
for every continuous real function f . Note that the limit measure is neces-
sarily a probability measure.

Let Xn and X be random elements in S, defined possibly on different
probability spaces. The sequence (Xn) converges in distribution to X if the
corresponding induced measures converge weakly. Equivalently,

Ef(Xn) → Ef(X)

for all continuous and bounded f .
Assume that Xn → X in distribution. For any 0 ≤ t1 < . . . < tk consider

the projection πt1,...,tk : C[0,∞) → Rk

πt1,...,tk(ω) = (ω(t1), . . . ,ω(tk)) .

This is clearly continuous. For a continuous bounded function f : Rk → R
the composite function f(πt1,...,tk) is bounded and continuous. Therefore, by
the definition of convergence in distribution

Ef(πt1,...,tk(Xn)) → Ef(πt1,...,tk(X))

that is
Ef(Xn(t1), . . . , Xn(tk)) → Ef(X(t1), . . . , X(tk)).

That is, for any 0 ≤ t1 < . . . < tk

(Xn(t1), . . . , Xn(tk))
D−→ (X(t1), . . . , X(tk)).

This means that the finite dimensional distributions converge.
We proved the following.

Proposition 8. If (Xn) converges in distribution to X then all finite dimen-
sional distributions converge.

The converse is not true in general.

Example 8. Let

Xn(t) = ntI[0,(2n)−1](t) + (1− nt)I((2n)−1,n−1](t), t ≥ 0.

Then all finite dimensional distributions converge to the corresponding finite
dimensional distributions of X ≡ 0. However, convergence as a process does
not hold.
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In what follows we try to understand what goes wrong in the example
above, and state a converse of the Proposition above.

A family of probability measures Π on (S,B(S)) is tight if for every ε > 0
there exists a compact set K ⊂ S such that P (K) ≥ 1−ε for all P ∈ Π. The
family Π is relatively compact if each sequence of elements from Π contains
a convergent subsequence. A family of random elements is tight (relatively
compact) if the family of induced measures is tight (relatively compact).

Theorem 15 (Prohorov). Let Π be a family of probability measures on a
complete separable metric space S. Then Π is tight if and only if it is relatively
compact.

The modulus of continuity plays an important role in characterization of
tightness on C. Fix T > 0 and δ > 0, and let ω ∈ C[0,∞). The modulus of
continuity on [0, T ]

mT (ω, δ) = max {|ω(s)− ω(t)| : |s− t| ≤ δ, 0 ≤ s, t ≤ T} .

Exercise 20. Show that mT is continuous in ω ∈ C[0,∞) under the metric
ρ, is nondecreasing in δ, and limδ↓0 mT (ω, δ) = 0 for each ω ∈ C[0, T ).

Theorem 16 (Arselà–Ascoli). A set A ⊂ C[0,∞) has compact closure if
and only if the following two conditions hold:

(i) supω∈A |ω(0)| < ∞;
(ii) for every T > 0

lim
δ↓0

sup
ω∈A

mT (ω, δ) = 0.

Now we can characterize tightness of probability measures.
{thm:tightness-C}

Theorem 17. A sequence (Pn) of probability measures on (C[0,∞),B) is
tight if and only if the following two conditions hold:

(i) limλ↑∞ supn≥1 Pn(ω : |ω(0)| > λ) = 0;
(ii) for all T > 0 and ε > 0

lim
δ↓0

sup
n≥1

Pn(ω : mT (ω, δ) > ε) = 0.

{thm:conv-spaceC}
Theorem 18. Let (Xn) be a tight sequence of continuous processes such that
its finite dimensional distributions converge. Then the sequence of induced
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measures (Pn) converge weakly to a measure P such that the coordinate map-
ping Wt(ω) = ωt on C[0,∞) satisfies

(Xn(t1), . . . , Xn(tk))
D−→ (W (t1), . . . ,W (tk)) ,

for any 0 ≤ t1 < . . . < tk < ∞, k ≥ 1.

Proof. Tightness is the same as relative compactness. Therefore, every sub-
sequence contains a further convergent subsequence. Because of the con-
vergence of finite dimensional distributions any two limit measure has the
same finite dimensional distributions. But finite dimensional distributions
determine the measure.

3.3 Donsker theorem

Let ξ, ξ1, ξ2, . . . be iid random variables with Eξ = 0, Eξ2 = σ2 ∈ (0,∞), and
let Sn =

�n
i=1 ξi denote the partial sum. Define the continuous time process

(Yt)t≥0 as
Yt = S�t� + (t− �t�)ξ�t�+1,

where �·� stands for the usual integer part. For n ∈ N define the scaled
process

X
(n)
t =

1

σ
√
n
Ynt, t ≥ 0.

Then X
(n)
t −X

(n)
s for s, t ∈ N/n is independent of σ(ξ1, . . . , ξsn), and by the

CLT its distribution tends to N(0, t− s).

Theorem 19 (Invariance principle of Donsker). Let Pn denote the measure
on (C[0,∞),B(C[0,∞))) induced by X (n). Then Pn converges weakly to a
measure P�. Under P� the coordinate mapping Wt(ω) = ω(t), ω ∈ C[0,∞)
is SBM.

Proof. According to Theorem 18 we have to show that (X (n)) is tight and
the finite dimensional distributions converge to those of a SBM.

To prove tightness we have to show that the conditions of Theorem 17
hold for Pn. This can be done by proving some maximal inequalities. We
skip this part.

We prove the convergence of finite dimensional distributions. Fix d ∈ N
and 0 ≤ t1 < . . . < td < ∞. We have to show that

�
X

(n)
t1 , . . . , X

(n)
td

�
D−→ (Wt1 , . . . ,Wtd) .
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To ease notation let d = 2 and (t1, t2) = (s, t). We want to show that

(X(n)
s , X

(n)
t )

D−→ (Ws,Wt) .

By the definition of X (n)

����(X(n)
s , X

(n)
t )− 1

σ
√
n
(S�sn�, S�tn�)

����
P−→ 0,

therefore it is enough to show that

1

σ
√
n
(S�sn�, S�tn�)

D−→ (Ws,Wt) .

By Lévy’s CLT

1

σ
√
n
(S�sn�, S�tn� − S�sn�)

D−→ (
√
sZ,

√
t− sZ �),

where Z,Z � are independent N(0, 1). Therefore

1

σ
√
n
(S�sn�, S�tn�)

D−→ (
√
sZ,

√
sZ +

√
t− sZ �)

D
= (Ws,Wt),

as claimed.

In the proof above we used the following simple statements.

Exercise 21. Let (Xn) be a sequence of random elements in the metric
space (S1, ρ1) converging in distribution to X. Let ϕ : S1 → S2 be continu-
ous, where (S2, ρ2) is another metric space. Show that ϕ(Xn) converges in
distribution to ϕ(X).

Exercise 22. Let (Xn), (Yn) be random elements in the separable metric
space (S, ρ) defined on the same probability space. Show that if Xn converges
in distribution to X and ρ(Xn, Yn) → 0 in probability then Yn converges in
distribution to X.

As a consequence of Donsker’s invariance principle we obtain limit result
for the path of random walks. Let us restrict to the interval [0, 1] and con-
sider the space C[0, 1] with the supremum norm. Consider the continuous
functional

f : C[0, 1] → R; ω �→ max
t∈[0,1]

ω(t).
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Figure 1: Simulation of 3 independent SBM

Since X (n) → W in distribution (in C[0, 1]) we have that f(X (n)) → f(W )
in distribution (in R!). That is

P(max
t∈[0,1]

X
(n)
t ≤ x) → P(max

t∈[0,1]
Wt ≤ x),

for each x ∈ R (well, only for continuity point of the limit, but it is continu-
ous). By the definition of X (n) we can rewrite the RHS to get

P

�
max
k≤n

Sk ≤
√
nσx

�
→ P(max

t∈[0,1]
Wt ≤ x).

Next we determine the LHS. Using the reflection principle

P

�
max
t∈[0,1]

Wt > x

�

= P

�
max
t∈[0,1]

Wt > x, W1 > x

�
+P

�
max
t∈[0,1]

Wt > x, W1 < x

�

= 2P

�
max
t∈[0,1]

Wt > x, W1 > x

�

= 2P (W1 > x) = 2 (1− Φ(x)) .

32









Summarizing

lim
n→∞

P

�
max
k≤n

Sk ≤
√
nσx

�
= 2Φ(x)− 1.

3.4 Markov property

Assume that we have a SBM (Wt) and we know everything up to time s.
Conditioned on that information, what is the distribution of Wt, t > s?

Formally, (Wt,Ft) is a SBM, and we are interested in the conditional
probabilities

P(Wt ∈ A|Fs).

Since Wt = Ws + Wt − Ws, where Ws is Fs-measurable and Wt − Ws is
independent of Fs, we obtain

P(Wt ∈ A|Fs) = P(Wt ∈ A|Ws) = PWs(Wt−s ∈ A),

where Px(Wu ∈ A) = P(Wu ∈ A|W0 = x), that is under Px W is a SBM
starting at x. That is knowing the whole past up to s gives no more infor-
mation than knowing only Ws. This is the Markov property.

To make the previous argument formal we need the following.

Exercise 23. Let (Ω,A,P) be a probability space, G ⊂ A a sub-σ-algebra,
X, Y random variables such that X is independent of G and Y is G-measurable.
Then

P(X + Y ∈ A|G) = P(X + Y ∈ A|Y ) P− a.s.

and
P(X + Y ∈ A|Y = y) = P(X + y ∈ A) PY −1 − a.s.

For the latter note that for some σ(Y )/B(R)-measurable h

P(X + Y ∈ A|Y ) = h(Y ).

So the latter statement claims that h(y) = P(X + y ∈ A) a.s. with respect
to the induced measure PY −1.

A (d-dimensional) adapted process (Xt) is Markov process with initial
distribution µ if

(i) P(X0 ∈ A) = µ(A);
(ii) P(Xt+s ∈ A|Fs) = P(Xt+s ∈ A|Xs), for all A and t, s > 0.
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