It is enough to show that on this subsequence the second and third terms in decomposition (5) tends to 0. For the second term

$$\left| \int_{A} (X_{\tau} - X_{\tau \wedge n_{k}}) \mathrm{d}\mathbf{P} \right| = \left| \int_{A \cap \{\tau > n_{k}\}} (X_{\tau} - X_{\tau \wedge n_{k}}) \mathrm{d}\mathbf{P} \right|$$
$$\leq \int_{A \cap \{\tau > n_{k}\}} (|X_{\tau}| + |X_{n_{k}}|) \mathrm{d}\mathbf{P}$$
$$\leq \int_{\{\tau > n_{k}\}} |X_{\tau}| \, \mathrm{d}\mathbf{P} + \int_{\{\tau > n_{k}\}} |X_{n_{k}}| \, \mathrm{d}\mathbf{P}.$$

Similarly, for the third term

$$\left| \int_{A} (X_{\sigma} - X_{\sigma \wedge n_{k}}) \mathrm{d}\mathbf{P} \right| = \left| \int_{A \cap \{\sigma > n_{k}\}} (X_{\sigma} - X_{n_{k}}) \mathrm{d}\mathbf{P} \right|$$
$$\leq \int_{\{\sigma > n_{k}\}} |X_{\sigma}| \, \mathrm{d}\mathbf{P} + \int_{\{\tau > n_{k}\}} |X_{n_{k}}| \, \mathrm{d}\mathbf{P}.$$

Using (2) both upper bounds tend to 0.

Corollary 2. Assume that (X_n) is (super-, sub-) martingale, τ is a stopping time, $\mathbf{E}(|X_{\tau}|) < \infty$ and (3) holds. Then

- (i) $\mathbf{E}(X_{\tau}|\mathcal{F}_1) \leq X_1$ and $\mathbf{E}(X_{\tau}) \leq \mathbf{E}(X_1)$ for supermartingales;
- (ii) $\mathbf{E}(X_{\tau}|\mathcal{F}_1) \geq X_1$ and $\mathbf{E}(X_{\tau}) \geq \mathbf{E}(X_1)$ for submartingales;
- (iii) $\mathbf{E}(X_{\tau}|\mathcal{F}_1) = X_1$ and $\mathbf{E}(X_{\tau}) = \mathbf{E}(X_1)$ for martingales.

Some conditions are needed for the optional stopping to hold.

Example 2 (Simple symmetric random walk). Let $\xi, \xi_1, \xi_2, \ldots$ are iid random variables with $\mathbf{P}(\xi = \pm 1) = 1/2$. Let $S_0 = 1$ and $S_n = S_{n-1} + \xi_n$. Then (S_n) is martingale. Let $\tau = \min\{n : S_n = 0\}$. Then τ is a stopping time and the martingale $(S_{\tau \wedge n})_n$ tends to 0 a.s. The optional stopping does not hold as $S_{\tau} \equiv 0$ a.s., while $S_0 = 1$. Clearly, condition (3) does not hold.

Theorem 5 (Wald identity). Let X, X_1, X_2, \ldots be iid random variables with $\mathbf{E}X = \mu \in \mathbb{R}$, and let τ be a stopping time with $\mathbf{E}(\tau) < \infty$. Put $S_n = X_1 + \cdots + X_n$, $n \in \mathbb{N}$. Then $\mathbf{E}(S_{\tau}) = \mu \mathbf{E}(\tau)$.

$$E(S_n) = E \sum_{i=1}^{n} X_{i} =$$

$$= \sum_{i=1}^{n} E X_i = n \mu$$

To see the general case consider the decomposition $S_{\tau} = S_{\tau}^{(+)} - S_{\tau}^{(-)}$ where

$$S_{\tau}^{(+)} = \sum_{k=1}^{\infty} X_{k}^{+} \mathbf{I}(\tau \ge k) \qquad \mathbf{a}^{+} = \max\left(\mathbf{0}, \mathbf{a}\right)$$
$$S_{\tau}^{(-)} = \sum_{k=1}^{\infty} X_{k}^{-} \mathbf{I}(\tau \ge k). \qquad \mathbf{a}^{-} = \max\left(\mathbf{0}, -\mathbf{a}\right)$$
$$\mathbf{a} = \mathbf{a}_{\Box}^{+} - \mathbf{a}_{\Box}^{-}$$

As a simple application of the optional stopping problem we consider the gambler's ruin problem. There is an elementary but longer way to derive these formulas.

and

Example 3 (Gambler's ruin). Let X, X_1, X_2, \ldots be iid random variables such that $\mathbf{P}(X = 1) = p = 1 - \mathbf{P}(X = -1), 0 , and put <math>S_n = X_1 + \dots + X_n$, $n \in \mathbb{N}$. Fix $a, b \in \mathbb{N}$ and let min =6 $\tau = \tau_{a,b}(p) = \inf\{n : S_n \ge b \text{ or } S_n \le -a\},\$

with the convention $\inf \emptyset = \infty$. Let (\mathcal{F}_n) be the natural filtration, i.e. $\mathcal{F}_n = \sigma(X_1, \ldots, X_n), n \in \mathbb{N}$. It is easy to show that $\mathbf{P}(\tau < \infty) = 1$, and τ is a stopping time. Further-

more, $|S_{\tau}| \leq \max(a, b)$, in particular $\mathbf{E}|S_{\tau}| < \infty$ and

$$\liminf_{n \to \infty} \int_{\{\tau > n\}} |S_n| \, \mathrm{d}\mathbf{P} \le \liminf_{n \to \infty} \max(a, b) \mathbf{P}(\tau > n) = 0.$$

Gomber: Jarele with ∧-p p <<>> <>> <>> a ducats +> 1 dops if -3-2-10123 (he boses all his noney ducally M.M. If p=2 then $E(X) = 0 \Rightarrow (S_n)$ is $E(S_T) = E(S_0) = 0$ ヤミシ $-a \cdot P(S_{T} = -a) + lo \cdot \left[l - P(S_{T} = -a) \right]$ $-\alpha P(S_{t}=-\alpha) - b P(S_{t}=-\alpha) + B = 0$

First assume that p = 1/2. Then $\mathbf{E}X = 0$ and (S_n) is a martingale. Therefore, by the optional stopping theorem

$$0 = \mathbf{E}S_0 = \mathbf{E}S_{\tau} = -a\mathbf{P}(S_{\tau} = -a) + b\mathbf{P}(S_{\tau} = b) = -a(1 - \mathbf{P}(S_{\tau} = b)) + b\mathbf{P}(S_{\tau} = b).$$

Thus

$$\mathbf{P}(S_{\tau} = b) = \frac{a}{a+b}$$
 and $\mathbf{P}(S_{\tau} = -a) = \frac{b}{a+b}$.

Using that $(S_n^2 - n)$ is a martingale, we can determine $\mathbf{E}\tau$. Since

spl. doppin
$$0 = \mathbf{E}(S_0^2 - 0) = \mathbf{E}(S_{\tau}^2 - \tau)$$

bbtain $\mathbf{J}_{\mu} = \mathbf{E}(\mathbf{X}_{\mu}, \mathbf{X}_{\mu})$

E(s^K)

 $E(S^{\times}) = 1$

= Zh-1

ø

we o

$$\mathbf{E}\tau = \mathbf{E}(S_{\tau}^{2}) = a^{2}\mathbf{P}(S_{\tau} = -a) + b^{2}\mathbf{P}(S_{\tau} = b) = a^{2}\frac{b}{a+b} + b^{2}\frac{a}{a+b} = ab.$$

The case $p\neq 1/2$ is different. Introduce

with respect to the natural
$$Z_n = s^{S_n} = \prod_{k=1}^n s^{X_k}$$
 $E[Z_n | f_{n-1}] = 5^{S_{n-1}}$.
with $s = (1-p)/p = 1/r$. Then (Z_n) is a martingale and
 $Z_\tau = s^b \mathbf{I}(S_n = b) + s^{-a} \mathbf{I}(S_n = -a) \le s^b + s^{-a}$, $S^{S_{n-1}} X_n = E[S^{Y_n}]_{T_{n-1}}$

thus $\mathbf{E}Z_{\tau} < \infty$ and

Λ

ł

$$\liminf_{n \to \infty} \int_{\{\tau > n\}} |Z_n| \, \mathrm{d}\mathbf{P} \le (s^b + s^{-a}) \liminf_{n \to \infty} \mathbf{P}\{\tau > n\} = 0.$$

Again, by the optional sampling theorem

$$\mathcal{E}(\mathcal{Z}_{\rho}) : \mathcal{E}(\mathcal{Z}_{\tau}) \qquad s^{-a}\mathbf{P}(S_{\tau} = -a) + s^{b}(1 - \mathbf{P}(S_{\tau} = -a))$$
$$= s^{-a}\mathbf{P}(S_{\tau} = -a) + s^{b}\mathbf{P}(S_{\tau} = b)$$
$$= \mathbf{E}(s^{S_{\tau}}) = \mathbf{E}(Z_{\tau})$$
$$= \mathbf{E}(Z_{1}) = \mathbf{E}(s^{X}) = 1.$$

Rearranging we obtain

$$\mathbf{P}(S_{\tau} = -a) = \frac{1 - s^b}{s^{-a} - s^b} \frac{r^b}{r^b} = \frac{r^b - 1}{r^{a+b} - 1} = \frac{1 - r^b}{1 - r^{a+b}}.$$

E(X) = 7(X = 1) - 9(X = -1)

= p-(1-p) = 2p-1 $\mathbf{f}(\mathbf{X})$ To obtain $\mathbf{E}\tau$, using the Wald identity $\mathbf{E}S_{\tau} = (2p-1)\mathbf{E}\tau$

 $m{ heta}$

from which

$$\mathbf{E}\tau = \frac{1}{2p-1}\mathbf{E}S_{\tau} = \frac{1}{2p-1} \left[-a\mathbf{P}(S_{\tau} = -a) + b\mathbf{P}(S_{\tau} = b) \right].$$

Exercise 4 Show that $\tau < \infty$ a.s.

Continuous time martingales $\mathbf{2}$

Definitions and simple properties 2.1

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability spance and $(\mathcal{F}_t)_{t\geq 0}$ a filtration, i.e. an increasing sequence of σ -algebras. The time horizon is either finite or infinite, $t \in [0, T]$ or $t \in [0, \infty)$.

In what follows we *always* assume that the filtration satisfies the *usual* propreties: Oft join general

(i) \mathcal{F}_0 contains the **P**-null sets;

(ii) $(\mathcal{F}_t)_t$ is right-continuous, i.e. $\bigcap_{s>t} \mathcal{F}_s =: \mathcal{F}_{t+} = \mathcal{F}_t$ Let (X_t) and (Y_t) be stochastic processes. The process Y is a modification intersection Jo-alg.is of X if $X_t = Y_t$ a.s. for any fix t i.e. $\mathbf{P}(X_t = Y_t) = 1$ for each $t \ge 0$. The processes X and Y are *indistuinguishable* if their sample path are the same almost surely, i.e.

$$\mathbf{P}(X_t = Y_t, \ t \ge 0) = 1.$$

They have the same finite dimensional distributions if for all $0 \le t_1 < t_2 < \uparrow f$ $\ldots < t_n < \infty$ and $A \in \mathcal{B}(\mathbb{R}^n)$

$$\mathbf{P}\left(\left(X_{t_1},\ldots,X_{t_n}\right)\in A\right)=\mathbf{P}\left(\left(Y_{t_1},\ldots,Y_{t_n}\right)\in A\right).$$

Example 4. Let U be uniform(0, 1), and $X_t \equiv 0, t \in [0, 1]$, and $Y_t = \mathbf{I}(U = \mathbf{I})$ t). Then Y is a modification of X, but they are not indistuinguishable, since

$$\mathbf{P}(X_t = Y_t, \ t \ge 0) = 0.$$

The process $(X_t)_t$ is adapted to the filtration $(\mathcal{F}_t)_t$, if X_t is \mathcal{F}_t -measureable for each $t \geq 0$. The process $(X_t, \mathcal{F}_t)_t$ is a martingale if

X

- (i) $(X_t)_t$ is adapted to $(\mathcal{F}_t)_t$;
- (ii) $\mathbf{E}|X_t| < \infty$ for all $t \ge 0$;
- (iii) $\mathbf{E}[X_t | \mathcal{F}_s] = X_s$ a.s. for all $t \ge s$.

It is sub- or supermartingale if (i) and (ii) holds, and (iii) holds with \geq or \leq instead of =.

A random variable $\tau : \Omega \to [0, \infty)$ is a stopping time if $\{\tau \leq t\} \in \mathcal{F}_t$. The σ -algebra of the events prior to τ , or pre- τ - σ -algebra is

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F} : A \cap \{ \tau \le t \} \in \mathcal{F}_t \text{ for all } t \ge 0 \}.$$

Exercise 5. Show that \mathcal{F}_{τ} is indeed a σ -algebra.

The next result is obvious, but very useful.

Proposition 2. Let (X_t, \mathcal{F}_t) be a (sub-, super-) martingale. Then for any sequence $0 \leq t_0 < t_1 < \ldots < t_N < \infty$ the process $(X_{t_n}, \mathcal{F}_{t_n})_{n=0}^N$ is a discrete time martingale.

Lemma 3. Let σ, τ be stopping times.

- (i) τ is \mathcal{F}_{τ} -measureable.
- (*ii*) If $\tau \equiv t$ then $\mathcal{F}_{\tau} = \mathcal{F}_{t}$.
- (iii) $\sigma \wedge \tau = \min(\sigma, \tau)$ and $\sigma \vee \tau = \max(\sigma, \tau)$ are stopping times.
- (iv) If $\sigma \leq \tau$, then $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$.
- (v) If $(X_t)_t$ is right-continuous and adapted then X_{τ} is \mathcal{F}_{τ} -measurable.

Exercise 6. Prove the lemma.

Remark 1. In continuous time the technical detailes are trickier.

The process $(X_t)_t$ is adapted to $(\mathcal{F}_t)_t$, if X_t is \mathcal{F}_t -measurable, and it is progressively measurable with respect to $(\mathcal{F}_t)_t$, if for all $t \geq 0$ and $A \in \mathcal{B}(\mathbb{R}^d)$

$$[O,t] \times \mathcal{S} \qquad \{(s,\omega) : s \leq t, \ X_s(\omega) \in A\} \in \mathcal{B}([0,t]) \otimes \mathcal{F}_t,$$

where \mathcal{B} stands for the Borel sets, and \otimes is the product σ -algebra. In what follows we always need progressive measureability, adaptedness is not enough.

The next statement says that the situation is not too bad.

Proposition 3. If $(X_t)_t$ is right continuous and adapted, then it is progressively measureable.

Example 5 (Poisson process). A Poisson process with intensity $\lambda > 0$ is an adapted integer valued RCLL (right continuous with left limits) process $N = (N_t, \mathcal{F}_t)_{t \ge 0}$ such that

- (i) N has independent increments, that is $N_t N_s$ is independent of \mathcal{F}_s for any s < t,
- (ii) $N_0 = 0$ a.s.,
- (iii) $N_t N_s \sim \text{Poisson}(\lambda(t-s)).$

Exercise 7. Show that $(N_t - \lambda t)$ is martingale.

Proposition 4. Let (X_t) be a martingale, and φ a convex function such that $\mathbf{E}[\varphi(X_t)] < \infty$ for all $t \geq 0$. Then $(\varphi(X_t))$ is submartingale.

Furthermore if (X_t) is a submartingale and φ nondecreasing and convex that $\mathbf{E}[\varphi(X_t)] < \infty$ for all $t \geq 0$, then $(\varphi(X_t))$ is a submartingale.

Example 6 (Wiener process). The Wiener process or standard Brownian motion is an adapted process $W = (W_t, \mathcal{F}_t)_{t \geq 0}$ such that

- (i) W has independent increments, that is $W_t W_s$ is independent of \mathcal{F}_s for any s < t,
- (ii) $W_0 = 0$ a.s.,
- (iii) $W_t W_s \sim N(0, t s)$, by Gaultin
- (iv) W_t has continuous sample path.

Exp(1)

Exercise 8. Show that (W_t) and $(W_t^2 - t)$ are martingales.

2.2Martingale convergence theorem

Consider an adapted stochastic process $(X_t)_{t\geq 0}$. Fix a < b, and a finite set $F \subset [0,\infty)$. Let U_F denote the number of upcrossings of the interval [a,b]by the restricted process $(X_t)_{t\in F}$. Formally, let $\tau_0 = 0$, and

$$\tau_{2k-1} = \min\{t \in F : t \ge \tau_{2k-2}, X_t < a\},\\ \tau_{2k} = \min\{t \in F : t \ge \tau_{2k-1}, X_t > b\}.$$

The number of upcrossings on F is

$$U_F(a,b) = U_F = \max\{k : \tau_{2k} < \infty\}.$$

(Nt) ~ Porson process 150 ind inc.
 N-N-V Psichon(1(+-s))
 N-V - a-s F_= = (Ng' s < t) navural filhavion N-It is mig. ちくし: $E[N_t - A + F_s] = E[N_s + N_t - N_s - A + F_s]$ = $N_s + E \left[N_t - N_s - A + |F_s \right] =$ inder. = $V_{s} + E(V_{t} - N_{s} - \lambda t) = N_{s} + \lambda(t - s) - \lambda t$ Ng-25. N-1s 1 2 21

(₩_); holg. meant, indep. of is $E[W_{t}|Y_{s}] = E[W_{t}+W_{t}-W_{s}|Y_{s}]$ $= W_{s} + E(W_{t} - W_{s}) = W_{s}$ ~ ×(0,t-a) W/ moly $\left(\frac{w^2}{t} \right)$ suburg. (W2-t) is not g. $E[W_{1}^{2}-t|F_{s}] = E[W_{2}^{2}+W_{1}^{2}-W_{s}^{2}-t|F_{s}]$ $= W_{s}^{2} - t + E \left[W_{t}^{2} - W_{s}^{2} | F_{s} \right]$ $\left(w_{1} - w_{s} \right) \left(w_{1} + w_{s} \right)$

 $= W_{s}^{2} - t + E \left[W_{s} \left(V_{t}^{2} - V_{s}^{2} \right) + W_{t}^{2} \left(V_{t}^{2} - V_{s}^{2} \right) \right] + W_{t}^{2} \left[V_{s}^{2} + V_{s}^{2} \right]$ $= \mathcal{W}_{g}^{2} - t + \mathcal{W}_{g} \cdot \mathcal{E} \left[\mathcal{W}_{t}^{2} - \mathcal{W}_{g}^{2} \right] +$ $+ \left[\left(\mathcal{W}_{1} + \mathcal{W}_{1} - \mathcal{W}_{2} \right) \left(\mathcal{W}_{1} - \mathcal{W}_{3} \right) \right] + \left[\mathcal{W}_{1} + \mathcal{W}_{2} - \mathcal{W}_{3} \right]$ $= W_{s}^{2} - t + W_{s} \cdot E(W_{t} - W_{s}) +$ $+ W_{s} \cdot E(W_{t} - W_{s}) + E((W_{t} - W_{s})^{2})$ +) + +-5 = W/5-3 $= W_{z}^{2} - t + O$ > (Wit-t) in a mitg.

We can extend the definition of infinite sets $I \subset [0, \infty)$ as

$$U_I = \sup\{U_F : F \subset I, F \text{ finite}\}.$$

We have the upcrossing inequality.

Theorem 6 (Upcrossing inequality). Let (X_t) be a right-continuous submartingale. For any a < b and $0 \le S \le T < \infty$

$$(b-a)\mathbf{E}U_{[S,T]} \le \mathbf{E}(X_T-a)^+ - \mathbf{E}(X_S-a)^+.$$

Proof. Consider an enumeration of the countable set $\mathbf{Q} \cap [S, T]$ as

$$\mathbf{Q} \cap [S,T] = \{q_1, q_2, \ldots\},$$

$$\{q_1, \ldots, q_n\} \cup \{\mathbf{S}, \mathbf{f}\}.$$
 Then $(X_t, \mathcal{F}_t)_{t \in F_n}$ is a discrete time mar-

and let $F_n = \{q_1, \ldots, q_n\} \cup \{ \!\!\!\ \ \ \!\!\!\ \}$. Then $(X_t, \mathcal{F}_t)_{t \in F_n}$ is a discrete time martingale, therefore, by the upcrossing inequality

$$(b-a)\mathbf{E}U_{F_n} \leq \mathbf{E}(X_T-a)^+ - \mathbf{E}(X_S-a)^+$$

Since F_n is increasing, U_{F_n} is increasing, and by the right-continuity of (X_t)

$$\lim_{n \to \infty} U_{F_n} = U_{[S,T]} \quad \text{a.s.}$$

In particular, $U_{[S,T]}$ is measurable, and by the monotone convergence theorem the result follows.

Theorem 7 (Martingale convergence theorem). Let (X_t) be a right-continuous submartingale such that

$$\sup_{t\geq 0} \mathbf{E}(X_t^+) < \infty.$$

Then $\lim_{t\to\infty} X_t = X$ exists a.s. and $\mathbf{E}|X| < \infty$.

Proof. By the upcrossing inequality and the monotone convergence theorem for any a < b

$$\mathbf{E}U_{[0,\infty)}(a,b) \le \frac{\sup_{t\ge 0} \mathbf{E}X_t^+ + |a|}{b-a}.$$

Therefore, for any a < b the upcrossings $U_{[0,\infty)}(a,b)$ are a.s. finite. Thus almost surely the uppcrossings are finite for all a < b rationals, implying the existence of the limit.

The integrability of the limit follows from Fatou's lemma.

 $A_{a,b} \stackrel{a}{\sim} \left\{ \begin{array}{l} \mathcal{U}_{[\mathcal{O},\infty)}(a,b) = \infty \end{array} \right\}^{13} \quad \mathcal{P}(A_{a,b}) = 0$ $A_{a,b} \stackrel{a}{\sim} \left\{ \begin{array}{l} \mathcal{U}_{[\mathcal{O},\infty)}(a,b) = \infty \end{array} \right\}^{13} \quad \mathcal{P}(A_{a,b}) = 0.$

•• O, a • ₽<u></u>и εĬ I 1