f: 5-7R f(Xn) vandom variable

for every continuous real function f. Note that the limit measure is necessarily a probability measure.

Let X_n and X be random elements in S, defined possibly on different probability spaces. The sequence (X_n) converges in distribution to X if the corresponding induced measures converge weakly. Equivalently,

 $(\omega(+1),\omega(+1),\omega(+))$

TEEN

HOG & CG60

-- <

1-

for all continuous and bounded f

Assume that $X_n \to X$ in distribution. For any $0 \le t_1 < \ldots < t_k$ consider the projection $\pi_{t_1,\ldots,t_k}: C[0,\infty) \to \mathbb{R}^k$

$$\pi_{t_1,\ldots,t_k}(\omega) = (\omega(t_1),\ldots,\omega(t_k)).$$

This is clearly continuous. For a continuous bounded function $f: \mathbb{R}^k \to \mathbb{R}$ the composite function $f(\pi_{t_1,\ldots,t_k})$ is bounded and continuous. Therefore, by the definition of convergence in distribution

that is
$$\begin{array}{c} \mathbf{E}f(\pi_{t_1,\ldots,t_k}(X_n)) \to \mathbf{E}f(\pi_{t_1,\ldots,t_k}(X)) \\ \overbrace{\mathbf{E}f(X_n(t_1),\ldots,X_n(t_k))}^{\mathbf{L}} \to \mathbf{E}f(X_t(t_1),\ldots,X(t_k)). \\ That is, for any $0 \leq t_1 < \ldots < t_k \\ (X_n(t_1),\ldots,X_n(t_k)) \xrightarrow{\mathcal{D}} (X(t_1),\ldots,X(t_k)). \\ \end{array}$$$

This means that the finite dimensional distributions converge. We proved the following.

Proposition 8. If (X_n) converges in distribution to X then all finite dimensional distributions converge.

The converse is not true in general.

Example 8. Let

that is

$$X_n(t) = nt \mathbf{I}_{[0,(2n)^{-1}]}(t) + (1 - nt) \mathbf{I}_{((2n)^{-1},n^{-1}]}(t), \quad t \ge 0.$$

Then all finite dimensional distributions converge to the corresponding finite dimensional distributions of $X \equiv 0$. However, convergence as a process does not hold.

(S,g)(S, B(S))

(delemin) (delemin) $(\chi_{n}(t_{1}),...,\chi_{n}(t_{k})) \rightarrow (0,0,...,0)$ $(\chi_{n}(t_{1}),...,\chi_{n}(t_{k})) \rightarrow (0,0,...,0)$ $(\chi_{n}(t_{1}),...,\chi_{n}(t_{k})) \rightarrow (0,0,...,0)$ $f: C[Q_1] \rightarrow \mathbb{R} \quad f(w) = \max w(t) \\ t \in [P_1, 1]$ No anvergence in distribution in C[0,1]. (onvergence in distribution in C(0,06) om handle Hi part & Concergence of finite dimensional distribution can handle + 2 something extre "tightness

formess ~ the mass aber us go feners

In what follows we try to understand what goes wrong in the example above, and state a converse of the Proposition above,

A family of probability measures Π on $(S, \mathcal{B}(S))$ is *tight* if for every $\varepsilon > 0$ there exists a compact set $K \subset S$ such that $P(K) \ge 1 - \varepsilon$ for all $P \in \Pi$. The family Π is *relatively compact* if each sequence of elements from Π contains a convergent subsequence. A family of random elements is tight (relatively compact) if the family of induced measures is tight (relatively compact).

Theorem 15 (Prohorov). Let Π be a family of probability measures on a complete separable metric space S. Then Π is tight if and only if it is relatively compact.

The modulus of continuity plays an important role in characterization of tightness on C. Fix T > 0 and $\delta > 0$, and let $\omega \in C[0, \infty)$. The modulus of continuity on [0, T]

$$m^{T}(\omega, \delta) = \max \{ |\omega(s) - \omega(t)| : |s - t| \le \delta, 0 \le s, t \le T \}.$$

Exercise 20. Show that m^T is continuous in $\omega \in C[0, \infty)$ under the metric ρ , is nondecreasing in δ , and $\lim_{\delta \downarrow 0} m^T(\omega, \delta) = 0$ for each $\omega \in C[0, T]$.

Theorem 16 (Arselà–Ascoli). A set $A \subset C[0,\infty)$ has compact closure if and only if the following two conditions hold:

(i)
$$\sup_{\omega \in A} |\omega(0)| < \infty;$$

(ii) for every $T > 0$

$$\lim_{\delta \downarrow \emptyset} \sup_{\omega \in A} n^T(\omega, \delta) = 0.$$

Now we can characterize tightness of probability measures.

Theorem 17. A sequence (P_n) of probability measures on $(C[0,\infty),\mathcal{B})$ is tight if and only if the following two conditions hold:

- (i) $\lim_{\lambda \uparrow \infty} \sup_{n > 1} P_n(\omega : |\omega(0)| > \lambda) = 0;$
- (ii) for all T > 0 and $\varepsilon > 0$

$$\lim_{\delta \downarrow 0} \sup_{n \ge 1} P_n(\omega : m^T(\omega, \delta) > \varepsilon) = 0.$$

Theorem 18. Let (X_n) be a tight sequence of continuous processes such that its finite dimensional distributions converge. Then the sequence of induced

= Kolkano-Weventrogsth

providion providion au uniformation continuous continuous con compact

{thm:tightness-C}

{thm:conv-spaceC}

Bolzano - Weier have R bounded seguence - convegend subgrience tightness

measures (P_n) converge weakly to a measure P such that the coordinate mapping $W_t(\omega) = \omega_t$ on $C[0, \infty)$ satisfies

$$(X_n(t_1),\ldots,X_n(t_k)) \xrightarrow{\mathcal{D}} (W(t_1),\ldots,W(t_k)),$$

for any $0 \le t_1 < \ldots < t_k < \infty, \ k \ge 1$.

Proof. Tightness is the same as relative compactness. Therefore, every subsequence contains a further convergent subsequence. Because of the convergence of finite dimensional distributions any two limit measure has the same finite dimensional distributions. But finite dimensional distributions determine the measure. \Box

3.3 Donsker theorem

Ą

Let $\xi, \xi_1, \xi_2, \ldots$ be iid random variables with $\mathbf{E}\xi = 0$, $\mathbf{E}\xi^2 = \sigma^2 \in (0, \infty)$, and let $S_n = \sum_{i=1}^n \xi_i$ denote the partial sum. Define the continuous time process $(Y_t)_{t\geq 0}$ as

$$Y_t = S_{|t|} + (t - \lfloor t \rfloor)\xi_{|t|+1}, \qquad \qquad L \cdot _ integer part$$

where $\left \lfloor \cdot \right \rfloor$ stands for the usual integer part. For $n \in \mathbb{N}$ define the scaled process

$$X_t^{(n)} = \frac{1}{\sigma\sqrt{n}} Y_{nt}, \quad t \ge 0. \qquad \longrightarrow \qquad \bigvee_{\mathcal{M}}$$

Then $X_t^{(n)} - X_s^{(n)}$ for $s, t \in \mathbb{N}/n$ is independent of $\sigma(\xi_1, \ldots, \xi_{sn})$, and by the CLT its distribution tends to N(0, t - s).

Theorem 19 (Invariance principle of Donsker). Let P_n denote the measure on $(C[0,\infty), \mathcal{B}(C[0,\infty)))$ induced by $X^{(n)}$. Then P_n converges weakly to a measure P_{\star} . Under P_{\star} the coordinate mapping $W_t(\omega) = \omega(t), \ \omega \in C[0,\infty)$ is SBM.

Proof. According to Theorem 18 we have to show that $(X^{(n)})$ is <u>tight</u> and the finite <u>dimensional distributions converge</u> to those of a SBM.

To prove tightness we have to show that the conditions of Theorem 17 hold for P_n . This can be done by proving some maximal inequalities. We skip this part.

We prove the convergence of finite dimensional distributions. Fix $d \in \mathbb{N}$ and $0 \leq t_1 < \ldots < t_d < \infty$. We have to show that

3,3,32,... id Ez=0, Ez=52. $\frac{S_n}{106} \xrightarrow{P} N(0,1)$ Sn= Zit...+ In 孔 52 51 53 1 n-1 ד א 3 . n ٩ S \ (n)2 ~ ر ا ا - -- 7 - 2 r-1 n

To ease notation let d = 2 and $(t_1, t_2) = (s, t)$. We want to show that

$$(X_s^{(n)}, X_t^{(n)}) \xrightarrow{\mathcal{D}} (W_s, W_t).$$

By the definition of $X^{(n)}$

$$\left\| (X_s^{(n)}, X_t^{(n)}) - \frac{1}{\sigma\sqrt{n}} (S_{\lfloor sn \rfloor}, S_{\lfloor tn \rfloor}) \right\| \xrightarrow{\mathbf{P}} 0,$$

therefore it is enough to show that

 π_{η}

N. p.

where Z, Z' are independent N(0, 1). Therefore

$$\frac{1}{\sigma\sqrt{n}}(S_{\lfloor sn \rfloor}, S_{\lfloor tn \rfloor}) \xrightarrow{\mathcal{D}} (\sqrt{s}Z, \sqrt{s}Z + \sqrt{t-s}Z') \xrightarrow{\mathcal{D}} (W_s, W_t),$$

as claimed.

In the proof above we used the following simple statements.

Exercise 21. Let (X_n) be a sequence of random elements in the metric space (S_1, ρ_1) converging in distribution to X. Let $\varphi : S_1 \to S_2$ be continuous, where (S_2, ρ_2) is another metric space. Show that $\varphi(X_n)$ converges in distribution to $\varphi(X)$.

Exercise 22. Let (X_n) , (Y_n) be random elements in the separable metric space (S, ρ) defined on the same probability space. Show that if X_n converges in distribution to X and $\rho(X_n, Y_n) \to 0$ in probability then Y_n converges in distribution to X.

As a consequence of Donsker's invariance principle we obtain limit result for the path of random walks. Let us restrict to the interval [0, 1] and consider the space C[0, 1] with the supremum norm. Consider the continuous functional

$$f: C[0,1] \to \mathbb{R}; \ \omega \mapsto \max_{t \in [0,1]} \omega(t).$$

Figure 1: Simulation of 3 independent SBM

Since $X^{(n)} \to W$ in distribution (in C[0,1]) we have that $f(X^{(n)}) \to f(W)$ in distribution (in \mathbb{R} !). That is

$$\mathbf{P}(\max_{t\in[0,1]} X_t^{(n)} \le x) \to \mathbf{P}(\max_{t\in[0,1]} W_t \le x),$$

for each $x \in \mathbb{R}$ (well, only for continuity point of the limit, but it is continuous). By the definition of $X^{(n)}$ we can rewrite the RHS to get

$$\mathbf{P}\left(\max_{k\leq n} S_k \leq \sqrt{n}\sigma x\right) \to \mathbf{P}(\max_{t\in[0,1]} W_t \leq x).$$

Next we determine the LHS. Using the reflection principle

$$\begin{aligned} \mathbf{P} & \left(\max_{t \in [0,1]} W_t > x \right) \\ &= \mathbf{P} \left(\max_{t \in [0,1]} W_t > x, \ W_1 > x \right) + \mathbf{P} \left(\max_{t \in [0,1]} W_t > x, \ W_1 < x \right) \\ &= 2\mathbf{P} \left(\max_{t \in [0,1]} W_t > x, \ W_1 > x \right) \\ &= 2\mathbf{P} \left(W_1 > x \right) = 2 \left(1 - \Phi(x) \right). \end{aligned}$$

$$\max_{t \leq s} W_t = M_s \left(M_t \right)$$

 $X_{n} \xrightarrow{Q} W$ in C[0,1] $ley def: Eh(X_n) \to Eh(X)$ for all h: C[0,1] > R cant & bonvded f (w)= snp2 w2 : t (0,1) ($f(X_n) \xrightarrow{\Phi} f(W)$ (in \mathbb{R}) unal random var ables $E_{g}(f(X_{w})) \rightarrow E_{g}(f(w))$ 15- al contronded g: R->R Chare: h = Joy

 $\left(\begin{array}{c} \max\left(\mathcal{U}_{t} > \times\right) = \\ t \in [0, 1] \end{array}\right)$ \square Ч Wz wax te[01] M J $P(\max_{t \in [0,1]} \mathcal{V}_{t} > \times) =$ × $\times, \mathcal{W}_1 > \times$ $\stackrel{\longmapsto}{\leftarrow}$ XX) 1 É×. J×1 f $\max_{t \in \{0,1\}} \mathcal{W}_{t} > x = P(\mathcal{W}_{t} - \mathcal{W}_{t})$ 4 Ξ = 2. 1-7) 🕿

ciple мJ ref \mathbf{x} wh. 7 le yin t s fixed $\mathcal{W}_{s+1} - \mathcal{W}_{s} = \mathcal{W}_{1}$

Summarizing

$$\lim_{n \to \infty} \mathbf{P}\left(\max_{k \le n} S_k \le \sqrt{n}\sigma x\right) = 2\Phi(x) - 1.$$

$\mathbf{3.4}$ Markov property

Assume that we have a SBM (W_t) and we know everything up to time s. Conditioned on that information, what is the distribution of W_t , t > s?

Formally, (W_t, \mathcal{F}_t) is a SBM, and we are interested in the conditional

probabilities
Since
$$W_t = W_s + W_t - W_s$$
, where W_s is \mathcal{F}_s -measurable and $W_t - W_s$ is
independent of \mathcal{F}_s , we obtain
 $\mathbf{P}(W_t \in A|\mathcal{F}_s) = \mathbf{P}(W_t \in A|W_s) = \mathbf{P}_{W_s}(W_{t-s} \in A),$

where $\mathbf{P}_x(W_u \in A) = \mathbf{P}(W_u \in A | W_0 = x)$, that is under $\mathbf{P}_x W$ is a SBM starting at x. That is knowing the whole past up to s gives no more information than knowing only W_s . This is the Markov property.

To make the previous argument formal we need the following.

Exercise 23. Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space, $\mathcal{G} \subset \mathcal{A}$ a sub- σ -algebra, X, Y random variables such that X is independent of \mathcal{G} and Y is \mathcal{G} -measurable. Then

$$\mathbf{P}(X+Y \in A|\mathcal{G}) = \mathbf{P}(X+Y \in A|Y) \quad \mathbf{P}-\text{a.s.} \qquad \forall \mathbf{L} \forall \boldsymbol{\mathcal{C}} A$$

and

$$\mathbf{P}(X+Y \in A | Y=y) = \mathbf{P}(X+y \in A) \quad \mathbf{P}Y^{-1} - \text{a.s.}$$

For the latter note that for some $\sigma(Y)/\mathcal{B}(\mathbb{R})$ -measurable h

$$\mathbf{P}(X+Y \in A|Y) = h(Y).$$

(X, V) E BKC A-iystem t estention t estention well. So the latter statement claims that $h(y) = \mathbf{P}(X + y \in A)$ a.s. with respect to the induced measure $\mathbf{P}Y^{-1}$.

A (d-dimensional) adapted process (X_t) is Markov process with initial distribution μ if

- (i) $\mathbf{P}(X_0 \in A) = \mu(A);$
- (ii) $\mathbf{P}(X_{t+s} \in A | \mathcal{F}_s) = \mathbf{P}(X_{t+s} \in A | X_s)$, for all A and t, s > 0.