$$
\begin{aligned}
& \text { simple symin. VVV. } \\
& \text { daubs chain : } X_{0}, X_{1}, X_{21} \ldots\left(X_{n}\right)_{n \rightarrow N} \\
& P\left(X_{n+1} \sim A\left(X_{0}=x_{01}, \ldots, X_{n+1}=x_{n-1}, X_{n}=x_{n}\right)=\right. \\
& \text { Summarizing } \\
& \lim _{n \rightarrow \infty} \mathbf{P}\left(\max _{k \leq n} S_{k} \leq \sqrt{n} \sigma x\right)=2 \Phi(x)-1 . \\
& \begin{array}{l}
=P\left(X_{n+1} \in A \cdot X_{n}=x_{n}\right) \\
=x_{n+1}
\end{array}
\end{aligned}
$$

3.4 Markov property

Assume that we have a $\operatorname{SBM}\left(W_{t}\right)$ and we know everything up to time s. Conditioned on that information, what is the distribution of $W_{t}, t>s$?

Formally, $\left(W_{t}, \mathcal{F}_{t}\right)$ is a SBM, and we are interested in the conditional probabilities

$$
\mathbf{P}\left(W_{t} \in A \mid \mathcal{F}_{s}\right)
$$

Since $W_{t}=W_{s}+W_{t}-W_{s}$, where W_{s} is \mathcal{F}_{s}-measurable and $W_{t}-W_{s}$ is independent of \mathcal{F}_{s}, we obtain Marla prop. planting here

$$
\mathbf{P}\left(W_{t} \in A \mid \mathcal{F}_{s}\right) \stackrel{\neq}{=} \mathbf{P}\left(W_{t} \in A \mid W_{s}\right)=\mathbf{P}_{W_{s}}\left(W_{t-s} \in A\right),
$$

where $\mathbf{P}_{x}\left(W_{u} \in A\right)=\mathbf{P}\left(W_{u} \in A \mid W_{0}=x\right)$, that is under $\mathbf{P}_{x} W$ is a SBM starting at x. That is knowing the whole past up to s gives no more information than knowing only W_{s}. This is the Markov property.

To make the previous argument formal we need the following.
Exercise 23. Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space, $\mathcal{G} \subset \mathcal{A}$ a sub- σ-algebra, X, Y random variables such that X is independent of \mathcal{G} and Y is \mathcal{G}-measurable. Then

$$
\mathbf{P}(X+Y \in A \mid \mathcal{G})=\mathbf{P}(X+Y \in A \mid Y) \quad \mathbf{P}-\text { a.s. }
$$

and

$$
\mathbf{P}(X+Y \in A \mid Y=y)=\mathbf{P}(X+y \in A) \quad \mathbf{P} Y^{-1}-\text { a.s. }
$$

For the latter note that for some $\sigma(Y) / \mathcal{B}(\mathbb{R})$-measurable h

$$
\mathbf{P}(X+Y \in A \mid Y)=h(Y) .
$$

So the latter statement claims that $h(y)=\mathbf{P}(X+y \in A)$ a.s. with respect to the induced measure $\mathbf{P} Y^{-1}$.

A (d-dimensional) adapted process $\left(X_{t}\right)$ is Markov process with initial distribution μ if
(i) $\mathbf{P}\left(X_{0} \in A\right)=\mu(A)$;
(ii) $\mathbf{P}\left(X_{t+s} \in A \mid \mathcal{F}_{s}\right)=\mathbf{P}\left(X_{t+s} \in A \mid X_{s}\right)$, for all A and $t, s>0$.

$$
\begin{aligned}
& \text { in } \\
& \text { inforination } \\
& \text { up to s }
\end{aligned}
$$

Sometimes it is more convenient to work with various initial distributions. A Markov family is an adapted process $\left(X_{t}\right)$ together with a family of probability measures $\left(\mathbf{P}_{x}\right)$ such that
(i) $\mathbf{P}_{x}\left(X_{0}=x\right)=1$;
(ii) $\mathbf{P}_{x}\left(X_{t+s} \in A \mid \mathcal{F}_{s}\right)=\mathbf{P}_{x}\left(X_{t+s} \in A \mid X_{s}\right)$;
(iii) $\mathbf{P}_{x}\left(X_{t+s} \in A \mid X_{s}=\underline{y}\right)=\mathbf{P}_{\underline{y}}\left(X_{t} \in A\right) \mathbf{P}_{x} X_{s}^{-1}$-a.s.

For a given $\omega \in \Omega$ denote \vec{X}_{s++}. the function X_{s+t}, that is we shift the path by s. The property in the definition of Markov process easily extends to path.
Proposition 9. For a Markov family for any $F \in \mathcal{B}\left(\mathbb{R}^{[0, \infty)}\right)$
(i) $\mathbf{P}_{x}\left(X_{s+} \cdot \in F \mid \mathcal{F}_{s}\right)=\mathbf{P}_{x}\left(X_{s+.} \in F \mid X_{s}\right)$;
(ii) $\mathbf{P}_{x}\left(X_{s+} \in F \mid X_{s}=y\right)=\mathbf{P}_{y}(X . \in F) \mathbf{P}_{x} X_{s}^{-1}-a . s$.

$$
X_{t}^{\prime}=X_{1+t}
$$

The proof goes by the usual technical machinery. The sets F satisfying the above properties forms a λ-system and it contains the finite dimensional cylinders.

Markov property states that the process restarts at fixed times t. Sometimes we need to restart the process at stopping times τ. This property is the strong Markov property.

A (d-dimensional) adapted process $\left(X_{t}\right)$ is strong Markov process with initial distribution μ if
(i) $\mathbf{P}\left(X_{0} \in A\right)=\mu(A)$;
(ii) $\mathbf{P}\left(X_{\tau+t} \in A \mid \mathcal{F}_{\tau}\right)=\mathbf{P}\left(X_{t} \in A \mid X_{\tau}^{\stackrel{1}{v}}\right)$, for all A and stopping time τ.

Similarly, a strong Markov family is an adapted process ($\left.X_{t}\right)$ together with a family of probability measures \mathbf{P}_{x} such that
(i) $\mathbf{P}_{x}\left(X_{0}=x\right)=1$;
(ii) $\mathbf{P}_{x}\left(X_{\tau+t} \in A \mid \mathcal{F}_{\tau}\right)=\mathbf{P}_{x}\left(X_{\tau+t} \in A \mid X_{\tau}\right)$ for all A and stopping time τ;
(iii) $\mathbf{P}_{x}\left(X_{\tau+t} \in A \mid X_{\tau}=y\right)=\mathbf{P}_{y}\left(X_{t} \in A\right) \mathbf{P}_{x} X_{\tau}^{-1}$-a.s. for all A and stopping time τ;
Proposition 10. For a strong Markov family for any $F \in \mathcal{B}\left((\mathbb{R})^{[0, \infty)}\right)$
(i) $\mathbf{P}_{x}\left(X_{\tau+} \in F \mid \mathcal{F}_{\tau}\right)=\mathbf{P}_{x}\left(X_{\tau+} \in F \mid X_{\tau}\right)$;
(ii) $\mathbf{P}_{x}\left(X_{\tau+} \in F \mid X_{\tau}=x\right)=\mathbf{P}_{x}(X . \in F) \mathbf{P}_{x} X_{\tau}^{-1}$-ass.

We proved that SBM is Markov. In fact, it is strong Markov.
Theorem 20. SBM is a strong Markov process.

$W_{t}(\omega)$
$W_{t} \quad W(t, \omega)$

3.5 Path properties

Theorem 21. Almost surely the sample path of a SBM is not monotone in any interval.

Proof. Let

$$
A=\{\omega: W(\cdot, \omega) \text { is monotone on some interval }\} .
$$

Since this is a countable union it is enough to prove that each event has probability zero. To ease notation choose $r=0, s=1$, and put

$$
B=\{\omega: W(\cdot, \omega) \text { is nondecreasing on }[0,1]\} .
$$

We have $\left(0, \frac{1}{n}\right) \sim W\left(\frac{i+1}{n}\right)-W\left(\frac{i}{n}\right) \geqslant 0$
$B=\cap_{n=1}^{\infty}\{\omega: W((i+1) / n, \omega) \geq W(i / n, \omega), i=0,1, \ldots, n-1\}=: \cap_{n=1}^{\infty} B_{n}$.
By the independent increment property

$$
\mathbf{P}\left(B_{n}\right)=\prod_{i=0}^{n-1} \mathbf{P}(W((i+1) / n) \geq W(i / n))=2^{-n}
$$

which implies that $\mathbf{P}(B)=0$ as claimed.
For any interval $[a, b]$ let $\Pi_{n}=\left\{a=t_{0}<t_{1}<\ldots<t_{n}=b\right\}$ a partition with mesh

$$
\left\|\Pi_{n}\right\|=\max \left\{t_{i}-t_{i-1}: i=1,2, \ldots, n\right\} .
$$

We determine the quadratic variation of the Wiener process.
Theorem 22. Let $\Pi_{n}=\left\{a=t_{0}<t_{1}<\ldots<t_{n}=b\right\}, n=1,2, \ldots, a$ sequence of partitions of $[a, b]$ such that $\left\|\Pi_{n}\right\| \rightarrow 0$. Then

$$
\mid \quad \sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2} \xrightarrow{L^{2}} b-a .
$$

$$
\begin{aligned}
& \text { T } \\
& \text { random }
\end{aligned}
$$

$$
\begin{aligned}
& X_{n} \xrightarrow{\Omega} X \quad(n \rightarrow \infty) \\
& x_{u} \in L^{2}, E\left[\left(x_{u}-x\right)^{2}\right] \rightarrow 0 \text {. } \\
& \text { - }\left\|\pi_{n}\right\| \leq 0 \\
& t_{i}=\frac{i}{n} \\
& \text { C'尹f sumoth } \quad[0,1] \quad 0=t_{0}<t_{1}<\ldots<t_{n}=1 \\
& \sum_{i=0}^{n-1}(\underbrace{\left.f\left(t_{i+1}\right)-f\left(t_{i}\right)\right)^{2}}_{f^{\prime}\left(t_{i}\right) \cdot\left(t_{i+1}-t_{i}\right)} \leqq C \cdot \sum_{i=0}^{n-1}\left(t_{i+1}-t_{i}\right)^{2} \\
& f(t+h)-f(t) \underset{h \text { small }}{\sim} f^{\prime}(t) h \\
& \leqq C \cdot \underbrace{\sum\left(t_{i+1}-t_{i}\right)}_{1} \cdot \underbrace{\max \left(\left.t_{i+1}\right|_{1}\right)}_{=\| \|_{n} \|} \rightarrow 0 .
\end{aligned}
$$

ingarios: $W\left(t_{i+1}\right)-W\left(t_{i}\right) \sim\left(t_{i+1}-t_{i}\right)^{1 / 2}$

$$
\left.{\underset{i}{i}}^{\left(U_{t_{i}}-W_{t_{i-1}}\right.}\right)^{2} \rightarrow L^{2}
$$

Proof. Assume that $[a, b]=[0,1]$. We have to show that

$$
\mathbf{E}\left[\left(\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}-1\right)^{2}\right] \rightarrow 0
$$

Using $1=\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)$ we have

$$
\begin{aligned}
& \mathbf{E}\left(\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}-1\right)^{2}= \\
& \sum_{i, j=1}^{n} \mathbf{E}\left(\left[\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right]\left[\left(W_{t_{j}}-W_{t_{j-1}}\right)^{2}-\left(t_{j}-t_{j-1}\right)\right]\right) .
\end{aligned}
$$

(6) $\{$ eq:Wquad-1\}

If $i \neq j$ then $W_{t_{i}}-W_{t_{i-1}}$ and $W_{t_{j}}-W_{t_{j-1}}$ are independent. Therefore

$$
\mathbf{E}\left[\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right]=0
$$

so the mixed products in (6) are 0 . Using that $W_{t}-W_{s} \sim N(0, t-s)$ we obtain

$$
\begin{aligned}
\mathbf{E}\left(\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}-1\right)^{2} & =\sum_{i=1}^{n} \mathbf{E}\left[\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right]^{2} \\
& =\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{2} \mathbf{E}\left[\left(\frac{W_{t_{i}}-W_{t_{i-1}}}{\sqrt{t_{i}-t_{i-1}}}\right)^{2}-1\right]^{2} \\
& =\mathbf{E}\left(Z^{2}-1\right)^{2} \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{2},
\end{aligned}
$$

where $Z \sim N(0,1)$. Since

$$
\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{2} \leq\left\|\Pi_{n}\right\| \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)=\left\|\Pi_{n}\right\| \rightarrow 0
$$

the proof is ready.
Under some extra conditions a.s. convergence hold. Recall that in genaral neither L^{2} convergence nor ass. convergence implies the other. Moreover, L^{2} convergence implies a.s. convergence on a subsequence. However, if $\sum_{n=1}^{\infty}\left\|\Pi_{n}\right\|<\infty$ then the Borel-Cantelli lemma implies a.s. convergence.

$$
\begin{aligned}
& \left(\sum_{i-1}\left[\left(w_{t_{i}}-w_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right]\right)^{2}= \\
= & \sum_{1}\left(\left(w_{t_{i}}-w_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right) \cdot\left(\left(w_{t_{j}}-w_{t_{j-1}}\right)^{2}-\left(t_{j}-t_{j-1}\right)\right. \\
& E\left[\left(\left(W_{t_{i}}-w_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right)\left(\left(w_{t_{j}}-w_{t_{j-1}}\right)^{2}-\left(t_{\gamma}-t_{j-1}\right)\right]\right.
\end{aligned}
$$

$i<j$ independence

$$
\begin{aligned}
& \stackrel{\downarrow}{=} E\left[\left(\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right)\right] E\left[\left(W_{t i}-w_{t_{p-1}}\right)^{2}-\left(t_{i}-t_{j-}\right)\right] \\
& w_{t_{i}}-w_{t_{i-1}} \sim N\left(O, t_{i}-t_{i-1}\right) \\
& E(1=\sum_{i=1}^{n} E\left[\left(\left(w_{t_{i}}-w_{t_{i-1}}\right)^{2}-\left(t_{i}-t_{1-1}\right)\right)^{2}\right]+\underbrace{\text { mixed products }}_{=0} \\
& \underbrace{\left.E\left(\left(w_{n}-w_{i-1}\right)^{2}-\left(t_{i}-t_{i-1}\right)\right)^{2}\right]=\left(t_{i}-t_{i-1}\right)^{2} \cdot E\left[\left(Z^{2}-1\right)^{2}\right]}_{\left(t_{i}-t_{i-1}\right) \cdot Z^{2}} \\
& \sum \ldots=\sum_{i=1}^{n_{1}}\left(t_{i}-t_{-1}\right)^{2} \cdot E\left[\left(z^{2}-1\right)^{2}\right] \rightarrow 0 .
\end{aligned}
$$

paring proof

$$
\sum_{i=1}^{2}\left(w_{t_{i}}-w_{t_{i-1}}\right)^{2} \xrightarrow{\|\pi\|_{n} \rightarrow 0} b-a
$$

$$
\overline{L^{2} \text { carr. } \Rightarrow \text { ass cans }}
$$

$+B_{0} \mathscr{C l}^{2}$ Exercise 24．Let $\Pi_{n}=\left\{a=t_{0}<t_{1}<\ldots<t_{n}=b\right\}, n=1,2, \ldots$ ，a sequence of partitions of $[a, b]$ such that $\sum_{n=1}^{\infty}\left\|\Pi_{n}\right\|<\infty$ ．Then a．s．

$$
\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2} \longrightarrow b-a
$$

Corollary 6．Let $\left(\Pi_{n}\right)$ be a sequence of partitions of the interval $[a, b]$ such that $\sum_{n=1}^{\infty}\left\|\Pi_{n}\right\|<\infty$ ．Then $\sum_{i=1}^{n}\left|W_{t_{i}}-W_{t_{i-1}}\right| \rightarrow \infty$ a．s．
Proof．Clearly，

bー』 を＜$\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2} \leq \underbrace{\sup _{1 \leq i \leq n}\left|W_{t_{i}}-W_{t_{i-1}}\right|} \sum_{i=1}^{n}\left|W_{t_{i}}-W_{t_{i-1}}\right|$ ．
The left－hand side converges to $b-a$ ass． $\overrightarrow{\text { or }}$ a subsequence．On the right－ hand side the first factor goes to 0 ass．by the continuity of the Wiener pro－ cess．（Recall that continuous function is uniformly continuous on compacts．） Therefore the second term necessarily tends to infinity．

We proved that the sample path of W are Hölder continuous with expo－ nent $<1 / 2$ ，and that the sample path are not of bounded variation．These results suggest that the trajectories are quite irregular．In fact，they are a．s．nowhere differentiable．

Theorem 23 （Paley，Wiener，Zygmund（1933））．Almost surely the path $W(\cdot, \omega)$ is nowhere differentiable．

Proof．For $n, k \in \mathbb{N}$ consider

$$
W(t) \quad W(t, w)
$$

$$
\begin{aligned}
X_{n k}=\max \{ & \left|W\left(k 2^{-n}\right)-W\left((k-1) 2^{-n}\right)\right|,\left|W\left((k+1) 2^{-n}\right)-W\left(k 2^{-n}\right)\right|, \\
& \left.\left|W\left((k+2) 2^{-n}\right)-W\left((k+1) 2^{-n}\right)\right|\right\} .
\end{aligned}
$$

Using the independent increment property and the scale invariance

$$
\underbrace{\mathbf{P}\left(X_{n k} \leq \varepsilon\right)}=\left(\mathbf{P}\left(\left|W\left(1 / 2^{n}\right)\right| \leq \varepsilon\right)\right)^{3} \leq \underbrace{\left(2 \cdot 2^{n / 2} \varepsilon\right)^{3}}
$$

Putting $Y_{n}=\min _{1 \leq k \leq n 2^{n}} X_{n k}$ we obtained

$$
\left.\left.P\left(y_{n}^{\varepsilon} \leq \varepsilon\right)\right)^{3} \leq\left(2 \cdot 2^{n / 2} \varepsilon\right)^{0} \cdot P\left(U X_{n \varepsilon} \leq \varepsilon\right\}\right) \leqq
$$

$$
\mathbf{P}\left(Y_{n} \leq \varepsilon\right) \leq \sum_{k=1}^{n 2^{n}} \mathbf{P}\left(X_{n k} \leq \varepsilon\right)<n 2^{n}\left(2 \cdot 2^{n / 2} \varepsilon\right)^{3}
$$

$$
\begin{aligned}
& P\left(N\left(\left.\frac{1}{2} \right\rvert\,=\varepsilon\right)=P\left(\frac{1}{2 n}|z|=\varepsilon\right)\right. \\
& =T\left(\mid z \| \leqq \varepsilon \cdot 2^{n^{\prime} / 2}\right)=\int_{-\varepsilon z^{2 / 2}}^{\varepsilon z^{\prime / c}} \rho^{\prime} \mid d y \leqq 2 \cdot \varepsilon 2^{\mu_{2}}
\end{aligned}
$$

for ang $[a, b] \quad \sum_{i}\left|W_{t_{i}}-N_{t_{i-1}}\right| \rightarrow \infty$
$\prod_{\mu} M_{r}$ not of bounded naviadion
[Lebesgue-Stiddjls integrals:
$\mu \leftrightarrow \rightarrow$
$\int \ldots d 7$ monotor nondecreaing

$$
\int \ldots d(F-G) \quad F_{1} G \text { monolone usidec. }
$$

It is y bounded a anation: $F=7-G$

We can define LS untegrals with resped to functions of bounded vamadian.
\Rightarrow Cannol define $\int \ldots d l_{1}$ problwise $\|_{6}$

depends on w

$$
A=\{\omega: W(\cdot, \omega) \text { is somewhere differentiable }\} .
$$

If $\omega \in A$ then there exist $t=\underline{t(\omega)}$ such that $W^{\prime}(t, \omega)=D(\omega) \in \mathbb{R}$. Thus

$$
\lim _{s \rightarrow t}\left|\frac{W(s, \omega)-W(t, \omega)}{s-t}\right|=|D(\omega)|<\infty .
$$

Therefore there exists $\delta \underline{\omega})=\delta(\omega, t)>0$ such that for $|s-t|<\delta(\omega)$

$$
|W(s, \omega)-W(t, \omega)| \leq(|D(\omega)|+1)|s-t| .
$$

Let $n_{0}(\omega)=n_{0}(\omega, t)$ so large that

$$
2^{-n_{0}(\omega)}<\frac{\delta(\omega)}{2}, \quad \underbrace{n_{0}(\omega) \geq \max \{4(|D(\omega)|}+1), t+1\} .
$$

Fix $n \geq n_{0}(\omega)$ and let

$$
\frac{k(\omega)}{2^{n}} \leq t<\frac{k(\omega)+1}{2^{n}}
$$

Then

$$
\max \left\{\left|t-\frac{j}{2^{n}}\right|: j=k(\omega)-1, k(\omega), k(\omega)+1, k(\omega)+2\right\} \leq \frac{\frac{2}{2^{n}}}{2^{n}}<\frac{2^{n}}{2^{n}} t(\omega),
$$

thus

$$
\left|w\left(\frac{\dot{f}}{2^{n}}\right)-w\left(\frac{f-1}{2^{n}}\right)\right| \leftarrow \operatorname{def} \text { of } X
$$

$\left[\left.X_{n, k(\omega)}(\omega) \leq \max \left\{\left|W\left(\frac{j}{2^{n}}, \omega\right)-\underset{\sim}{W(t, \omega)}\right|+\left|W\left(\frac{j-1}{2^{n}}, \omega\right)-W(t, \omega)\right|\right\}^{2 n} \right\rvert\,\right.$

$$
\leq 2(|D(\omega)|+1) \frac{2}{2^{n}}=4(|D(\omega)|+1) \frac{1}{2^{n}} \leq \frac{n}{2^{n}}
$$

where the max is taken on the set $j \in\{k(\omega), k(\omega)+1, k(\omega)+2\}$.
Since $k(\omega) \leq n 2^{n}$, we obtained

$$
-\quad Y_{n}(\omega)=\min _{1 \leq k \leq n 2^{n}} X_{n k}(\omega) \leq n / 2^{n} .
$$

Thus $\omega \in A$ implies $\omega \in A_{n}=\left\{\omega: Y_{n}(\omega) \leq n / 2^{n}\right\}$ for all $n \geq n_{0}(\omega)$ so

$$
\begin{aligned}
\omega \in \liminf _{n \rightarrow \infty} A_{n} & =\cup_{n=1}^{\infty} \cap_{m=n}^{\infty} A_{m} \\
& =\left\{\omega: \omega \in A_{k} \text { except finitely many } k\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& P\left(Y_{n} \leqq \varepsilon\right) \leqq n \cdot 2^{n} \cdot\left(2 \cdot 2^{n / 2} \cdot \varepsilon\right)^{3}=n 2^{n}\left(2 \frac{n}{2^{n} \varepsilon}\right)^{3} \\
& \varepsilon=\frac{n}{2^{n}} \quad=8 \cdot n^{4} \cdot 2^{-\frac{n}{2}}
\end{aligned}
$$

That is $A \subset B:=\liminf _{n \rightarrow \infty} A_{n}$. Using the Fatou lemma

$$
\begin{aligned}
\mathbf{P}(B) & \leq \liminf _{n \rightarrow \infty} \mathbf{P}\left(A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mathbf{P}\left(Y_{n} \leq \frac{n}{2^{n}}\right) \\
& \leq \liminf _{n \rightarrow \infty} n 2^{n}\left(2 \cdot 2^{n / 2} \frac{n}{2^{n}}\right)^{3}=0
\end{aligned}
$$

So $A \subset B$ and $\mathbf{P}(B)=0$ as claimed.
Note that we don't claim that $A \in \mathcal{A}$. Now we see the usefulness of the usual conditions. The usual conditions include that \mathcal{F}_{0} contains the null-sets of \mathcal{A}.

Let

$$
Z(\omega)=\{t: W(t, \omega)=0\}
$$

denote the set of zeros. Let λ be the Lebesgue measure. By Fubini

$$
\begin{aligned}
\mathbf{E} \lambda(Z) & =\int_{\Omega} \lambda(Z(\omega)) \mathbf{P}(\mathrm{d} \omega) \\
& =\int_{\Omega} \int_{\mathbb{R}} \mathbf{I}(W(t, \omega)=0) \mathrm{d} t \mathbf{P}(\mathrm{~d} \omega) \\
& =\int_{\mathbb{R}} \mathbf{P}(W(t, \omega)=0) \mathrm{d} t=0
\end{aligned}
$$

Since $\lambda(Z) \geq 0$ this implies $\lambda(Z)=0$ ass.
Theorem of iterated
Theorem 24 (Khinchin, 1933). For almost every ω

$$
\left[\limsup \frac{W_{t}(\omega)}{\sqrt{2 t \log \log 1 / t}}=1\right] \quad \text { and } \quad \liminf _{t \downarrow 0} \frac{W_{t}(\omega)}{\sqrt{2 t \log \log 1 / t}}=-1
$$

and

$$
\limsup _{t \rightarrow \infty} \frac{W_{t}(\omega)}{\sqrt{2 t \log \log t}}=1 \quad \text { and } \quad \liminf _{t \rightarrow \infty} \frac{W_{t}(\omega)}{\sqrt{2 t \log \log t}}=-1
$$

Proof. By symmetry it is enough to prove the limsup results, and since $\left(t W_{1 / t}\right)_{t}$
Let s SBM it is enough to prove at 0.

$$
X_{t}=\exp \left\{\lambda W_{t}-\frac{\lambda^{2}}{2} t\right\}
$$

This is a martingale, therefore by the maximal inequality

$$
\lim \cdots=-1
$$

Put $h(t)=\sqrt{2 t \log \log (1 / t)}$. Fix $\theta, \delta \in(0,1)$. Choose $\lambda=(1+\delta) \theta^{-n} h\left(\theta^{n}\right)$, $\beta=h\left(\theta^{n}\right) / 2$, and $t=\theta^{n}$. Then

$$
\mathbf{P}\left(\max _{s \in[0, t]}\left(W_{s}-\frac{\lambda}{2} s\right) \geq \beta\right) \leq e^{-\lambda \beta}=(n \log 1 / \theta)^{-(1+\delta)} \cdot=\operatorname{con} t \cdot n^{-(\Lambda+\delta)}
$$

This is summable, therefore by the Borel-Cantelli lemma there exists $N(\omega)$, and $\Omega_{\delta, \theta}$ with $\mathbf{P}\left(\Omega_{\delta, \theta}\right)=1$ such that

$$
\max _{s \in\left[0, \theta^{n}\right]}\left(W_{s}-\frac{1+\delta}{2} s \theta^{-n} h\left(\theta^{n}\right)\right) \leq \frac{1}{2} h\left(\theta^{n}\right) \text { for } n \geq N(\omega) .
$$

Thus for $t \in\left(\theta^{n+1}, \theta^{n}\right]$

$$
\begin{aligned}
& W_{t}(\omega) \leq \max _{s \in\left[0, \theta^{n}\right]} W_{s}(\omega) \leq(1+\delta / 2) \sqrt{h\left(\theta^{n}\right)} \leq(1+\delta / 2) \theta^{-1 / 2 h(t)} \\
& \text { afore for } n \geq N(\omega) \\
& \sup _{t \in\left(\theta^{n+1}, \theta^{n}\right]} \frac{W_{t}(\omega)}{h(t)} \leq(1+\delta / 2) \theta^{-1 / 2},
\end{aligned} \quad\left[\begin{array}{l}
\operatorname{h}\left(\theta^{n}\right) \leq \theta^{-\frac{1}{2}} \ell(t) \\
\left.i \rho t \theta^{n+1}, \theta^{n}\right]
\end{array}\right.
$$

which implies as $n \rightarrow \infty$

$$
\limsup _{t \downarrow 0} \frac{W_{t}(\omega)}{h(t)} \leq(1+\delta / 2) \theta^{-1 / 2}
$$

Letting $\delta \downarrow 0$ and $\theta \uparrow 1$ through rationals we obtain

$$
\begin{equation*}
\overbrace{\limsup _{t \downarrow 0} \frac{W_{t}(\omega)}{h(t)} \leq 1}^{]} \tag{7}
\end{equation*}
$$

For the opposite direction we need the second Borel-Cantelli lemma, which requires independence. Fix $\theta \in(0,1)$ and let

$$
A_{n}=\left\{W_{\theta^{n}}-W_{\theta^{n+1}} \geq \sqrt{1-\theta} h\left(\theta^{n}\right)\right\}
$$

$$
\begin{aligned}
& \text { Putting } x_{n}=\sqrt{2 \log n+2 \log \log 1 / \theta}
\end{aligned}
$$

where we use Lemma 4. The lower bound is a divergent series in n, theref
the event A_{n} occur infinitely often. On the other hand by (7) (for $-W_{t}$)

$$
-W_{\theta^{n+1}} \leq 2 h\left(\theta^{n+1}\right) \leq 4 \theta^{1 / 2} h\left(\theta^{n}\right)
$$

for all $n \geq N(\omega)$. Therefore whenever A_{n} occur $\mathcal{\sim}$ cal def.

$$
\frac{W_{\theta^{n}}(\omega)}{h\left(\theta^{n}\right)} \geq \sqrt{1-\theta}-4 \sqrt{\theta}
$$

Letting $n \rightarrow \infty$ we have

$$
\limsup _{t \downarrow 0} \frac{W_{t}}{h(t)} \geq \sqrt{1-\theta}-4 \sqrt{\theta}
$$

and the result follows by letting $\theta \downarrow 0$.
Exercise 25. Show that if W is SBM then for any λ

$$
X_{t}=\exp \left\{\lambda W_{t}-\frac{\lambda^{2}}{2} t\right\}
$$

is a martingale.

4 Stochastic integral

Here we define the integration with respect to the Brownian motion. Note that SBM is not of bounded variation, therefore we cannot define the integral pathwise. This is the major difficulty in the theory.

4.1 Integration of simple processes

In what follows we work on $[0, T]$, for $T<\infty$. Let $\left(W_{t}, \mathcal{F}_{t}\right)$ be SBM.
The process $\left(X_{t}\right)$ is a simple process, if

$$
X_{t}(\omega)=\xi_{0}(\omega) \mathbf{I}_{\{0\}}(t)+\sum_{i=1}^{n-1} \xi_{i}(\omega) \mathbf{I}_{\left(t_{i}, t_{i+1}\right]}(t)
$$

where $0=t_{0}<t_{1}<\ldots<t_{n}=T$ is a partition of $[0, T]$, and ξ_{i} is $\mathcal{F}_{t_{i}}-$ measurable.

That is $\left(X_{t}(\omega)\right)$ is a step function for each $\omega \in \Omega$, where the step sizes are random. Note that ξ_{i} is measurable with respect to the σ-algebra corresponding to the left end point of the interval.

