_{s}(y \mid x) \mathrm{d} y
$$

or for the densities

$$
\rho_{t+s}(z \mid x)=\int_{\mathbb{R}} \rho_{t}(z \mid y) \rho_{s}(y \mid x) \mathrm{d} y
$$

This is a reformulation of the fact that the sum of independent normals is normal. Recall the convolution formula for densities.

6.2 Infinitesimal generator

The infinitesimal generator of X an operator defined by

$$
\begin{equation*}
f \mapsto S f: S f(x)=\lim _{t \rightarrow 0+} \frac{1}{t} \mathbf{E}_{x}\left[f\left(X_{t}\right)-f(x)\right] \tag{17}
\end{equation*}
$$

whenever the limit exists. Its domain is denoted by $\mathcal{D}(S)$.
We determine the infinitesimal generator of the Poisson process and the Wiener process.

Example 6.4 (Poisson process). Let $\left(N_{t}\right)$ be a Poisson process with intensity 1 , and let f be a bounded measurable function. By definition $N_{t}-N_{0} \sim$ Poisson (t), thus

$$
\mathbf{E}_{x} f\left(N_{t}\right)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} e^{-t} f(k+x)
$$

Since f is bounded the sum is finite, and as $t \downarrow 0$

$$
\mathbf{E}_{x} f\left(N_{t}\right)=f(x) e^{-t}+f(x+1) t e^{-t}+O\left(t^{2}\right)
$$

Thus

$$
\begin{aligned}
S f(x) & =\lim _{t \rightarrow 0} \frac{1}{t} \mathbf{E}_{x}\left[f\left(N_{t}\right)-f(x)\right] \\
& =\lim _{t \rightarrow 0}\left(f(x) \frac{e^{-t}-1}{t}+f(x+1) e^{-t}\right) \\
& =f(x+1)-f(x)
\end{aligned}
$$

The limit exists for any bounded measurable function.
Example 6.5 (Wiener process). Let $\left(W_{t}\right)$ be SBM and $f \in C_{c}^{2}$ twice continuously differentiable function with compact support. Using Taylor expansion

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+o\left(h^{2}\right),
$$

and since $\mathbf{E}_{0} W_{t}=0, \mathbf{E}_{0} W_{t}^{2}=t$, we have

$$
\begin{aligned}
\mathbf{E}_{x} f\left(W_{t}\right) & =\mathbf{E}_{0} f\left(x+W_{t}\right) \\
& =\mathbf{E}_{0}\left[f(x)+W_{t} f^{\prime}(x)+\frac{W_{t}^{2}}{2} f^{\prime \prime}(x)+o\left(W_{t}^{2}\right)\right] \\
& =f(x)+\frac{t}{2} f^{\prime \prime}(x)+o(t) .
\end{aligned}
$$

Thus

$$
S f(x)=\lim _{t \rightarrow 0} \frac{1}{t} \mathbf{E}_{x}\left[f\left(W_{t}\right)-f(x)\right]=\frac{f^{\prime \prime}(x)}{2} .
$$

We see that $C_{c}^{2} \subset \mathcal{D}(S)$.

6.3 Kolmogorov equations

Backward. Let $t>0$ fix, $B \in \mathcal{B}(\mathbb{R}), \tau>0$ small. By the tower rule and the Markov property

$$
\mathbf{P}\left(X_{t+\tau} \in B \mid X_{0}=x\right)=\mathbf{E}\left[\mathbf{P}\left(X_{t+\tau} \in B \mid X_{\tau}\right) \mid X_{0}=x\right]
$$

With the notation $\varphi_{t}(x)=p_{t}(B \mid x)$

$$
\varphi_{t+\tau}(x)=\mathbf{E}_{x} \varphi_{t}\left(X_{\tau}\right)
$$

which reads as

$$
\frac{1}{\tau}\left[\varphi_{t+\tau}(x)-\varphi_{t}(x)\right]=\frac{1}{\tau} \mathbf{E}_{x}\left[\varphi_{t}\left(X_{\tau}\right)-\varphi_{t}(x)\right] .
$$

Letting τ tend to 0 , we obtain

$$
\frac{\partial}{\partial t} \varphi_{t}(x)=\left(S \varphi_{t}\right)(x)
$$

Substituting back the definition of φ, we obtain Kolmogorov's backward equation

$$
\begin{equation*}
\frac{\partial}{\partial t} p_{t}(B \mid x)=\left(S p_{t}(B \mid \cdot)\right)(x) \tag{18}
\end{equation*}
$$

Forward. Let $t>0$ fix, $f \in \mathcal{D}(S)$. By the tower rule and the Markov property

$$
\mathbf{E}_{x} f\left(X_{t+\tau}\right)=\mathbf{E}_{x}\left[\mathbf{E}_{x}\left[f\left(X_{t+\tau}\right) \mid X_{t}\right]\right],
$$

which can be rewritten as

$$
\int f(y) p_{t+\tau}(\mathrm{d} y \mid x)=\iint f(z) p_{\tau}(\mathrm{d} z \mid y) p_{t}(\mathrm{~d} y \mid x)=\int \mathbf{E}_{y} f\left(X_{\tau}\right) p_{t}(\mathrm{~d} y \mid x)
$$

Subtracting

$$
\mathbf{E}_{x} f\left(X_{t}\right)=\int f(y) p_{t}(\mathrm{~d} y \mid x)
$$

and dividing by τ

$$
\int f(y) \frac{p_{t+\tau}(\mathrm{d} y \mid x)-p_{t}(\mathrm{~d} y \mid x)}{\tau}=\int \frac{1}{\tau}\left[\mathbf{E}_{y} f\left(X_{\tau}\right)-f(y)\right] p_{t}(\mathrm{~d} y \mid x)
$$

Letting $\tau \downarrow 0$

$$
\begin{equation*}
\int f(y) \frac{\partial}{\partial t} p_{t}(\mathrm{~d} y \mid x)=\int(S f)(y) p_{t}(\mathrm{~d} y \mid x) \tag{19}
\end{equation*}
$$

The adjoint of the operator S is an operator S^{*} on the space of measures such that

$$
\int(S f)(y) \mu(\mathrm{d} y)=\int f(y)\left(S^{*} \mu\right)(\mathrm{d} y)
$$

If this holds for sufficiently many f and μ, then it is unique.
Using the definition of adjoint in (19)

$$
\int f(y) \frac{\partial}{\partial t} p_{t}(\mathrm{~d} y \mid x)=\int f(y)\left(S^{*} p_{t}(\cdot \mid x)\right)(\mathrm{d} y)
$$

from which we get Kolmogorov's forward equation

$$
\begin{equation*}
\frac{\partial}{\partial t} p_{t}(B \mid x)=\left(S^{*} p_{t}(\cdot \mid x)\right)(B) \tag{20}
\end{equation*}
$$

Remark 2. The derivation of the forward equation is rather intuitive. What kind of space is the domain $\mathcal{D}(S)$, and how the adjoint operator defined? Furthermore, in (19)) we differentiated a family of measures with respect to t. If the measure are absolutely continuous, i.e.

$$
p_{t}(\mathrm{~d} y \mid x)=\rho_{t}(y \mid x) \mathrm{d} y
$$

then

$$
\lim _{\tau \rightarrow 0} \frac{\rho_{t+\tau}(y \mid x)-\rho_{t}(y \mid x)}{\tau}=\frac{\partial}{\partial t} \rho_{t}(y \mid x) .
$$

In general, both for the backward and for the forward equations extra conditions are needed. As it can be guessed from the derivation, for the forward equation more restrictive conditions are needed.

The importance of the Kolmogorov equations (18) and (20) is that from infinitesimal conditions (from the generator S) one can determine the evolution of the whole process, that is the transition probabilities. In most of the cases the solution cannot be determined explicitly, only by simulation.

Example 6.6 (Poisson process). Let $\left(N_{t}\right)$ be a Poisson process with intensity 1. We proved that

$$
(S f)(x)=f(x+1)-f(x) .
$$

Therefore, the backward equation reads as

$$
\begin{equation*}
\frac{\partial}{\partial t} p_{t}(B \mid x)=p_{t}(B \mid x+1)-p_{t}(B \mid x) \tag{21}
\end{equation*}
$$

For the forward equation we determine the adjoint of S. We need an $S^{*} \mu$ such that

$$
\int[f(x+1)-f(x)] \mu(\mathrm{d} x)=\int f(x)\left(S^{*} \mu\right)(\mathrm{d} x)
$$

From this form we can guess that

$$
S^{*} \mu(A)=\mu(A-1)-\mu(A)
$$

should work, where $A-1=\{a-1: a \in A\}$. This indeed holds, therefore the forward equation reads as

$$
\frac{\partial}{\partial t} p_{t}(B \mid x)=p_{t}(B-1 \mid x)-p_{t}(B \mid x)
$$

The initial condition in both cases is

$$
p_{0}(B \mid x)=\delta_{x}(B)= \begin{cases}1, & \text { if } x \in B \\ 0, & \text { otherwise }\end{cases}
$$

In this special case we can solve the equation (21). Let $x=0$ and $B=\{0\}$. Since the process have only upwards jumps $p_{t}(\{0\} \mid 1)=0$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} p_{t}(\{0\} \mid 0)=-p_{t}(\{0\} \mid 0)
$$

which together with the initial condition $p_{0}=1$ gives

$$
p_{t}(\{0\} \mid 0)=e^{-t} .
$$

Now $B=\{1\}$ gives

$$
\frac{\mathrm{d}}{\mathrm{~d} t} p_{t}(\{1\} \mid 0)=e^{-t}-p_{t}(\{1\} \mid 0)
$$

Multiplying by e^{t}

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{t} p_{t}(\{1\} \mid 0)\right)=1
$$

which with the initial condition $p_{0}(\{1\} \mid 0)=0$ gives

$$
p_{t}(\{1\} \mid 0)=t e^{-t} .
$$

In general, induction gives that

$$
p_{t}(\{k\} \mid 0)=\frac{t^{k}}{k!} e^{-t} .
$$

Example 6.7 (Wiener process). Let $\left(W_{t}\right)$ be SBM. Since $(S f)(x)=f^{\prime \prime}(x) / 2$, the backward equation is

$$
\frac{\partial}{\partial t} p_{t}(B \mid x)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} p_{t}(B \mid x)
$$

For the density $p_{t}(\mathrm{~d} y \mid x)=\rho_{t}(y \mid x) \mathrm{d} y$ we get

$$
\frac{\partial}{\partial t} \rho_{t}(y \mid x)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \rho_{t}(y \mid x)
$$

This is the heat equation.
For the forward equation we need again the adjoint of S. Let μ be absolutely continuous with respect to the Lebesgue measure, $\mu(\mathrm{d} y)=g(y) \mathrm{d} y$, and let $f \in C_{c}^{2}$. Integration by parts twice gives

$$
\int f^{\prime \prime}(y) g(y) \mathrm{d} y=\int f(y) g^{\prime \prime}(y) \mathrm{d} y
$$

That is $\left(S^{*} \mu\right)(\mathrm{d} y)=\frac{1}{2} g^{\prime \prime}(y) \mathrm{d} y$. The forward equation is

$$
\frac{\partial}{\partial t} p_{t}(y \mid x) \mathrm{d} y=\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}} p_{t}(y \mid x) \mathrm{d} y
$$

which for the densities gives

$$
\frac{\partial}{\partial t} \rho_{t}(y \mid x)=\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}} \rho_{t}(y \mid x)
$$

again the heat equation.
Recall that the fundamental solution to the heat equation

$$
\frac{\partial}{\partial t} u(t, x)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} u(t, x)
$$

is

$$
F(t, x)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}
$$

which is exactly the transition density of the SBM.

6.4 Diffusion processes

Diffusions can be handled as solution to stochastic differential equations. This is the probabilistic approach due to Lévy and Itô. Another more analytical approach to such processes was applied by Kolmogorov and Feller. They treated diffusions as general Markov processes and using tools from the theory of partial differential equations, they showed that under suitable conditions the Kolmogorov backward and forward equations have a unique solution. Then the existence of a desired Markov process follows from Kolmogorov's consistency theorem, and the continuity property of the process can be treated by Kolmogorov's continuity theorem (Theorem 5.8). Here we look a bit into the latter approach.

A diffusion process locally behaves as a Wiener process, in the sense that it satisfies the SDE

$$
\mathrm{d} Y_{t}=\mu\left(Y_{t}\right) \mathrm{d} t+\sigma\left(Y_{t}\right) \mathrm{d} W_{t}
$$

That is, for $h>0$

$$
\begin{aligned}
\Delta Y_{t} & =Y_{t+h}-Y_{t}=\int_{t}^{t+h} \mu\left(Y_{s}\right) \mathrm{d} s+\int_{t}^{t+h} \sigma\left(Y_{s}\right) \mathrm{d} W_{s} \\
& \approx h \mu\left(Y_{t}\right)+\sigma\left(Y_{t}\right)\left(W_{t+h}-W_{t}\right)
\end{aligned}
$$

thus

$$
\begin{aligned}
& \mathbf{E}\left[\Delta Y_{t} \mid Y_{t}=y\right]=\mu(y) h+o(h) \\
& \mathbf{E}\left[\left(\Delta Y_{t}\right)^{2} \mid Y_{t}=y\right]=\sigma^{2}(y) h+o(h)
\end{aligned}
$$

A diffusion process $\left(Y_{t}\right)$ is a continuous Markov process satisfying as $h \downarrow 0$
(i) $\mathbf{P}\left(\left|\Delta Y_{t}\right|>\varepsilon \mid Y_{t}=y\right)=o(h)$;
(ii) $\mathbf{E}\left(\Delta_{\varepsilon} Y_{t} \mid Y_{t}=y\right)=\mu(y) h+o(h)$;
(iii) $\mathbf{E}\left(\left(\Delta_{\varepsilon} Y_{t}\right)^{2} \mid Y_{t}=y\right)=\sigma^{2}(y) h+o(h)$,
where $\Delta Y_{t}=Y_{t+h}-Y_{t}$, and

$$
\Delta_{\varepsilon} Y_{t}= \begin{cases}\Delta Y_{t}, & \text { if }\left|\Delta Y_{t}\right| \leq \varepsilon \\ 0, & \text { otherwise }\end{cases}
$$

The definition determines the infinitesimal generator of the process. For $f \in C^{2}$

$$
\begin{aligned}
\mathbf{E}_{x} f\left(Y_{t}\right) & =\mathbf{E}_{x}\left[f(x)+\left(Y_{t}-x\right) f^{\prime}(x)+\left(Y_{t}-x\right)^{2} \frac{f^{\prime \prime}(x)}{2}+o\left(\left(Y_{t}-x\right)^{2}\right)\right] \\
& =f(x)+t \mu(x) f^{\prime}(x)+t \sigma^{2}(x) \frac{f^{\prime \prime}(x)}{2}+o(t)
\end{aligned}
$$

Therefore,

$$
(S f)(x)=\lim _{t \rightarrow 0} \frac{1}{t} \mathbf{E}_{x}\left[f\left(Y_{t}\right)-f(x)\right]=\mu(x) f^{\prime}(x)+\sigma^{2}(x) \frac{f^{\prime \prime}(x)}{2}
$$

Kolmogorov backward equation is

$$
\frac{\partial}{\partial t} p_{t}(y \mid x)=\mu(x) \frac{\partial}{\partial x} p_{t}(y \mid x)+\frac{\sigma^{2}(x)}{2} \frac{\partial^{2}}{\partial x^{2}} p_{t}(y \mid x)
$$

For the forward equation we need the adjoint of S. This can be determined as for the SBM. Let $\rho_{t}(y \mid x)$ denote the density of the process, i.e. $p_{t}(\mathrm{~d} y \mid x)=\rho_{t}(y \mid x) \mathrm{d} y$. Let $\mu(\mathrm{d} y)=g(y) \mathrm{d} y$. If f has compact support then in the integration by parts formula the increment disappears and we get

$$
\begin{aligned}
\int(S f)(y) g(y) \mathrm{d} y & =\int\left[\mu(y) f^{\prime}(y)+\frac{\sigma^{2}(y)}{2} f^{\prime \prime}(y)\right] g(y) \mathrm{d} y \\
& =\int f(y)\left[-\frac{\mathrm{d}}{\mathrm{~d} y}(\mu(y) g(y))+\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} y^{2}}\left(\sigma^{2}(y) g(y)\right)\right] \mathrm{d} y
\end{aligned}
$$

Thus

$$
\left(S^{*} p_{t}(\cdot \mid x)\right)(\mathrm{d} y)=\left[-\frac{\mathrm{d}}{\mathrm{~d} y}\left(\mu(y) \rho_{t}(y \mid x)\right)+\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} y^{2}}\left(\sigma^{2}(y) \rho_{t}(y \mid x)\right)\right] \mathrm{d} y
$$

and the forward equation is

$$
\frac{\partial}{\partial t} \rho_{t}(y \mid x)=-\frac{\partial}{\partial y}\left(\mu(y) \rho_{t}(y \mid x)\right)+\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}\left(\sigma^{2}(y) \rho_{t}(y \mid x)\right)
$$

Example 6.8 (Ornstein-Uhlenbeck process). Consider the Langevin equation

$$
\mathrm{d} Y_{t}=-\mu Y_{t} \mathrm{~d} t+\sigma \mathrm{d} W_{t}
$$

where $\mu>0, \sigma>0$, and Y_{0} is independent of $\sigma\left(W_{s}: s \geq 0\right)$.
We spell out the Kolmogorov equations. The backward is

$$
\frac{\partial}{\partial t} \rho_{t}(y \mid x)=-\mu x \frac{\partial}{\partial x} \rho_{t}(y \mid x)+\frac{\sigma^{2}}{2} \frac{\partial^{2}}{\partial x^{2}} \rho_{t}(y \mid x)
$$

which is called Fokker-Planck equation. The forward is

$$
\frac{\partial}{\partial t} \rho_{t}(y \mid x)=-\frac{\partial}{\partial y}\left(-\mu y \rho_{t}(y \mid x)\right)+\frac{\sigma^{2}}{2} \frac{\partial^{2}}{\partial y^{2}} \rho_{t}(y \mid x)
$$

The solution to the Kolmogorov equations is given by the transition density

$$
\rho_{t}(y \mid x)=\sqrt{\frac{\mu}{\pi \sigma^{2}\left(1-e^{-2 \mu t}\right)}} \exp \left\{-\frac{\mu\left(y-e^{-\mu t} x\right)^{2}}{\sigma^{2}\left(1-e^{-2 \mu t}\right)}\right\} .
$$

It is important to emphasize that in general explicit formulas for the transition densities cannot be obtained. For simulation results the Kolmogorov equations are important, because solutions can be approximated numerically.

References

[1] Leo Breiman. Probability. Addison-Wesley Publishing Company, Reading, Mass.-London-Don Mills, Ont., 1968.
[2] Sándor Csörgő. Fejezetek a valószínűségelméletből. Polygon, 2010.
[3] Rick Durrett. Probability: theory and examples, volume 31 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
[4] Ioannis Karatzas and Steven E. Shreve. Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.

