2.3 Inequalities

Theorem 8 (Doob's maximal inequality). Let (X_t) be a right-continuous submartingale.

(i) For any $0 < S < T < \infty, x > 0$

$$x\mathbf{P}(\sup_{S\leq t\leq T}X_t\geq x)\leq \mathbf{E}X_T^+.$$

(ii) If (X_t) is nonnegative and p > 1 then $\mathbf{E}\left[\sup_{S \le t \le T} X_t\right]^p \le \left(\frac{p}{p-1}\right)^p \mathbf{E}\left[X_T^p\right]$

Proof. (i): Let F_n be as above. Then $(X_t, \mathcal{F}_t)_{t \in F_n}$ is a discrete time martingale. Therefore, by Doob's maximal inequality $(\mathcal{F}_1 \cap \mathcal{F}_1 \cap \mathcal{F}_1) = \{ \mathcal{A}_1, \mathcal{A}_2, \dots \}$

$$y \mathbf{P} \left(\sup_{t \in F_n}^{\mathbf{\mu} \boldsymbol{\xi} \mathbf{X}} X_t > y \right) \leq \mathbf{E} X_T^+$$

Right-continuity implies

$$\left\{\sup_{S \le t \le T} X_t > y\right\} = \bigcup_{n=1}^{\infty} \left\{\sup_{t \in F_n} X_t > y\right\}, \quad \mathcal{J}$$

and the union is increasing. Letting $n \to \infty$

Į

$$y \rightarrow x - y \left(\sup_{S \le t \le T} X_t > y \right) \le \mathbf{E} X_T^+.$$

Letting $y \uparrow x$ the result follows.

Part (ii) follows as in the discrete time case.

____,..../\\\\ S

 $F_n = \{r_1, ..., r_n\} \cup \{s, T\}$

Exercise 9. Let N be a Poisson process with intensity $\lambda > 0$. Show that for any c > 0

$$\limsup_{t \to \infty} \mathbf{P}\left(\sup_{0 \le s \le t} (N_s - \lambda s) \ge c\sqrt{\lambda t}\right) \le \frac{1}{c\sqrt{2\pi}}$$

and

×

$$\limsup_{t \to \infty} \mathbf{P}\left(\inf_{0 \le s \le t} (N_s - \lambda s) \le -c\sqrt{\lambda t}\right) \le \frac{1}{c\sqrt{2\pi}}.$$

Show that for any $0 < S < T < \infty$

$$\mathbf{E}\sup_{S \le t \le T} \left(\frac{N_t}{t} - \lambda\right)^2 \le \frac{4T\lambda}{S^2}.$$
14

$$N_t - \lambda t$$
 is a unit.

 $\mathbb{P}\left(\sup_{\substack{s \in I\\ s \notin I}} \left(N_{s} - \lambda_{s}\right) \stackrel{>}{=} c(\lambda_{t}) \stackrel{<}{\leq} \frac{1}{c(\lambda_{t})} \stackrel{=}{=} \left(N_{t} - \lambda_{t}\right)^{t}$ Need: lim $f = (N_t - \lambda t)^f = 1$ t-sos $\Lambda t^1 = (N_t - \lambda t)^f = 12\pi t$ 7=1 <u>_</u> YN Porson(1) "part [3.5]=4 $P(X=k)=\frac{1}{k}e^{-\lambda}$ k=D,1,2,... $= \sum_{k=1}^{\infty} \frac{t^{k}}{t^{k}} e^{-t} \frac{s_{k}}{s_{k}} \frac{t^{k}}{s_{k}} e^{-t}$ $= \underbrace{t}^{ft} \underbrace{e}_{-t} \underbrace{f}_{-t} \underbrace{f}_{2\pi}$ $(ft]_{-1}$ $n \cdot \sim (2\pi n) \cdot (\frac{n}{e})$ Studing formula

 $E_{S \leq t \leq t} \left(\frac{M_{t}}{t} - A\right)^{2} = E_{S \leq t} \left(\frac{M_{t} - A}{t}\right)^{2} = E_{S \geq t} \left(\frac{M_{t} - A}$ $\leq S^{-2}$. $E \exp(\frac{V_t - 1t}{2} \leq \frac{-7/2}{2})^{2}$. $S \leq t \leq \tau$ p = 2 $\times E((M-4T)^2)$ = 4.17 52

Corollary 3. Let N be a Poisson process with intensity $\lambda > 0$. Then

$$\lim_{t \to \infty} \frac{N_t}{t} = \lambda \quad a.s.$$

Λ-L //

Proof. By Chebyshev's inequality

$$\mathbf{P}\left(\left|t^{-1}N_{t}-\lambda\right|>\varepsilon\right) \leq \frac{\mathbf{Var}(N_{t})}{t^{2}\varepsilon^{2}} = \frac{\lambda}{\varepsilon^{2}t}$$

Paral Cantelli lamon characterization

By the first Borel–Cantelli-lemma almost surely

$$\frac{1}{\left|\lim_{n\to\infty}\frac{N_{2^{n}}}{2^{n}}=\lambda\right|} P\left(\left|\frac{y'_{2^{n}}}{2^{n}}-1\right| > \varepsilon\right) \leq c \cdot 2^{-n}$$

t

-h

So on a subsequence we are done. In between we have

$$\mathbf{P}\left(\sup_{2^{n}\leq t\leq 2^{n+1}}\left|t^{-1}N_{t}-\lambda\right|>\varepsilon\right)\leq\frac{\mathbf{E}\left(\sup_{2^{n}\leq t\leq 2^{n+1}}\left|t^{-1}N_{t}-\lambda\right|\right)^{2}}{\varepsilon^{2}}$$

$$\mathbf{S=Z}^{h}\qquad \mathbf{T=Z}^{h+1}\qquad \leq\frac{42^{n+1}\lambda}{2^{2n}\varepsilon^{2}}=2^{-n}\frac{8\lambda}{\varepsilon^{2}}.$$

Applying Borel–Cantelli again, we are done.

2.4**Optional stopping**

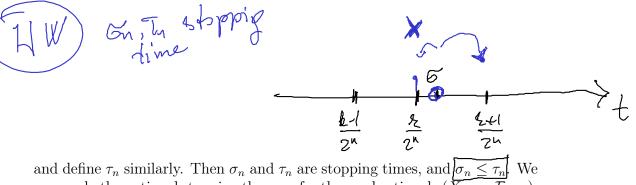
Let $(X_t, \mathcal{F}_t)_{t \in [0,\infty)}$ be a right-continuous submartingale. It has a *last element* X_{∞} , if X_{∞} is measureable with respect to the σ -algebra $\mathcal{F}_{\infty} = \sigma (\cup_{t \geq 0} \mathcal{F}_t)$, $\mathbf{E}|X_{\infty}| < \infty$ and for all $t \ge 0$ $\mathbf{E}[X_{\infty}|\mathcal{F}_t] \ge X_t$ a.s.

If we work on the finite time horizon [0, T], $T < \infty$, then the submartingale $(X_t)_{t \in [0,T]}$ has a last element X_T (by definition!).

Theorem 9 (Optional stopping). Let $(X_t, \mathcal{F}_t)_{t>0}$ be a right-continuous submartingale with last element X_{∞} . Let $\sigma \leq \tau$ be stopping times. Then

$$\mathbf{E}[X_{\tau}|\mathcal{F}_{\sigma}] \ge X_{\sigma} \quad a.s.$$

Proof. Assume that τ is bounded, i.e. $\tau \leq K$. Let



and define τ_n similarly. Then σ_n and τ_n are stopping times, and $\sigma_n \leq \tau_n$. We can apply the optional stopping theorem for the sumbartingale $(X_{k/2^n}, \mathcal{F}_{k/2^n})$, and stopping times σ_n, τ_n . Then

$$\mathbf{E}[X_{\tau_n}|\mathcal{F}_{\sigma_n}] \ge X_{\sigma_n},$$

that is for $A \in \mathcal{F}_{\sigma_n}$ $\begin{aligned} & \underbrace{\mathsf{def}}_{\text{Since } \sigma_n} \geq \sigma \text{ for each } n, \ \mathcal{F}_{\sigma_n} \supset \mathcal{F}_{\sigma}. \ \text{Therefore, for } A \in \mathcal{F}_{\sigma} \end{aligned}$ $\int_{A} X_{\tau_n} \mathrm{d}\mathbf{P} \geq \int_{A} X_{\sigma_n} \mathrm{d}\mathbf{P}.$

By the right-continuity $X_{\tau_n} \to X_{\tau}$ and $X_{\sigma_n} \to X_{\sigma}$ a.s. This combined with the uniform integrability implies

$$\int_{A} X_{\tau} d\mathbf{P} \geq \int_{A} X_{\sigma} d\mathbf{P},$$

$$= \sum_{i=1}^{n} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1$$

2.5**Doob-Meyer** decomposition

The Doob-Meyer decomposition is the continuous time analogue of the Doob's decomposition of submartingales. While the latter is basically trivial, the Doob-Meyer decomposition is highly nontrivial, and needs further assumptions.

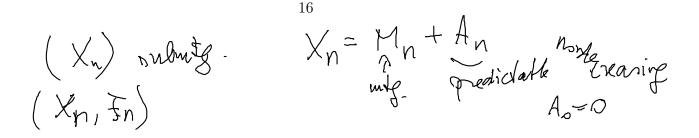
Recall that a class \mathcal{D} of random variables are *uniformly integrable*, if for any $\varepsilon > 0$ there exists K > 0 such that for all $X \in \mathcal{D}$

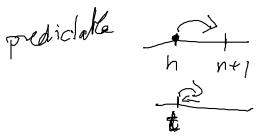
$$\int_{|X|>K} |X| \mathrm{d}\mathbf{P} < \varepsilon.$$

Put

$$\mathcal{S}_a = \{ \tau : \tau \text{ stopping time }, \tau \leq a \}.$$

The adapted process (X_t) belongs to the class DL is for any a > 0 the class $\{X_{\tau}\}_{\tau\in\mathcal{S}_a}$ of random variables is uniformly integrable.





Theorem 10 (Doob-Meyer decomposition). Let $(X_t, \mathcal{F}_t)_t$ be a right-continuous submartingale in DL. Then there exist (M_t) and (A_t) such that (M_t) is a martingale, (A_t) is an adapted nondecreasing right-continuous process with $A_0 \equiv 0$, and $X_t = M_t + A_t$, $t \geq 0$.

Furthermore, the decomposition is unique.

Example 7. If (N_t) is a Poisson process with intensity $\lambda > 0$, then it is a submartingale. Its Doob-Meyer decomposition is

$$N_t = (N_t - \lambda t) + \lambda t.$$
 destruction

If (W_t) is a standard Brownian motion, then (W_t^2) is a submartingale and its Doob-Meyer decomposition is

$$W_t^2 = \underbrace{(W_t^2 - t)}_{\text{witp.}} + \widehat{t}.$$

3 Wiener process

3.1 First properties and existence

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space. Then $W = (W_t, \mathcal{F}_t)_{t \ge 0}$ is a Wiener process or standard Brownian motion if

- (W1) $W_0 = 0$ a.s.,
- (W2) W has independent increments, that is $W_t W_s$ is independent of \mathcal{F}_s for any s < t,
- (W3) $W_t W_s \sim N(0, t s),$
- (W4) W_t has continuous sample path.

Exercise 11. Show that (W2) and (W3) with s = 0 (i.e. $W_t \sim N(0, t)$) implies (W3).

Proposition 5. (i) $\mathbf{E}(W_t) = 0$ for all t. (ii) $\mathbf{Cov}(W_s, W_t) = \mathbf{E}(W_s W_t) = \min(s, t) =: s \land t, s, t \ge 0.$ $(\mathcal{W} \ \mathcal{S}) \land \mathcal{W}_t \sim \mathcal{N}(\mathcal{O}_1 \ \mathcal{L})$. $(\mathcal{W} \ \mathcal{S}) \land \mathcal{W}_t \sim \mathcal{N}(\mathcal{O}_1 \ \mathcal{L})$. $(\mathcal{W} \ \mathcal{S}) \land \mathcal{W}_t \sim \mathcal{N}(\mathcal{O}_1 \ \mathcal{L})$.

 $E(W_{t}) = 0 \quad \angle = W_{t} \sim N(0, t) \quad \land$ $t = 0 \quad = 0 \quad = 0$ $Gor(W_{t}, W_{t}) = E(W_{s} W_{t}) - E(W_{s}) \cdot E(W_{t})$ $(= E[(W_{z}-E(W_{z}))(W_{z}-E(W_{z}))]$ $= E(\mathcal{W}_{s} \cdot \mathcal{W}_{t}) = E(\mathcal{W}_{s} \cdot (\mathcal{W}_{s} + \mathcal{U}_{t} - \mathcal{U}_{s}))$ $= E(\mathcal{W}_{s}^{2}) + E(\mathcal{W}_{s}(\mathcal{W}_{t} - \mathcal{U}_{s}))$ indep. $= \operatorname{Van}(W_{s}) + \Theta = 5./$ = 5./

(iii) For any $k \in \mathbb{N}$ and $0 \le t_1 < \cdots < t_k$, the random vector $(W_{t_1}, \ldots, W_{t_k})$ has a multivariate normal distribution with mean 0 and covariance

$$\Sigma = \Sigma_{t_1,\dots,t_k} = \begin{pmatrix} t_1 & t_1 & \cdots & t_1 \\ t_1 & t_2 & \cdots & t_2 \\ \vdots & \vdots & \ddots & \vdots \\ t_1 & t_2 & \cdots & t_k \end{pmatrix}.$$

Proof. Part (i) and (ii) are trivial. For part (iii) note that by the independent increment property the components of

$$X = (W_{t_1}, W_{t_2} - W_{t_1}, \dots, W_{t_k} - W_{t_{k-1}})^{\top}$$

are independent normal random variables. Therefore X is a multivariate normal. Since

$$(W_{t_1},\ldots,W_{t_k})^{\top} = AX_t$$

the statement follows from the fact that a linear transformation of a multivariate normal is normal with covariance matrix $A\mathbf{Cov}(X)A^{\top}$.

Let (X_t) be a stochastic process with finite second moment. Then $m(t) = \mathbf{E}X_t$ is the mean value and $r(s,t) = \mathbf{Cov}(X_s, X_t) = \mathbf{E}([X_s - m(s)][X_t - m(t)])$, is the covariance function.

Clearly \underline{r} is symmetric, and nonnegative definite, i.e.

$$\left\{ \sum_{j=1}^{k} \sum_{\ell=1}^{k} c_j c_\ell r(t_j, t_\ell) \ge 0, \quad k \in \mathbb{N}, \ t_1, \dots, t_k \in T, \ c_1, \dots, c_k \in \mathbb{R}. \right.$$

Definition 1. The stochastic process (X_t) is a Gaussian process with mean function m(t) and covariance function r(t, s) if for any $k \in \mathbb{N}$ and t_1, \ldots, t_k the random vector $(X_{t_1}, \ldots, X_{t_k})$ has multivariate normal distribution with mean $(m(t_1), \ldots, m(t_k))$ and covariance $(r(t_j, t_\ell))_{j,\ell=1}^k$.

A simple, but not very interesting example to a Gaussian process is $X_t = a(t)Z + b(t)$, where $Z \sim N(0, 1)$.

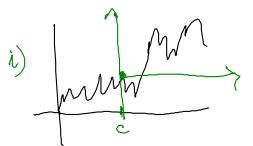
We proved that the Wiener process (W_t) is a Gaussian process with mean $m(t) \equiv 0$ and covariance function $r(s,t) = \min(s,t)$. This could be the definition of the Wiener process.

Proposition 6. Let (W_t) be a continuous Gaussian process with mean 0 and covariance function $r(s,t) = \min(s,t)$. Then (W_t) is a Wiener process.

X 0 < t, < t2 L... Ltg ,, $\begin{array}{c} \mathcal{U}_{t_1} \\ \mathcal{V}_{t_2} \end{array} = \begin{pmatrix} 1 & 1 \\$ 1 1 0 . . 0 1 1 0 . . 0 U41 Uz-ulti 1 _ C WEZ-WOZ Λ Wty difficult? White SW2-Wh milivariase ty to normal Wty-Wty-1 man $= 0 - (0_{1--}, 0)$ Covariance matrix: t₁ $O t_2 - t_1$ O tz tz

 $\begin{pmatrix} w_{t_1} \\ \vdots \\ w_{t_n} \end{pmatrix} = A \cdot X \qquad X \wedge N_t(Q, \Sigma_x)$ $O, A \ge A^{T}$)_l ·-- ·1

Pref of Prop. 6. (WO): W= O as. (W1): independent men. (W2): W-- W, ~ N(A1S) (W3) cont. Nassmued $(W_0): Cov(W_0, W_0) = VarW_0 = 0 \Rightarrow W_0 = 0 ar/$ (W2): Wy-Wz: usrmalr $E(V_t - V_c) = O$ $Var\left(\mathcal{N}_{t}-\mathcal{N}_{s}\right)=Gv\left(\mathcal{N}_{t}-\mathcal{N}_{s},\mathcal{N}_{t}-\mathcal{N}_{s}\right)=$ = Cor(W, 1, 4) + Cor(N, W) - 2 Cor(W, W) = r(t,1) + r(s,s) - Zr(s,t)t + g - 2a = E - 5. N W3): multivariate usual + Cor=) > independence



 $= \left(\mathcal{O} \rho \delta \right)$

Exercise 12. Prove the statement.

Exercise 13. Let (W(t)) be SBM. Show that

(i) $W_1(t) = W(c+t) - W(c), t \ge 0;$ (ii) $W_2(t) = \sqrt{c} W(t/c), t > 0;$

(iii)
$$W_3(t) = tW(1/t)$$

are SBM.

Ņ

 $a \neq v N(0_1 a^2)$ ZuN(21) Kolmogorov's consistency theorem yields the the existence of Gaussian processes.

Theorem 11. Let $\mathbb{T} \subset \mathbb{R}$, and let m(t) be an arbitrary function and r(s,t) a nonnegative definite function. Then there exists a Gaussian process $(X_t)_{t\in\mathbb{T}}$ with mean function m and covariance function r.

Therefore, apart from continuity, we have a Wiener process. That is, we have a probability space $(\mathbb{R}^{[0,\infty)}, \mathcal{B}^{[0,\infty)}, \mathbf{P})$ and a stochastic process $(W_t(\omega))$ $(\omega_t)_{t>0}$, which satisfies (W1)–(W3).

Let $C = C[0, \infty)$ be the space of continuous function on $[0, \infty)$. We have to show that $\mathbf{P}(W \in C) = 1$. The problem is that C does not belong to the product σ -algebra $\mathcal{B}^{[0,\infty)}$. Indeed, it can be shown that

$$\mathcal{B}^{[0,\infty)} = \bigcup \{ \pi_K^{-1}(\mathcal{B}^K) : K \subset [0,\infty), K \text{ countable} \}.$$

Therefore, if $C \in \mathcal{B}^{[0,\infty)}$, then $C = \pi_K^{-1}(\mathcal{B}^K)$ for some countable $K \subset [0,\infty)$. But continuity cannot be determined from the values of the function on a countable set. Similarly,

$$\left\{\omega \in \mathbb{R}^{[0,\infty)} : \sup_{0 \le t \le 1} \omega_t \le x\right\}, \quad x \in \mathbb{R},$$

is not $\mathcal{B}^{[0,\infty)}$ -measurable, so we cannot define $\sup_{t\in[0,1]}\widetilde{W}_t$.

Thus the setup in Kolmogorov's consistency theorem cannot deal with continuous processes. We need a different approach.

Recall that Y is a modification of X if $X_t = Y_t$ a.s. for any fix t, i.e. $\mathbf{P}(X_t = Y_t)$ Y_t = 1 for each $t \ge 0$.

Theorem 12 (Kolmogorov continuity theorem). Let $(X_t)_{t \in [0,T]}$ be a stochastic process on $(\Omega, \mathcal{A}, \mathbf{P})$, such that for some positive constants α, β, C

$$\mathbf{E}|X_t - X_s|^{\alpha} \le C|t - s|^{1+\beta}, \quad 0 \le s, t \le T.$$

Kolupporr ponistancy thui. (Mt, Mt2,..., Wtn) finite dimensional dishibutions $\mathcal{N}_{\mathcal{N}}(\mathcal{M}_{n},\mathcal{Z}_{n}^{7})$ $n \in \mathbb{N}$, $t_1, -, t_n \in (0, \infty)$ $S_{n} = \left(\Gamma(t_{i}, t_{j}) \right)_{i,j=1}^{n} \qquad m_{n} = \left(u_{i}(t_{i}), \dots, u_{i}(t_{n}) \right)^{T}$ We would a process (W4) t E[0, d) We can define/determine due finite dimansional distributions. Under what conditions doer (U/z) exist? process (1/2)+e(1,06) family of finite dimensional dist. $(\mu_{t_{i}, -t_{n}})$

Kolmporov: - permutation invariant $A_1, A_2) = M_{2,1}(A_2, A_1)$ ×1,2 $P(W, \epsilon A_1, W_2 \epsilon A_2) \qquad P(U_2 \epsilon A_2, W_1 \epsilon A_1)$ $P(W_1 \in A_1, W_2 \in \mathbb{R}) = P(W_1 \in A_1)$ compadibility (compadibility)