
Summarizing

lim
n→∞

P

�
max
k≤n

Sk ≤
√
nσx

�
= 2Φ(x)− 1.

3.4 Markov property

Assume that we have a SBM (Wt) and we know everything up to time s.
Conditioned on that information, what is the distribution of Wt, t > s?

Formally, (Wt,Ft) is a SBM, and we are interested in the conditional
probabilities

P(Wt ∈ A|Fs).

Since Wt = Ws + Wt − Ws, where Ws is Fs-measurable and Wt − Ws is
independent of Fs, we obtain

P(Wt ∈ A|Fs) = P(Wt ∈ A|Ws) = PWs(Wt−s ∈ A),

where Px(Wu ∈ A) = P(Wu ∈ A|W0 = x), that is under Px W is a SBM
starting at x. That is knowing the whole past up to s gives no more infor-
mation than knowing only Ws. This is the Markov property.

To make the previous argument formal we need the following.

Exercise 23. Let (Ω,A,P) be a probability space, G ⊂ A a sub-σ-algebra,
X, Y random variables such that X is independent of G and Y is G-measurable.
Then

P(X + Y ∈ A|G) = P(X + Y ∈ A|Y ) P− a.s.

and
P(X + Y ∈ A|Y = y) = P(X + y ∈ A) PY −1 − a.s.

For the latter note that for some σ(Y )/B(R)-measurable h

P(X + Y ∈ A|Y ) = h(Y ).

So the latter statement claims that h(y) = P(X + y ∈ A) a.s. with respect
to the induced measure PY −1.

A (d-dimensional) adapted process (Xt) is Markov process with initial
distribution µ if

(i) P(X0 ∈ A) = µ(A);
(ii) P(Xt+s ∈ A|Fs) = P(Xt+s ∈ A|Xs), for all A and t, s > 0.
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Sometimes it is more convenient to work with various initial distribu-
tions. A Markov family is an adapted process (Xt) together with a family of
probability measures (Px) such that

(i) Px(X0 = x) = 1;
(ii) Px(Xt+s ∈ A|Fs) = Px(Xt+s ∈ A|Xs);
(iii) Px(Xt+s ∈ A|Xs = y) = Py(Xt ∈ A) PxX

−1
s -a.s.

For a given ω ∈ Ω denote Xs+· the function Xs+t, that is we shift the
path by s. The property in the definition of Markov process easily extends
to path.

Proposition 9. For a Markov family for any F ∈ B(R[0,∞))

(i) Px(Xs+· ∈ F |Fs) = Px(Xs+· ∈ F |Xs);
(ii) Px(Xs+· ∈ F |Xs = y) = Py(X· ∈ F ) PxX

−1
s -a.s.

The proof goes by the usual technical machinery. The sets F satisfying
the above properties forms a λ-system and it contains the finite dimensional
cylinders.

Markov property states that the process restarts at fixed times t. Some-
times we need to restart the process at stopping times τ . This property is
the strong Markov property.

A (d-dimensional) adapted process (Xt) is strong Markov process with
initial distribution µ if

(i) P(X0 ∈ A) = µ(A);
(ii) P(Xτ+t ∈ A|Fτ ) = P(Xt ∈ A|Xτ ), for all A and stopping time τ .

Similarly, a strong Markov family is an adapted process (Xt) together with
a family of probability measures Px such that

(i) Px(X0 = x) = 1;
(ii) Px(Xτ+t ∈ A|Fτ ) = Px(Xτ+t ∈ A|Xτ ) for all A and stopping time τ ;
(iii) Px(Xτ+t ∈ A|Xτ = y) = Py(Xt ∈ A) PxX

−1
τ -a.s. for all A and stopping

time τ ;

Proposition 10. For a strong Markov family for any F ∈ B((R)[0,∞))

(i) Px(Xτ+· ∈ F |Fτ ) = Px(Xτ+· ∈ F |Xτ );
(ii) Px(Xτ+· ∈ F |Xτ = x) = Px(X· ∈ F ) PxX

−1
τ -a.s.

We proved that SBM is Markov. In fact, it is strong Markov.
{thm:SBM-strong}

Theorem 20. SBM is a strong Markov process.
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3.5 Path properties

Theorem 21. Almost surely the sample path of a SBM is not monotone in
any interval.

Proof. Let

A = {ω : W (·,ω) is monotone on some interval} .

Clearly
A = ∪r,s∈Q {ω : W (·,ω) is monotone on [r, s]} .

Since this is a countable union it is enough to prove that each event has
probability zero. To ease notation choose r = 0, s = 1, and put

B = {ω : W (·,ω) is nondecreasing on [0, 1]} .

We have

B = ∩∞
n=1 {ω : W ((i+ 1)/n,ω) ≥ W (i/n,ω), i = 0, 1, . . . , n− 1} =: ∩∞

n=1Bn.

By the independent increment property

P(Bn) =
n−1�

i=0

P(W ((i+ 1)/n) ≥ W (i/n)) = 2−n,

which implies that P(B) = 0 as claimed.

For any interval [a, b] let Πn = {a = t0 < t1 < . . . < tn = b} a partition
with mesh

�Πn� = max{ti − ti−1 : i = 1, 2, . . . , n}.
We determine the quadratic variation of the Wiener process.

Theorem 22. Let Πn = {a = t0 < t1 < . . . < tn = b}, n = 1, 2, . . ., a
sequence of partitions of [a, b] such that �Πn� → 0. Then

n�

i=1

(Wti −Wti−1
)2

L2

−→ b− a.
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Proof. Assume that [a, b] = [0, 1]. We have to show that

E

�
n�

i=1

(Wti −Wti−1
)2 − 1

�2

−→ 0.

Using 1 =
�n

i=1(ti − ti−1) we have

E

�
n�

i=1

(Wti −Wti−1
)2 − 1

�2

=

n�

i,j=1

E
��
(Wti −Wti−1

)2 − (ti − ti−1)
� �

(Wtj −Wtj−1
)2 − (tj − tj−1)

��
.

(6) {eq:Wquad-1}

If i �= j then Wti −Wti−1
and Wtj −Wtj−1

are independent. Therefore

E
�
(Wti −Wti−1

)2 − (ti − ti−1)
�
= 0,

so the mixed products in (6) are 0. Using that Wt − Ws ∼ N(0, t − s) we
obtain

E

�
n�

i=1

(Wti −Wti−1
)2 − 1

�2

=
n�

i=1

E
�
(Wti −Wti−1

)2 − (ti − ti−1)
�2

=
n�

i=1

(ti − ti−1)
2E

��
Wti −Wti−1√

ti − ti−1

�2

− 1

�2

= E(Z2 − 1)2
n�

i=1

(ti − ti−1)
2,

where Z ∼ N(0, 1). Since

n�

i=1

(ti − ti−1)
2 ≤ �Πn�

n�

i=1

(ti − ti−1) = �Πn� → 0,

the proof is ready.

Under some extra conditions a.s. convergence hold. Recall that in gen-
eral neither L2 convergence nor a.s. convergence implies the other. More-
over, L2 convergence implies a.s. convergence on a subsequence. However, if�∞

n=1 �Πn� < ∞ then the Borel–Cantelli lemma implies a.s. convergence.
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Exercise 24. Let Πn = {a = t0 < t1 < . . . < tn = b}, n = 1, 2, . . ., a
sequence of partitions of [a, b] such that

�∞
n=1 �Πn� < ∞. Then a.s.

n�

i=1

(Wti −Wti−1
)2−→b− a.

Corollary 6. Let (Πn) be a sequence of partitions of the interval [a, b] such
that

�∞
n=1 �Πn� < ∞. Then

�n
i=1 |Wti −Wti−1

| → ∞ a.s.

Proof. Clearly,

n�

i=1

(Wti −Wti−1
)2 ≤ sup

1≤i≤n
|Wti −Wti−1

|
n�

i=1

|Wti −Wti−1
|.

The left-hand side converges to b − a a.s. on a subsequence. On the right-
hand side the first factor goes to 0 a.s. by the continuity of the Wiener pro-
cess. (Recall that continuous function is uniformly continuous on compacts.)
Therefore the second term necessarily tends to infinity.

We proved that the sample path of W are Hölder continuous with expo-
nent < 1/2, and that the sample path are not of bounded variation. These
results suggest that the trajectories are quite irregular. In fact, they are
a.s. nowhere differentiable.

Theorem 23 (Paley, Wiener, Zygmund (1933)). Almost surely the path
W (·,ω) is nowhere differentiable.

Proof. For n, k ∈ N consider

Xnk = max
� ��W

�
k2−n

�
−W

�
(k − 1)2−n

��� ,
��W

�
(k + 1)2−n

�
−W

�
k2−n

��� ,��W
�
(k + 2)2−n

�
−W

�
(k + 1)2−n

��� �.

Using the independent increment property and the scale invariance

P(Xnk ≤ ε) = (P(|W (1/2n)| ≤ ε))3 ≤
�
2 · 2n/2ε

�3
.

Putting Yn = min1≤ k≤n2n Xnk we obtained

P(Yn ≤ ε) ≤
n2n�

k=1

P(Xnk ≤ ε) < n 2n
�
2 · 2n/2 ε

�3
.
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Introduce the event

A = {ω : W (· ,ω) is somewhere differentiable}.

If ω ∈ A then there exist t = t(ω) such that W �(t,ω) = D(ω) ∈ R. Thus

lim
s→t

����
W (s,ω)−W (t,ω)

s− t

���� = |D(ω)| < ∞ .

Therefore there exists δ(ω) = δ(ω, t) > 0 such that for |s− t| < δ(ω)

|W (s,ω)−W (t,ω)| ≤ (|D(ω)|+ 1)|s− t| .

Let n0(ω) = n0(ω, t) so large that

2−n0(ω) <
δ(ω)

2
, n0(ω) ≥ max{4(|D(ω)|+ 1), t+ 1}.

Fix n ≥ n0(ω) and let
k(ω)

2n
≤ t <

k(ω) + 1

2n
.

Then

max

�����t−
j

2n

���� : j = k(ω)− 1, k(ω), k(ω) + 1, k(ω) + 2

�
≤ 2

2n
< δ(ω) ,

thus

Xn, k(ω)(ω) ≤ max

�����W
�

j

2n
,ω

�
−W (t,ω)

����+
����W

�
j − 1

2n
,ω

�
−W (t,ω)

����
�

≤ 2
�
|D(ω)|+ 1

� 2

2n
= 4

�
|D(ω)|+ 1

�
1

2n
≤ n

2n
,

where the max is taken on the set j ∈ {k(ω), k(ω) + 1, k(ω) + 2}.
Since k(ω) ≤ n 2n, we obtained

Yn(ω) = min
1≤k≤n2n

Xnk(ω) ≤ n/2n.

Thus ω ∈ A implies ω ∈ An = {ω : Yn(ω) ≤ n/2n} for all n ≥ n0(ω) so

ω ∈ lim inf
n→∞

An = ∪∞
n=1 ∩∞

m=n Am

= {ω : ω ∈ Ak except finitely many k}.
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That is A ⊂ B := lim infn→∞ An. Using the Fatou lemma

P(B) ≤ lim inf
n→∞

P(An) ≤ lim inf
n→∞

P
�
Yn ≤ n

2n

�

≤ lim inf
n→∞

n 2n
�
2 · 2n/2 n

2n

�3

= 0.

So A ⊂ B and P(B) = 0 as claimed.

Note that we don’t claim that A ∈ A. Now we see the usefulness of the
usual conditions. The usual conditions include that F0 contains the null-sets
of A.

Let
Z(ω) = {t : W (t,ω) = 0}

denote the set of zeros. Let λ be the Lebesgue measure. By Fubini

Eλ(Z) =

�

Ω

λ(Z(ω))P(dω)

=

�

Ω

�

R
I(W (t,ω) = 0) dtP(dω)

=

�

R
P(W (t,ω) = 0)dt = 0.

Since λ(Z) ≥ 0 this implies λ(Z) = 0 a.s.

Theorem 24 (Khinchin, 1933). For almost every ω

lim sup
t↓0

Wt(ω)�
2t log log 1/t

= 1 and lim inf
t↓0

Wt(ω)�
2t log log 1/t

= −1,

and
lim sup
t→∞

Wt(ω)√
2t log log t

= 1 and lim inf
t→∞

Wt(ω)√
2t log log t

= −1.

Proof. By symmetry it is enough to prove the limsup results, and since
(tW1/t) is SBM it is enough to prove at 0.

Let
Xt = exp

�
λWt −

λ2

2
t

�
.

This is a martingale, therefore by the maximal inequality

P

�
max
s∈[0,t]

�
Ws −

λ

2
s

�
≥ β

�
= P

�
max
s∈[0,t]

Xs ≥ eλβ
�

≤ e−λβ.
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Put h(t) =
�

2t log log(1/t). Fix θ, δ ∈ (0, 1). Choose λ = (1 + δ)θ−nh(θn),
β = h(θn)/2, and t = θn. Then

P

�
max
s∈[0,t]

�
Ws −

λ

2
s

�
≥ β

�
≤ e−λβ = (n log 1/θ)−(1+δ) .

This is summable, therefore by the Borel–Cantelli lemma there exists N(ω),
and Ωδ,θ with P(Ωδ,θ) = 1 such that

max
s∈[0,θn]

�
Ws −

1 + δ

2
sθ−nh(θn)

�
≤ 1

2
h(θn) for n ≥ N(ω).

Thus for t ∈ (θn+1, θn]

Wt(ω) ≤ max
s∈[0,θn]

Ws(ω) ≤ (1 + δ/2) h(θn) ≤ (1 + δ/2) θ−1/2 h(t).

Therefore for n ≥ N(ω)

sup
t∈(θn+1,θn]

Wt(ω)

h(t)
≤ (1 + δ/2) θ−1/2,

which implies as n → ∞

lim sup
t↓0

Wt(ω)

h(t)
≤ (1 + δ/2) θ−1/2.

Letting δ ↓ 0 and θ ↑ 1 through rationals we obtain

lim sup
t↓0

Wt(ω)

h(t)
≤ 1. (7) {eq:loglog-1}

For the opposite direction we need the second Borel–Cantelli lemma,
which requires independence. Fix θ ∈ (0, 1) and let

An = {Wθn −Wθn+1 ≥
√
1− θh(θn)}.

Putting x =
�

2 log n+ 2 log log 1/θ

P(An) = P

�
Wθn −Wθn+1√

θn − θn+1
≥ x

�
≥ Cx−1e−

x2

2 ≥ C � 1

n
√
log n

,
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where we use Lemma 4. The lower bound is a divergent series in n, therefore
the event An occur infinitely often. On the other hand by (7) (for −Wt)

−Wθn+1 ≤ 2h(θn+1) ≤ 4θ1/2h(θn)

for all n ≥ N(ω). Therefore whenever An occur

Wθn(ω)

h(θn)
≥

√
1− θ − 4

√
θ.

Letting n → ∞ we have

lim sup
t↓0

Wt

h(t)
≥

√
1− θ − 4

√
θ,

and the result follows by letting θ ↓ 0.

Exercise 25. Show that if W is SBM then for any λ

Xt = exp

�
λWt −

λ2

2
t

�

is a martingale.

4 Stochastic integral
Here we define the integration with respect to the Brownian motion. Note
that SBM is not of bounded variation, therefore we cannot define the integral
pathwise. This is the major difficulty in the theory.

4.1 Integration of simple processes

In what follows we work on [0, T ], for T < ∞. Let (Wt,Ft) be SBM.
The process (Xt) is a simple process, if

Xt(ω) = ξ0(ω)I{0}(t) +
n−1�

i=1

ξi(ω)I(ti,ti+1](t),

where 0 = t0 < t1 < . . . < tn = T is a partition of [0, T ], and ξi is Fti-
measurable.

That is (Xt(ω)) is a step function for each ω ∈ Ω, where the step sizes
are random. Note that ξi is measurable with respect to the σ-algebra corre-
sponding to the left end point of the interval.
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