
countable set. Similarly,
�
ω ∈ R[0,∞) : sup

0≤t≤1
ωt ≤ x

�
, x ∈ R ,

is not B[0,∞)-measurable, so we cannot define supt∈[0,1] �Wt.
Thus the setup in Kolmogorov’s consistency theorem cannot deal with

continuous processes. We need a different approach.
Recall that Y is a modification of X if Xt = Yt a.s. for any fix t, i.e. P(Xt =

Yt) = 1 for each t ≥ 0.

Theorem 12 (Kolmogorov continuity theorem). Let (Xt)t∈[0,T ] be a stochas-
tic process on (Ω,A,P), such that for some positive constants α, β, C

E|Xt −Xs|α ≤ C|t− s|1+β, 0 ≤ s, t ≤ T.

Then X has a continuous modification �X which is Hölder continuous with
exponent γ for every γ ∈ (0, β/α), that is for some h(ω) a.s. positive random
variable and δ > 0

P

�
ω : sup

0<t−s<h(ω)

�Xt(ω)− �Xs(ω)

|t− s|γ ≤ δ

�
= 1.

Proof. We can assume that T = 1. By Chebyshev

P(|Xt −Xs| > ε) ≤ ε−αE|Xt −Xs|α ≤ Cε−α|t− s|1+β,

in particular Xt → Xs in probability as t → s. Fix γ ∈ (0, β/α). Then

P

�
max

1≤k≤2n
|Xk2−n −X(k−1)2−n | > 2−γn

�

≤ 2nP
�
|Xk2−n −X(k−1)2−n | > 2−γn

�

≤ 2n C2−αγn2−n(1+β)

= C2−n(β−αγ).

By the first Borel–Cantelli lemma with probability 1 only finitely many of
the events

max
1≤k≤2n

|Xk2−n −X(k−1)2−n | > 2−γn
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occur. That is, there is a set Ω0 with P(Ω0) = 1, and a threshold n0(ω)
(depending on ω!) such that for ω ∈ Ω0

max
1≤k≤2n

|Xk2−n −X(k−1)2−n | ≤ 2−γn, n ≥ n0(ω).

Fix ω ∈ Ω0. Put Dn = {k2−n : k = 0, 1, . . . , 2n}, and D = ∪nDn. Then for
n ≥ n0(ω) and m > n induction gives that

|Xt(ω)−Xs(ω)| ≤ 2
m�

j=n+1

2−γj, t, s ∈ Dm, |t− s| ≤ 2−n.

This implies that (Xt(ω))t∈D is uniformly continuous in t ∈ D. Indeed, for
any t, s ∈ D with 0 < t − s < h(ω) = 2−n0(ω) there is an n ≥ n0 such that
2−n−1 ≤ t− s < 2−n, thus

|Xt(ω)−Xs(ω)| ≤ 2
∞�

j=n+1

2−γj = 2−γ(n+1) 2

1− 2−γ
≤ |t− s|γ 2

1− 2−γ
.

Informally, we proved that (Xt) behaves regularly on D. We define �X. If
ω �∈ Ω0 let �X(ω) = 0, (or anything). If ω ∈ Ω0 and t ∈ D let �Xt(ω) = Xt(ω),
while if t �∈ D choose a sequence sn ∈ D such that sn → t and let

�Xt(ω) = lim
n→∞

Xsn(ω).

By the uniform continuity and the Cauchy criteria the limit on the right-hand
side exist.

The a.s. uniqueness of the stochastic limit together with the stochastic
continuity of X implies that �X is a modification of X.

Exercise 15 (Random fields). A random field is a collection of random
variables indexed by a partially ordered set. Let (Xt)t∈[0,T ]d be a random
field satisfying

E|Xt −Xs|α ≤ C�t− s�d+β,

for some positive constants. Show that there exists a continuous modification
�X which is Hölder continuous with exponent γ for every γ ∈ (0, β/α), that
is for some h(ω) a.s. positive random variable and δ > 0

P

�
ω : sup

0<�t−s�<h(ω)

�Xt(ω)− �Xs(ω)

�t− s�γ ≤ δ

�
= 1.
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Exercise 16. Show that if Wt −Ws ∼ N(0, t− s) then for any n > 0

E|Wt −Ws|2n = Cn|t− s|n,

where Cn = E|Z|n, Z ∼ N(0, 1).

Corollary 4. Wiener process exists.

Proof. We need only the continuity part. The condition of Kolmogorov con-
tinuity theorem holds with α = 2n and β = n− 1 for any n > 1. Thus there
exists a continuous modification on [0, N ], for any N ∈ N. Necessarily, XN1

and XN2 agrees a.s. for any fix t ∈ [0, N1 ∧ N2], which allows us to extend
the process to [0,∞).

In fact, we proved that the Wiener process is locally γ-Hölder continuous
for any γ < 1/2.

Exercise 17. Let (Nt) be a Poisson process with intensity 1. Compute the
order E|Nt −Ns|α for t− s small. (Thus the condition in the continuity the-
orem holds for β = 0. Well, of course, Poisson processes are not continuous.)

More generally, we obtain a result on continuity of Gaussian processes.

Theorem 13. Let (Xt) be a Gaussian process with continuous mean function
m, and covariance function r. If there exist positive constants δ, C such that
for all s, t

r(t, t)− 2r(s, t) + r(s, s) ≤ C|t− s|δ,
then (Xt) has a continuous modification which is locally γ-Hölder continuous
for any γ ∈ (0, δ/2).

Proof. Subtracting the mean function we may and do assume that m(t) ≡ 0.
Simply

Var(Xt −Xs) = r(t, t)− 2r(s, t) + r(s, s) = σ2(s, t),

therefore
E|Xt −Xs|α = E|Z|ασ(s, t)α,

with Z ∼ N(0, 1). Thus

E|Xt −Xs|α ≤ C|t− s|δα/2,

which implies that the condition of the continuity theorem holds with α > 0,
β = δα/2− 1. Letting α → ∞ the result follows.
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Exercise 18 (Fractional Brownian motion). Fractional Brownian motion
with Hurst index H ∈ (0, 1) is a Gaussian process (B(t)) with mean function
m(t) ≡ 0 and covariance function

r(s, t) =
1

2

�
t2H + s2H − |t− s|2H

�
.

Note that H = 1/2 corresponds to the usual Brownian motion.

(i) Show that it is self-similar, i.e. B(at) ∼ aHB(t).
(ii) Show that it has stationary increments: B(t)− B(s) ∼ B(t− s).
(iii) Prove that a continuous modification exists, which is γ-Hölder for any

γ < H. (That is H is the ‘roughness parameter’: for small H the
process strongly oscillates, while for H close to 1 the paths are almost
smooth.)

(iv) Are the increments independent?

Exercise 19. Let (Xt)t∈[0,1] be a continuous Gaussian process with mean 0
and covariance function r(s, t). Show that Y =

� 1

0
Xtdt ∼ N(0, σ2), where

σ2 =

� 1

0

� 1

0

r(s, t) ds dt .

Show that Yt =
� t

0
Xsds is a Gaussian process. Determine its covariance

function.

A version of the continuity theorem is the following.
{thm:Kol-cont2}

Theorem 14. Let T ⊂ R finite or infinite interval, and (Xt)t∈T a stochastic
process such that for δ > 0 small enough

P (|Xt −Xs| ≥ g(δ)) ≤ h(δ) whenever |s− t| < δ , s, t ∈ T,

where g and h are continuous function such that

∞�

n=1

g
�
2−n

�
< ∞ ,

∞�

n=1

2nh
�
2−n

�
< ∞ ,

Then X has a continuous modification.
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Recall that
ϕ(x) =

1√
2π

e−
x2

2

is the standard normal density function, and

Φ(x) =

� x

−∞
ϕ(y)dy

is the standard normal distribution function.
{lemma:Phi-bound}

Lemma 4. For any x > 0
�
1

x
− 1

x3

�
ϕ(x) ≤ 1− Φ(x) ≤ 1

x
ϕ(x)

and
lim
x→∞

1− Φ(x)
1
x
ϕ(x)

= 1.

Proof. The first follows from integrating the inequality
�
1− 3

y4

�
ϕ(y) ≤ ϕ(y) ≤

�
1 +

1

y2

�
ϕ(y),

on (x,∞). The second is immediate from the first.

Using Theorem 14 we obtain a better criteria for continuity.

Corollary 5. Let T ⊂ R be a finite or infinite interval and let (Xt)t∈T be a
Gaussian process with continuous mean function m, and covariance function
r such that for δ small enough

sup
|s−t|≤δ

(r(t, t)− 2r(s, t) + r(s, s)) ≤ C (− log δ)−3(1+α)

for some C > 0, α > 0. Then (Xt) has a continuous modification.

3.2 The space C[0,∞)

As SBM is continuous, its natural space is the space of continuous functions.
Instead of a collection of random variables a stochastic process (Wt) can be
understood as a random element of a function space.

Recall that ρ is a metric if on S
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(i) ρ ≥ 0, ρ(ω1,ω2) = 0 iff ω1 = ω2;
(ii) symmetric;
(iii) the triangle inequality holds, i.e.

ρ(ω1,ω2) ≤ ρ(ω1,ω3) + ρ(ω2,ω3).

Then (S, ρ) is a metric space.
The sequence (xn) is Cauchy if for each ε > 0 there exist n0(ε) such that

ρ(xm, xn) ≤ ε for all m,n ≥ n0. The space (S, ρ) is complete if every Cauchy
sequence converges. A set A ⊂ S is dense, if for any x ∈ S there exists a
sequence (xn) ⊂ A such that xn → x. The space (S, ρ) is separable if there
exists a countable dense subset.

Let C[0,∞) denote the space of continuous real functions on [0,∞) with
metric

ρ(ω1,ω2) =
∞�

n=1

1

2n
max
t∈[0,n]

(|ω1(t)− ω2(t)| ∧ 1) .

Proposition 7. ρ is a metric, and (C[0,∞), ρ) is a complete separable metric
space.

Proof. It is clear that ρ is a metric. Fix a Cauchy sequence (xn). For any
fix N ∈ N the limit limn→∞ xn(t) = x∞(t) exists for t ∈ [0, N ], and it is
continuous. Thus x∞ exists and continuous.

To find a countable dense subset consider functions which are 0 for t ≥ n,
and it is rational at k/n for k = 0, 1, . . . , n2 − 1.

If (S, ρ) is a metric space we can define open sets. The σ-algebra generated
by open sets is the Borel-σ-algebra B(S). With this (S,B(S)) is a measurable
space.

If (Ω,A,P) is a probability space and (S,B(S)) is a measurable space
then a measurable X : Ω → S is a random variable / random element in S.
It induces a probability measure P ◦X−1 on S as

P ◦X−1(B) = P(X ∈ B) = P({ω : X(ω) ∈ B}).

Let (Pn) be a sequence of probability measure on (S,B(S)) and P another
measure on it. Then Pn converges weakly to P , Pn

w→ P , if

lim
n→∞

�

S

f(s)dPn(s) =

�

S

f(s)dP (s)
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for every continuous real function f . Note that the limit measure is neces-
sarily a probability measure.

Let Xn and X be random elements in S, defined possibly on different
probability spaces. The sequence (Xn) converges in distribution to X if the
corresponding induced measures converge weakly. Equivalently,

Ef(Xn) → Ef(X)

for all continuous and bounded f .
Assume that Xn → X in distribution. For any 0 ≤ t1 < . . . < tk consider

the projection πt1,...,tk : C[0,∞) → Rd

πt1,...,tk(ω) = (ω(t1), . . . ,ω(tk)) .

This is clearly continuous. For a continuous bounded function f : Rd → R
the composite function f(πt1,...,tk) is bounded and continuous. Therefore, by
the definition of convergence in distribution

Ef(πt1,...,tk(Xn)) → Ef(πt1,...,tk(X))

that is
Ef(Xn(t1), . . . , Xn(tk)) → Ef(X(t1), . . . , X(tk)).

That is, for any 0 ≤ t1 < . . . < tk

(Xn(t1), . . . , Xn(tk))
D−→ (X(t1), . . . , X(tk)).

This means that the finite dimensional distributions converge.
We proved the following.

Proposition 8. If (Xn) converges in distribution X then all finite dimen-
sional distributions converge.

The converse is not true in general.

Example 8. Let

Xn(t) = ntI[0,(2n)−1](t) + (1− nt)I((2n)−1,n−1](t), t ≥ 0.

Then all finite dimensional distributions converge to the corresponding finite
dimensional distributions of X ≡ 0. However, convergence as a process does
not hold.
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