countable set. Similarly,

$$\left\{\omega \in \mathbb{R}^{[0,\infty)} : \sup_{0 \le t \le 1} \omega_t \le x\right\}, \quad x \in \mathbb{R},$$

is not $\mathcal{B}^{[0,\infty)}$ -measurable, so we cannot define $\sup_{t\in[0,1]}\widetilde{W}_t$.

Thus the setup in Kolmogorov's consistency theorem cannot deal with continuous processes. We need a different approach.

Recall that Y is a modification of X if $X_t = Y_t$ a.s. for any fix t, i.e. $\mathbf{P}(X_t = Y_t) = 1$ for each $t \ge 0$.

Theorem 12 (Kolmogorov continuity theorem). Let $(X_t)_{t \in [0,T]}$ be a stochastic process on $(\Omega, \mathcal{A}, \mathbf{P})$, such that for some positive constants α, β, C .

$$\mathbf{E}|X_t - X_s|^{\alpha} \le C|t - s|^{1+\beta}, \quad 0 \le s, t \le T. \qquad \longleftarrow \qquad \underbrace{\mathsf{UNCVernewd}}_{intropy}$$

1

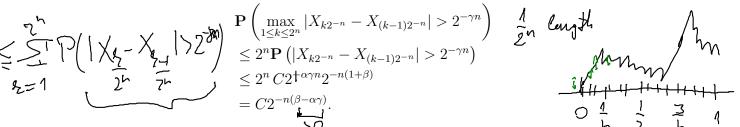
Then X has a continuous modification \widetilde{X} which is Hölder continuous with exponent γ for every $\gamma \in (0, \beta/\alpha)$, that is for some $h(\omega)$ a.s. positive random variable and $\delta > 0$

$$\mathbf{P}\left(\omega: \sup_{0 < t - s < h(\omega)} \frac{\widetilde{X}_{t}(\omega) - \widetilde{X}_{s}(\omega)}{|t - s|^{\gamma}} \le \delta\right) = 1.$$

$$Proof. \text{ We can assume that } T = 1. \text{ By Chebyshev}$$

$$(\chi \ge \mathcal{O}, \mathcal{O}(\chi \ge \omega) \le \mathcal{E}(\chi))$$

in particular $X_t \to X_s$ in probability as $t \to s$. Fix $\gamma \in (0, \beta/\alpha)$. Then $\lambda \to M \alpha \lambda \nu$



By the first Borel–Cantelli lemma with probability 1 only finitely many of

$$\begin{array}{c} \text{vanobulnews} \\ X(w) \\ t \\ function \end{array} X_{t} \\ X(t_{1}w) \end{array}$$

occur. That is, there is a set Ω_0 with $\mathbf{P}(\Omega_0) = 1$, and a threshold $n_0(\omega)$ (depending on ω !) such that for $\omega \in \Omega_0$

$$\max_{1 \le k \le 2^n} |X_{k2^{-n}} - X_{(k-1)2^{-n}}| \le 2^{-\gamma n}, \quad n \ge n_0(\omega).$$

Fix $\omega \in \Omega_0$ Put $D_n = \{k2^{-n} : k = 0, 1, \dots, 2^n\}$, and $D = \bigcup_n D_n$. Then for $n \ge n_0(\omega)$ and $m > n$ induction gives that $= 0$

$$|X_t(\omega) - X_s(\omega)| \le 2 \sum_{j=n+1}^m 2^{-\gamma j}, \quad t, s \in D_m, \ |t-s| \le 2^{-n}.$$

This implies that $(X_t(\omega))_{t\in D}$ is uniformly continuous in $t \in D$. Indeed, for any $t, s \in D$ with $0 < t - s < h(\omega) = 2^{-n_0(\omega)}$ there is an $n \ge n_0^{\omega}$ such that $2^{-n-1} \le t - s < 2^{-n}$, thus $\sum_{\infty} \mathcal{L} = \mathcal{L} = \mathcal{L} = \mathcal{L} = \mathcal{L}$

$$|X_t(\omega) - X_s(\omega)| \le 2\sum_{j=n+1}^{\infty} 2^{-\gamma j} = 2^{-\gamma(n+1)} \frac{\frac{2}{2}}{1 - 2^{-\gamma}} \le |t - s|^{\gamma} \frac{2}{1 - 2^{-\gamma}} \cdot (- \text{Uniform})$$

Informally, we proved that (X_t) behaves regularly on D. We define \widetilde{X} . If $\omega \notin \Omega_0$ let $\widetilde{X}(\omega) = 0$, (or anything). If $\omega \in \Omega_0$ and $t \in D$ let $\widetilde{X}_t(\omega) = X_t(\omega)$, while if $t \notin D$ choose a sequence $s_n \in D$ such that $s_n \to t$ and let

 $\widetilde{X}_t(\omega) = \lim_{n \to \infty} X_{s_n}(\omega).$ By the uniform continuity and the Cauchy criteria the limit on the right-hand

side exist. The a.s. uniqueness of the stochastic limit together with the stochastic continuity of X implies that \widetilde{X} is a modification of X.

$$\mathbf{E}|X_t - X_s|^{\alpha} \le C ||t - s||^{d+\beta}, \qquad ||\cdot || \quad \text{write}$$

M

for some positive constants. Show that there exists a continuous modification \widetilde{X} which is Hölder continuous with exponent γ for every $\gamma \in (0, \beta/\alpha)$, that is for some $h(\omega)$ a.s. positive random variable and $\delta > 0$

$$\mathbf{P}\left(\omega: \sup_{0 < \|t-s\| < h(\omega)} \frac{\widetilde{X}_t(\omega) - \widetilde{X}_s(\omega)}{\|t-s\|^{\gamma}} \le \delta\right) = 1.$$

$$\mathcal{L}_{t} = \mathcal{U}_{s} \sim \mathcal{N}(0, t-s) \sim \mathcal{Z} \sim \mathcal{N}(0, 1)$$

$$E \left| \mathcal{U}_{t} = \mathcal{U}_{s} \right|^{\alpha} = \mathcal{Z} \left| \left| \mathcal{U}_{t} = \mathcal{U}_{s} \right|^{\alpha} \cdot (t-s)^{\frac{\alpha}{2}} = E \left| \mathcal{Z} \right|^{\alpha} \cdot (t-s)^{\frac{\alpha}{2}}$$

Exercise 16. Show that if $W_t - W_s \sim N(0, t-s)$ then for any n > 0 $C_n = E\left(|\mathcal{Z}|^{2n}\right)$

$$\mathbf{E}|W_t - W_s|^{2n} = C_n|t - s|^n,$$

where $C_n = \mathbf{E} |Z|^n, Z \sim N(0, 1).$

Corollary 4. Wiener process exists.

Proof. We need only the continuity part. The condition of Kolmogorov con-[O, N/ tinuity theorem holds with $\alpha = 2n$ and $\beta = n - 1$ for any n > 1. Thus there exists a continuous modification on [0, N], for any $N \in \mathbb{N}$. Necessarily, X^{N_1} and X^{N_2} agrees a.s. for any fix $t \in [0, N_1 \wedge N_2]$, which allows us to extend the process to $[0,\infty)$. $(0, \omega)$

In fact, we proved that the Wiener process is locally γ -Hölder continuous for any $\gamma < 1/2$.

Exercise 17. Let (N_t) be a Poisson process with intensity 1. Compute the order $\mathbf{E}|N_t - N_s|^{\alpha}$ for t - s small. (Thus the condition in the continuity theorem holds for $\beta = 0$. Well, of course, Poisson processes are not continuous.)

More generally, we obtain a result on continuity of Gaussian processes.

Theorem 13. Let (X_t) be a Gaussian process with continuous mean function m, and covariance function r. If there exist positive constants δ , C such that for all s, t

$$r(t,t) - 2r(s,t) + r(s,s) \le C|t-s|^{\delta},$$

then (X_t) has a continuous modification which is locally γ -Hölder continuous for any $\gamma \in (0, \delta/2)$. *Proof.* Subtracting the mean function we may and do assume that $m(t) \equiv 0$.

Simply

$$\mathbf{Var}(X_t - X_s) = r(t, t) - 2r(s, t) + r(s, s) = \sigma^2(s, t),$$

therefore

8:1

γ=_ Z J J J¹¹Z

$$\mathbf{E}|X_t - X_s|^{\alpha} = \mathbf{E}|Z|^{\alpha}\sigma(s,t)^{\alpha},$$

with $Z \sim N(0, 1)$. Thus

$$\mathbf{E}|X_t - X_s|^{\alpha} \le C|t - s|^{\delta\alpha/2}$$

which implies that the condition of the continuity theorem holds with $\alpha > 0$, $\beta = \delta \alpha / 2 - 1$. Letting $\alpha \to \infty$ the result follows.

 $F[W_{2}-W_{3}] \approx C \cdot |t-s|^{\frac{\alpha}{2}} = C \cdot |t-s|^{\frac{\alpha}{2}} = C \cdot |t-s|^{\frac{\alpha}{2}}$ Cond. Influs α , $\beta = \frac{\alpha}{2} - 1$. $g \in (0, \frac{2}{2}) = (0, \frac{1}{2}, \frac{1}{2})$ $\chi \rightarrow \infty$ -> padh in Holder cont with any expanent $\angle \frac{1}{7}$. Proof of Flue. 13. Ne need X1-X2 X 2 $X_{t} - X_{s} \sim N(0, 2)$ E(X,)=0 E(X,)=0 $Var\left(X_{t}-X_{s}\right)=Cor\left(X_{t}-X_{s},X_{t}-X_{s}\right)=$

uk cnow r(s,t)= E(X,X). = $Cor(X_1,X_1) - 2Cor(X_1,X_2) + Cor(X_2,X_3)$ $\gamma(t,t) - 2\gamma(s,t) + \gamma(s,s) = \overline{c}(s,t)$ $E(1X_{t}-X_{s})^{2} = E(\frac{X_{t}-X_{s}}{67(s+1)})^{2} = E(\frac{X_{t}-X_{s}}{67(s+1)})^{2}$ $= E(| = E() - G(3, +))^{\alpha} \leq C \cdot | + -5 | = \frac{5^{\alpha}}{2}$ $(x-\alpha)$ $\sum_{j=1}^{j=1}$ $\left(\begin{array}{c} 0\\ \overline{2}\\ \overline{2}\\$

 $\frac{\times}{=}$ ~ N(9,1) $X \sim N(0, \vec{c}) \Rightarrow \vec{c}$

Exercise 18 (Fractional Brownian motion). Fractional Brownian motion with Hurst index $H \in (0, 1)$ is a Gaussian process (B(t)) with mean function $m(t) \equiv 0$ and covariance function

$$r(s,t) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t-s|^{2H} \right).$$

Note that H = 1/2 corresponds to the usual Brownian motion.

- (i) Show that it is self-similar, i.e. $B(at) \sim a^H B(t)$.
- (ii) Show that it has stationary increments: $B(t) B(s) \sim B(t-s)$.
- (iii) Prove that a continuous modification exists, which is γ -Hölder for any $\gamma < H$. (That is H is the 'roughness parameter': for small H the process strongly oscillates, while for H close to 1 the paths are almost smooth.)
- (iv) Are the increments independent?

Exercise 19. Let $(X_t)_{t \in [0,1]}$ be a continuous Gaussian process with mean 0 and covariance function r(s,t). Show that $Y = \int_0^1 X_t dt \sim N(0,\sigma^2)$, where

Show that $Y_t = \int_0^t X_s ds$ is a Gaussian process. Determine its covariance function.

A version of the continuity theorem is the following.

Theorem 14. Let $T \subset \mathbb{R}$ finite or infinite interval, and $(X_t)_{t \in T}$ a stochastic process such that for $\delta > 0$ small enough

$$\mathbf{P}\left(|X_t - X_s| \ge g(\delta)\right) \le h(\delta) \quad whenever \ |s - t| < \delta \,, \ s, t \in T,$$

where g and h are continuous function such that

$$\sum_{n=1}^{\infty} g(2^{-n}) < \infty, \quad \sum_{n=1}^{\infty} 2^{n} h(2^{-n}) < \infty,$$

Then X has a continuous modification.

Recall that

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

is the standard normal density function, and

$$\Phi(x) = \int_{-\infty}^{x} \varphi(y) \mathrm{d}y$$

is the standard normal distribution function.

Lemma 4. For any
$$x > 0$$

 $\left(\frac{1}{x} - \frac{1}{x^3}\right)\varphi(x) \le \overline{1 - \Phi(x)} \le \frac{1}{x}\varphi(x)$

and

$$\lim_{x \to \infty} \frac{1 - \Phi(x)}{\frac{1}{x}\varphi(x)} = 1$$

Proof. The first follows from integrating the inequality

$$\left(1-\frac{3}{y^4}\right)\varphi(y) \le \varphi(y) \le \left(1+\frac{1}{y^2}\right)\varphi(y),$$

on (x, ∞) . The second is immediate from the first.

Using Theorem 14 we obtain a better criteria for continuity.

Corollary 5. Let $T \subset \mathbb{R}$ be a finite or infinite interval and let $(X_t)_{t \in T}$ be a Gaussian process with continuous mean function m, and covariance function r such that for δ small enough

$$\sup_{|s-t| \le \delta} \left(r(t,t) - 2r(s,t) + r(s,s) \right) \le C \left(-\log \delta \right)^{-3(1+\alpha)}$$

for some C > 0, $\alpha > 0$. Then (X_t) has a continuous modification.

3.2 The space $C[0,\infty)$

As SBM is continuous, its natural space is the space of continuous functions. Instead of a collection of random variables a stochastic process (W_t) can be understood as a random element of a function space.

Recall that ρ is a metric if on S

{lemma:Phi-bound}

ĘĻ

(z): P

 $l - \overline{f}(x) = 1 - \int g(y) dy$ $\frac{d}{dx}\left[1-\frac{1}{2}(x)\right] = -\varphi(x).$ $\left|\begin{array}{c} \varphi(z) \\ \overline{\chi} \end{array}\right| = \varphi(z), \overline{\chi} + \varphi(z), \left(-\frac{1}{\chi^2}\right)$ $= (-x) \mathcal{L}(x) \cdot \frac{1}{x} + \mathcal{L}(x) \left(-\frac{1}{x^2}\right)$ $= - \varphi(x) \left(l + \frac{l}{x^2} \right)$ + differentrate the Cower Connel + integrale out everything on (x, x).

V/by is hormal distribution important? CLT: destal livit theorem : Z,Z1,Z2,... id independent, identically dishile. $E_z^2 \prec$ $\frac{\sum_{i=1}^{n} \overline{z_i} - n \overline{z_i}}{\int n \cdot \left[V_{on} \left(\frac{z_i}{r} \right) \right]} \xrightarrow{\mathcal{F}} \frac{\mathcal{F}}{\mathcal{F}} = \mathcal{F} \left(\frac{1}{r} \right)$ by def. $\begin{array}{c}
\begin{pmatrix}
n \\
\overline{z_{i}} \\
\overline{z_{i}} \\
 \vdots \\
\sqrt{n \sqrt{a(z_{i})}} \\
 \vdots \\
 \end{array} \\
\begin{array}{c}
 \end{array} \\
\end{array} \\
\begin{array}{c}
 \end{array} \\
\end{array} \\
\begin{array}{c}
 \end{array} \\
\end{array} \\
\begin{array}{c}
 \end{array} \\
\end{array} \\
\begin{array}{c}
 \end{array} \\
\end{array} \\
\begin{array}{c}
 \end{array} \\
\end{array} \\
\begin{array}{c}
 \end{array} \\
\end{array} \\
\begin{array}{c}
 \end{array} \\
\end{array} \\
\end{array}$ \begin{array}{c}
 \end{array} \\
\end{array}
 }
 \\
\end{array} $\overline{f}(z)$ F(x) = P(x) $\frac{1}{S_n} = \frac{1}{S_n} + \dots + \frac{1}{S_n}$ S

Ez=0 Ez=1. 52/25 1071 Δ رکا (ک invariance ſ n is large J

 $C[O_{100}) = \{ f : f(Ops) \rightarrow R, f(s) continuous \}$

- i) $\rho \ge 0, \ \rho(\omega_1, \omega_2) = 0 \text{ iff } \omega_1 = \omega_2;$
- (ii) symmetric;
- (iii) the triangle inequality holds, i.e.

$$\rho(\omega_1, \omega_2) \le \rho(\omega_1, \omega_3) + \rho(\omega_2, \omega_3)$$

Then (S, ρ) is a metric space.

The sequence (x_n) is *Cauchy* if for each $\varepsilon > 0$ there exist $n_0(\varepsilon)$ such that $\rho(x_m, x_n) \leq \varepsilon$ for all $m, n \geq n_0$. The space (S, ρ) is *complete* if every Cauchy sequence converges. A set $A \subset S$ is dense, if for any $x \in S$ there exists a sequence $(x_n) \subset A$ such that $x_n \to x$. The space (S, ρ) is *separable* if there exists a countable dense subset.

Let $C[0,\infty)$ denote the space of continuous real functions on $[0,\infty)$ with metric $\sum_{\infty} \sum_{\alpha} \sum_{\alpha}$

$$\rho(\omega_1, \omega_2) = \sum_{n=1}^{\infty} \frac{1}{2^n} \max_{t \in [0,n]} \left(|\omega_1(t) - \omega_2(t)| \wedge 1 \right).$$

Proposition 7. ρ is a metric, and $(C[0,\infty),\rho)$ is a complete separable metric space.

Proof. It is clear that ρ is a metric. Fix a Cauchy sequence (x_n) . For any fix $N \in \mathbb{N}$ the limit $\lim_{n\to\infty} x_n(t) = x_\infty(t)$ exists for $t \in [0, N]$, and it is continuous. Thus x_∞ exists and continuous.

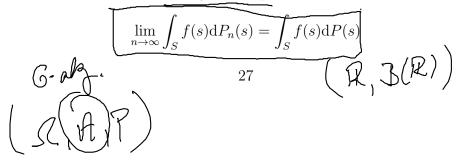
To find a countable dense subset consider functions which are 0 for $t \ge n$, and it is rational at k/n for $k = 0, 1, ..., n^2 - 1$.

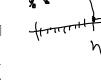
If (S, ρ) is a metric space we can define open sets. The σ -algebra generated by open sets is the Borel- σ -algebra $\mathcal{B}(S)$. With this $(S, \mathcal{B}(S))$ is a measurable space.

If $(\Omega, \mathcal{A}, \mathbf{P})$ is a probability space and $(S, \mathcal{B}(S))$ is a measurable space then a measurable $X : \Omega \to S$ is a random variable / random element in S. It induces a probability measure $\mathbf{P} \circ X^{-1}$ on S as

$$\mathbf{P} \circ X^{-1}(B) = \mathbf{P}(X \in B) = \mathbf{P}(\{\omega : X(\omega) \in B\}).$$

Let (P_n) be a sequence of probability measure on $(S, \mathcal{B}(S))$ and P another measure on it. Then P_n converges weakly to $P, P_n \xrightarrow{w} P$, if





 \mathbb{R}^{d}

The A Start We can define a masser on S: $\mathcal{P}(A) = \mathcal{P}(X \in A) = \mathcal{P}(\{\omega : X(\omega) \in A\})$ $A \in \mathcal{B}(S) \quad \mathcal{P}(A) \quad \mathcal{F}(A) \quad \mathcal{F$ Speiral (R, B(R)) : Lebesgue-Stichtigs meane $X: \Omega \rightarrow R \rightarrow F(x) = P(V \leq x)$ $induces a measure, (R, <math>\mathcal{B}(\mathbb{R}))$ $\mathcal{N}_{1}(w)$ Moch. ppa. : a lot of random variables Earlow $t \in (0,\infty)$ Now: stol. pra: raydom element in (for) Ń

(-L, A, P) vardou var. X: 2->R + meanuallity -7/12/01/C.A $X^{\gamma}(\mathcal{B}(\mathcal{R})) \subseteq \mathcal{A}$. element $X: \mathcal{D} \to S$ randon

for every continuous real function f. Note that the limit measure is necessarily a probability measure.

Let X_n and X be random elements in S, defined possibly on different probability spaces. The sequence (X_n) converges in distribution to X if the $x^{-1}(3(5))GA$ corresponding induced measures converge weakly. Equivalently,

$$\mathbf{E}f(X_n) \to \mathbf{E}f(X)$$

for all continuous and bounded f.

Assume that $X_n \to X$ in distribution. For any $0 \le t_1 < \ldots < t_k$ consider the projection $\pi_{t_1,\ldots,t_k}: C[0,\infty) \to \mathbb{R}^d$

$$\pi_{t_1,\ldots,t_k}(\omega) = (\omega(t_1),\ldots,\omega(t_k)).$$

This is clearly continuous. For a continuous bounded function $f : \mathbb{R}^d \to \mathbb{R}$ the composite function $f(\pi_{t_1,\ldots,t_k})$ is bounded and continuous. Therefore, by the definition of convergence in distribution

$$\mathbf{E}f(\pi_{t_1,\ldots,t_k}(X_n)) \to \mathbf{E}f(\pi_{t_1,\ldots,t_k}(X))$$

that is

$$\mathbf{E}f(X_n(t_1),\ldots,X_n(t_k))\to\mathbf{E}f(X(t_1),\ldots,X(t_k)).$$

That is, for any $0 \leq t_1 < \ldots < t_k$

$$(X_n(t_1),\ldots,X_n(t_k)) \xrightarrow{\mathcal{D}} (X(t_1),\ldots,X(t_k)).$$

This means that the finite dimensional distributions converge.

We proved the following.

Proposition 8. If (X_n) converges in distribution X then all finite dimensional distributions converge.

The converse is not true in general.

Example 8. Let

$$X_n(t) = nt \mathbf{I}_{[0,(2n)^{-1}]}(t) + (1 - nt) \mathbf{I}_{((2n)^{-1},n^{-1}]}(t), \quad t \ge 0.$$

Then all finite dimensional distributions converge to the corresponding finite dimensional distributions of $X \equiv 0$. However, convergence as a process does not hold.