It is enough to show that on this subsequence the second and third terms in decomposition (5) tends to 0 . For the second term

$$
\begin{aligned}
\left|\int_{A}\left(X_{\tau}-X_{\tau \wedge n_{k}}\right) \mathrm{d} \mathbf{P}\right| & =\left|\int_{A \cap\left\{\tau>n_{k}\right\}}\left(X_{\tau}-X_{\tau \wedge n_{k}}\right) \mathrm{d} \mathbf{P}\right| \\
& \leq \int_{A \cap\left\{\tau>n_{k}\right\}}\left(\left|X_{\tau}\right|+\left|X_{n_{k}}\right|\right) \mathrm{d} \mathbf{P} \\
& \leq \int_{\left\{\tau>n_{k}\right\}}\left|X_{\tau}\right| \mathrm{d} \mathbf{P}+\int_{\left\{\tau>n_{k}\right\}}\left|X_{n_{k}}\right| \mathrm{d} \mathbf{P} .
\end{aligned}
$$

Similarly, for the third term

$$
\begin{aligned}
\left|\int_{A}\left(X_{\sigma}-X_{\sigma \wedge n_{k}}\right) \mathrm{d} \mathbf{P}\right| & =\left|\int_{A \cap\left\{\sigma>n_{k}\right\}}\left(X_{\sigma}-X_{n_{k}}\right) \mathrm{d} \mathbf{P}\right| \\
& \leq \int_{\left\{\sigma>n_{k}\right\}}\left|X_{\sigma}\right| \mathrm{d} \mathbf{P}+\int_{\left\{\tau>n_{k}\right\}}\left|X_{n_{k}}\right| \mathrm{d} \mathbf{P} .
\end{aligned}
$$

Using (2) both upper bounds tend to 0 .
Corollary 2. Assume that $\left(X_{n}\right)$ is (super-, sub-) martingale, τ is a stopping time, $\mathbf{E}\left(\left|X_{\tau}\right|\right)<\infty$ and (3) holds. Then
(i) $\mathbf{E}\left(X_{\tau} \mid \mathcal{F}_{1}\right) \leq X_{1}$ and $\mathbf{E}\left(X_{\tau}\right) \leq \mathbf{E}\left(X_{1}\right)$ for supermartingales;
(ii) $\mathbf{E}\left(X_{\tau} \mid \mathcal{F}_{1}\right) \geq X_{1}$ and $\mathbf{E}\left(X_{\tau}\right) \geq \mathbf{E}\left(X_{1}\right)$ for submartingales;
(iii) $\mathbf{E}\left(X_{\tau} \mid \mathcal{F}_{1}\right)=X_{1}$ and $\mathbf{E}\left(X_{\tau}\right)=\mathbf{E}\left(X_{1}\right)$ for martingales.

Some conditions are needed for the optional stopping to hold.
Example 2 (Simple symmetric random walk). Let $\xi, \xi_{1}, \xi_{2}, \ldots$ are id random variables with $\mathbf{P}(\xi= \pm 1)=1 / 2$. Let $S_{0}=1$ and $S_{n}=S_{n-1}+\xi_{n}$. Then $\left(S_{n}\right)$ is martingale. Let $\tau=\min \left\{n: S_{n}=0\right\}$. Then τ is a stopping time and the martingale $\left(S_{\tau \wedge n}\right)_{n}$ tends to 0 a.s. The optional stopping does not hold as $S_{\tau} \equiv 0$ a.s., while $S_{0}=1$. Clearly, condition (3) does not hold.

Theorem 5 (Wald identity). Let X, X_{1}, X_{2}, \ldots be id random variables with $\mathbf{E} X=\mu \in \mathbb{R}$, and let τ be a stopping time with $\mathbf{E}(\tau)<\infty$. Put $S_{n}=$ $X_{1}+\cdots+X_{n}, n \in \mathbb{N}$. Then $\mathbf{E}\left(S_{\tau}\right)=\mu \mathbf{E}(\tau)$.

$$
\begin{aligned}
E\left(S_{n}\right) & =E \sum_{i=1}^{n} X_{i}= \\
& =\sum_{i=1}^{n} E X_{i}=n \mu .
\end{aligned}
$$

$$
\{\tau \leq z-1\}=\{\tau \geq d\} \in F_{k-1}
$$

Proof. First assume $X \geq 0$. We have

$$
\sum_{i=1}^{=} x_{i} \quad t^{F_{2}=-1}=\sigma\left(x_{1}, \cdots, x_{k}\right)
$$

$$
\begin{aligned}
E(X) & =\int_{0}^{\infty} P(X>x) d x \\
& =\sum_{i=1}^{\infty} p(X \geqslant k)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{E}\left(S_{\tau}\right) & =\mathbf{E}\left(\sum_{k=1}^{\infty} \mathbf{I}(\tau \geq k) X_{k}\right)^{\mathbf{R}} \mathbf{n}^{\boldsymbol{n}} \\
& =\sum_{k=1}^{\infty} \mathbf{E}\left(\mathbf{I}(\tau \geq k) X_{k}\right) \\
& ? \\
& =\mu \sum_{k=1}^{\infty} \mathbf{E}(\tau \geq k) \mathbf{E}\left(X_{k}\right) \\
& =\mu \mathbf{E}(\tau) .
\end{aligned}
$$

$$
\left.E[\widetilde{I(-3 \leq l}) \cdot x_{l}\right]=
$$

$$
=E(I(\tau, r)) \cdot E\left(x_{n}\right)
$$

$$
\pi
$$

indereoutence

To see the general case consider the decomposition $S_{\tau}=S_{\tau}^{(+)}-S_{\tau}^{(-)}$where

$$
S_{\tau}^{(+)}=\sum_{k=1}^{\infty} X_{k}^{+} \mathbf{I}(\tau \geq k)
$$

$$
\begin{aligned}
& a^{+}=\max (0, a) \\
& a^{-}=\max (0,-a) \\
& a=a^{+}-a^{-}
\end{aligned}
$$

and

$$
S_{\tau}^{(-)}=\sum_{k=1}^{\infty} X_{k}^{-} \mathbf{I}(\tau \geq k)
$$

As a simple application of the optional stopping problem we consider the gambler's ruin problem. There is an elementary but longer way to derive these formulas.
Example 3 (Gambler's ruin). Let X, X_{1}, X_{2}, \ldots be fid random variables such that $\mathbf{P}(X=1)=p=1-\mathbf{P}(X=-1), 0<p<1$, and put $S_{n}=X_{1}+\cdots+X_{n}$, $n \in \mathbb{N}$. Fix $a, b \in \mathbb{N}$ and let

$$
\begin{aligned}
& \min =\mathbf{b} \\
& =\inf \left\{n: S_{n} \geq b \text { or } S_{n} \leq-a\right\},
\end{aligned}
$$

with the convention $\inf \emptyset=\infty$. Let $\left(\mathcal{F}_{n}\right)$ be the natural filtration, i.e. $\mathcal{F}_{n}=$ $\sigma\left(X_{1}, \ldots, X_{n}\right), n \in \mathbb{N}$.

It is easy to show that $\mathbf{P}(\tau<\infty)=1$, and τ is a stopping time. Furthermore, $\left|S_{\tau}\right| \leq \max (a, b)$, in particular $\mathbf{E}\left|S_{\tau}\right|<\infty$ and

$$
\liminf _{n \rightarrow \infty} \int_{\{\tau>n\}}\left|S_{n}\right| \mathrm{d} \mathbf{P} \leq \liminf _{n \rightarrow \infty} \max (a, b) \mathbf{P}(\tau>n)=0
$$

$$
\begin{aligned}
& \text { Gamber: A Jacte nith } \\
& \text { a ducats } \\
& \text { rlops if } \\
& \text { he bres all } \\
& \text { his noskey } \\
& \text { in he wing } b \\
& \text { ducals } \\
& \nabla=\frac{1}{2}-\text { If } \Phi=\frac{1}{2} \text { then } E(x)=0 \Rightarrow\left(S_{n}\right) \text { is } \\
& E\left(S_{\tau}\right)=E\left(S_{0}\right)=0 \\
& -a \cdot P\left(S_{\tau}=-a\right)+b \cdot[\underbrace{1-P\left(S_{\tau}=-a\right)}_{P\left(S_{T}=b\right)}] \\
& -a P\left(S_{T}=-a\right)-b P\left(S_{\tau}=-a\right)+b=0
\end{aligned}
$$

First assume that $p=1 / 2$. Then $\mathbf{E} X=0$ and $\left(S_{n}\right)$ is a martingale. Therefore, by the optional stopping theorem

$$
\begin{aligned}
0 & =\mathbf{E} S_{0}=\mathbf{E} S_{\tau}=-a \mathbf{P}\left(S_{\tau}=-a\right)+b \mathbf{P}\left(S_{\tau}=b\right) \\
& =-a\left(1-\mathbf{P}\left(S_{\tau}=b\right)\right)+b \mathbf{P}\left(S_{\tau}=b\right)
\end{aligned}
$$

Thus

$$
\mathbf{P}\left(S_{\tau}=b\right)=\frac{a}{a+b} \quad \text { and } \quad \mathbf{P}\left(S_{\tau}=-a\right)=\frac{b}{a+b}
$$

Using that $\left(S_{n}^{2}-n\right)$ is a martingale, we can determine $\mathbf{E} \tau$. Since

$$
\begin{aligned}
& \text { opt. ropoppip } 0=\mathbf{E}\left(S_{0}^{2}-0\right)=\mathbf{E}\left(S_{\tau}^{2}-\tau\right) \\
& \text { obtain } \\
& \mathbf{E} \tau=\mathbf{E}\left(S_{\tau}^{2}\right)=a^{2} \mathbf{P}\left(S_{\tau}=-a\right)+b^{2} \mathbf{P}\left(S_{\tau}=b\right)=a^{2} \frac{b}{a+b}+b^{2} \frac{a}{a+b}=a b .
\end{aligned}
$$

The case $p \neq 1 / 2$ is different. Introduce

with rapped to the natural fila $\sqrt{Z_{n}=s^{S_{n}}=\prod_{k=1}^{n} s^{X_{k}}}$
with $s=\frac{(1-p) / p}{Z_{\tau}}=1 / r$. Then $\left(Z_{n}\right)$ is a martingale and
$z^{b} \mathbf{I}\left(S_{n}=b\right)+s^{-a} \mathbf{I}\left(S_{n}=-a\right) \leq s^{b}+s^{-a}$,

$$
\overline{Z_{\tau}}=s^{b} \mathbf{I}\left(S_{n}=b\right)+s^{-a} \mathbf{I}\left(S_{n}=-a\right) \leq s^{b}+s^{-a}
$$

thus $\mathbf{E} Z_{\tau}<\infty$ and

$$
F_{n}=6\left(X_{1},-X_{n}\right)
$$

$=$

$$
E\left[Z_{n} \mid f_{n-1}\right]=s^{s_{n-1}}
$$

$$
\begin{gathered}
s_{n=1}^{s_{n}}+x_{n} \cdot E\left[g_{n}^{x_{n}} \mid x_{n}\right]
\end{gathered}
$$

1
/

$$
\left.\liminf _{n \rightarrow \infty} \int_{\{\tau>n\}}\left|Z_{n}\right| \mathrm{d} \mathbf{P} \leq\left(s^{b}+s^{-a}\right) \liminf _{n \rightarrow \infty} \mathbf{P}\{\tau>n\}=0 . \quad=\mathcal{Z}_{n-1}: A s^{X}\right)
$$

$$
\begin{aligned}
& \text { Again, by the optional sampling theorem } \\
& \left.\mathbf{E}_{\boldsymbol{\rho}}\right)=\boldsymbol{E}\left(\mathbf{Z}_{\boldsymbol{\tau}}\right) \quad \begin{array}{l}
s^{-a} \mathbf{P}\left(S_{\tau}=-a\right)+s^{b}\left(1-\mathbf{P}\left(S_{\tau}=-a\right)\right) \\
=s^{-a} \mathbf{P}\left(S_{\tau}=-a\right)+s^{b} \mathbf{P}\left(S_{\tau}=b\right) \\
\\
=\mathbf{E}\left(s^{S_{\tau}}\right)=\mathbf{E}\left(Z_{\tau}\right) \\
\\
=\mathbf{E}\left(Z_{1}\right)=\mathbf{E}\left(s^{X}\right)=1
\end{array} .
\end{aligned}
$$

Rearranging we obtain

$$
\mathbf{P}\left(S_{\tau}=-a\right)=\frac{1-s^{b}}{s^{-a}-s^{b}} \frac{r^{b}}{r^{b}}=\frac{r^{b}-1}{r^{a+b}-1}=\frac{1-r^{b}}{1-r^{a+b}}
$$

$$
E(x)=7(x=1)-9(x=-1)
$$

To obtain $\mathbf{E} \tau$, using the Wald identity $E(X)$

$$
\mathbf{E} S_{\tau}=(2 p-1) \mathbf{E} \tau
$$

from which

$$
\mathbf{E} \tau=\frac{1}{2 p-1} \mathbf{E} S_{\tau}=\frac{1}{2 p-1}\left[-a \mathbf{P}\left(S_{\tau}=-a\right)+b \mathbf{P}\left(S_{\tau}=b\right)\right]
$$

Exercise $\mathbf{4}_{\boldsymbol{1}}$ Show that $\tau<\infty$ a.s.

2 Continuous time martingales

2.1 Definitions and simple properties

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability spance and $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ a filtration, i.e. an increasing sequence of σ-algebras. The time horizon is either finite or infinite, $t \in[0, T]$ or $t \in[0, \infty)$.

In what follows we always assume that the filtration satisfies the usual propreties:
(i) \mathcal{F}_{0} contains the \mathbf{P}-null sets;

$t>s$
(ii) $\left(\mathcal{F}_{t}\right)_{t}$ is right-continuous, i.e. $\left.\cap_{s>t} \mathcal{F}_{s}=: \mathcal{F}_{t+}=\mathcal{F}_{t}\right\}$

Let $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ be stochastic processes. The process Y is a modification of X if $X_{t}=Y_{t}$ a.s. for any fix t, ie. $\mathbf{P}\left(X_{t}=Y_{t}\right)=1$ for each $t \geq 0$. The processes X and Y are indistinguishable if their sample path are the same almost surely, ie.

$$
\mathbf{P}\left(X_{t}=Y_{t}, t \geq 0\right)=1
$$

They have the same finite dimensional distributions if for all $0 \leq t_{1}<t_{2}<$ $\ldots<t_{n}<\infty$ and $A \in \mathcal{B}\left(\mathbb{R}^{n}\right)$

$$
\mathbf{P}\left(\left(X_{t_{1}}, \ldots, X_{t_{n}}\right) \in A\right)=\mathbf{P}\left(\left(Y_{t_{1}}, \ldots, Y_{t_{n}}\right) \in A\right) .
$$

Example 4. Let U be uniform $(0,1)$, and $X_{t} \equiv 0, t \in[0,1]$, and $Y_{t}=\mathbf{I}(U=$ $t)$. Then Y is a modification of X, but they are not indistuinguishable, since

$$
\mathbf{P}\left(X_{t}=Y_{t}, t \geq 0\right)=0
$$

The process $\left(X_{t}\right)_{t}$ is adapted to the filtration $\left(\mathcal{F}_{t}\right)_{t}$, if X_{t} is \mathcal{F}_{t}-measureable for each $t \geq 0$. The process $\left(X_{t}, \mathcal{F}_{t}\right)_{t}$ is a martingale if
(i) $\left(X_{t}\right)_{t}$ is adapted to $\left(\mathcal{F}_{t}\right)_{t}$;
(ii) $\mathbf{E}\left|X_{t}\right|<\infty$ for all $t \geq 0$;
(iii) $\mathbf{E}\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s}$ a.s. for all $t \geq s$.

It is sub- or supermartingale if (i) and (ii) holds, and (iii) holds with \geq or \leq instead of $=$.

A random variable $\tau: \Omega \rightarrow[0, \infty)$ is a stopping time if $\{\tau \leq t\} \in \mathcal{F}_{t}$. The σ-algebra of the events prior to τ, or pre- τ - σ-algebra is

$$
\mathcal{F}_{\tau}=\left\{A \in \mathcal{F}: A \cap\{\tau \leq t\} \in \mathcal{F}_{t} \text { for all } t \geq 0\right\}
$$

Exercise 5. Show that \mathcal{F}_{τ} is indeed a σ-algebra.
The next result is obvious, but very useful.
Proposition 2. Let $\left(X_{t}, \mathcal{F}_{t}\right)$ be a (sub-, super-) martingale. Then for any sequence $0 \leq t_{0}<t_{1}<\ldots<t_{N}<\infty$ the process $\left(X_{t_{n}}, \mathcal{F}_{t_{n}}\right)_{n=0}^{N}$ is a discrete time martingale.

Lemma 3. Let σ, τ be stopping times.
(i) τ is \mathcal{F}_{τ}-measureable.
(ii) If $\tau \equiv t$ then $\mathcal{F}_{\tau}=\mathcal{F}_{t}$.
(iii) $\sigma \wedge \tau=\min (\sigma, \tau)$ and $\sigma \vee \tau=\max (\sigma, \tau)$ are stopping times.
(iv) If $\sigma \leq \tau$, then $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$.
(v) If $\left(X_{t}\right)_{t}$ is right-continuous and adapted then X_{τ} is \mathcal{F}_{τ}-measurable.

Exercise 6. Prove the lemma.
Remark 1. In continuous time the technical detailes are trickier.
The process $\left(X_{t}\right)_{t}$ is adapted to $\left(\mathcal{F}_{t}\right)_{t}$, if X_{t} is \mathcal{F}_{t}-measurable, and it is progressively measureable with respect to $\left(\mathcal{F}_{t}\right)_{t}$, if for all $t \geq 0$ and $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$

$[\mathrm{O}, \mathrm{t}] \times \Omega \quad\left\{(s, \omega): s \leq t, X_{s}(\omega) \in A\right\} \in \mathcal{B}([0, t]) \otimes \mathcal{F}_{t}$,

where \mathcal{B} stands for the Borel sets, and \otimes is the product σ-algebra. In what follows we always need progressive measureability, adaptedness is not enough.

The next statement says that the situation is not too bad.
Proposition 3. If $\left(X_{t}\right)_{t}$ is right continuous and adatped, then it is progressively measureable.

Example 5 (Poisson process). A Poisson process with intensity $\lambda>0$ is an adapted integer valued RCLL (right continuous with left limits) process $N=\left(N_{t}, \mathcal{F}_{t}\right)_{t \geq 0}$ such that
(i) N has independent increments, that is $N_{t}-N_{s}$ is independent of \mathcal{F}_{s} for any $s<t$,
(ii) $N_{0}=0$ ass.,
(iii) $N_{t}-N_{s} \sim \operatorname{Poisson}(\lambda(t-s))$.

Exercise 7. Show that $\left(N_{t}-\lambda t\right)$ is martingale.

Proposition 4. Let $\left(X_{t}\right)$ be a martingale, and φ a convex function such that $\mathbf{E}\left|\varphi\left(X_{t}\right)\right|<\infty$ for all $t \geq 0$. Then $\left(\varphi\left(X_{t}\right)\right)$ is submartingale.

Furthermore if $\left(X_{t}\right)$ is a submartingale and φ nondecreasing and convex that $\mathbf{E}\left|\varphi\left(X_{t}\right)\right|<\infty$ for all $t \geq 0$, then $\left(\varphi\left(X_{t}\right)\right)$ is a submartingale.

Example 6 (Wiener process). The Wiener process or standard Brownian motion is an adapted process $W=\left(W_{t}, \mathcal{F}_{t}\right)_{t \geq 0}$ such that
(i) W has independent increments, that is $W_{t}-W_{s}$ is independent of \mathcal{F}_{s} for any $s<t$,
(ii) $W_{0}=0$ a.s.,
(iii) $W_{t}-W_{s} \sim \mathrm{~N}(0, t-s)$, L Caution
(iv) W_{t} has continuous sample path.
$\mathbf{N}^{\text {exercise 8. Show that }\left(W_{t}\right) \text { and }\left(W_{t}^{2}-t\right) \text { are martingales. }}$

2.2 Martingale convergence theorem

Consider an adapted stochastic process $\left(X_{t}\right)_{t \geq 0}$. Fix $a<b$, and a finite set $F \subset[0, \infty)$. Let U_{F} denote the number of upcrossings of the interval $[a, b]$ by the restricted process $\left(X_{t}\right)_{t \in F}$. Formally, let $\tau_{0}=0$, and

$$
\begin{aligned}
\tau_{2 k-1} & =\min \left\{t \in F: t \geq \tau_{2 k-2}, X_{t}<a\right\}, \\
\tau_{2 k} & =\min \left\{t \in F: t \geq \tau_{2 k-1}, X_{t}>b\right\} .
\end{aligned}
$$

The number of upcrossings on F is

$$
U_{F}(a, b)=U_{F}=\max \left\{k: \tau_{2 k}<\infty\right\}
$$

$\left(N_{t}\right)$ - Posson prowess $\lambda>0$

- ind inc.

$$
\begin{aligned}
& \text { - } N^{t}=N_{\rho} \sim \operatorname{Pois} \text { an }(\lambda(t-s)) \\
& \text { - } x_{6}=0^{s} \text { a.s } \\
& F_{t}=\sigma\left(N_{s}: s \leqq t\right) \text { nadual filhation }
\end{aligned}
$$

$N_{t}-\lambda t$ is unty.

$$
s<t:
$$

$$
\begin{aligned}
& E\left[N_{t}-\lambda t \mid F_{s}\right]=E\left[N_{s}+N_{t}-N_{s}-\lambda t \mid F_{s}\right] \\
& =N_{s}+E\left[N_{t}-N_{s}-\lambda t \mid f_{s}\right)=
\end{aligned}
$$

inber.

$$
\begin{aligned}
& =N_{s}+E\left(N_{t}-N_{s}-\lambda t\right)=N_{s}+\lambda(t-s)-\lambda t \\
& =N_{s}-\lambda s \cdot N \mid\{1
\end{aligned}
$$

$\left(w_{t}\right)$:
W_{t} is hodg.
$t>s$

$$
\begin{aligned}
& E\left[w_{t} \mid x_{s}\right)=\underbrace{E}\left[_{s}+W_{t}-w_{s} \mid F_{s}\right] \\
& =w_{s}+E(\underbrace{\left.w_{t}-\omega_{s}\right)}_{\sim N(0, t-c}=w_{s} \quad N
\end{aligned}
$$

$\Rightarrow\left(w_{t}\right)$ und.
$\Rightarrow\left(w_{t}^{2}\right)$ subuitg.
$\left(W_{t}^{2}-t\right)$ is nutg.

$$
\begin{aligned}
& E\left[w_{t}^{2}-t \mid f_{s}\right]=E\left[w_{s}^{2}+w_{t}^{2}-w_{s}^{2}-t \mid F_{s}\right] \\
& =w_{s}^{2}-t+E \underbrace{E\left[w_{t}^{2}-w_{s}^{2} \mid F_{s}+w_{s}\right)}_{\left(w_{t}-w_{s}\right)}
\end{aligned}
$$

$$
\begin{aligned}
= & w_{s}^{2}-t+E\left[w_{s} \cdot\left(w_{t}-w_{s}\right)+w_{t} \cdot\left(w_{t}-w_{s}\right) N_{s}\right] \\
= & w_{s}^{2}-t+w_{s} \cdot E \underbrace{\text { weal }} w_{t}-w_{s} \mid x_{s}] \\
& +E\left[\left(w_{s}+w_{t}-w_{s}\right)\left(w_{t}-w_{s}\right) F_{s}\right] \\
= & w_{s}^{2}-t+w_{s} \cdot E\left(w_{\tau}-w_{s}\right) \\
+ & w_{s} \cdot E\left(w_{t}-w_{s}\right)+E\left(\left(w_{t}-w_{s}\right)^{2}\right) \\
= & w_{s}^{2}-t+0+0+t-r=w_{s}^{2}-s
\end{aligned}
$$

$\Rightarrow\left(w_{t}^{2}-t\right)$ is a mitg. $/$.

We can extend the definition of infinite sets $I \subset[0, \infty)$ as

$$
U_{I}=\sup \left\{U_{F}: F \subset I, F \text { finite }\right\}
$$

We have the upcrossing inequality.
Theorem 6 (Upcrossing inequality). Let $\left(X_{t}\right)$ be a right-continuous submartingale. For any $a<b$ and $0 \leq S \not \subset<\infty$

$$
(b-a) \mathbf{E} U_{[S, T]} \leq \mathbf{E}\left(X_{T}-a\right)^{+}-\mathbf{E}\left(X_{S}-a\right)^{+} .
$$

Proof. Consider an enumeration of the countable set $\mathbb{Q} \cap[S, T]$ as

$$
\mathbf{Q} \cap[S, T]=\left\{q_{1}, q_{2}, \ldots\right\}
$$

and let $F_{n}=\left\{q_{1}, \ldots, q_{n}\right\} \cup\{\mathcal{S}, \boldsymbol{T}\}$. Then $\left(X_{t}, \mathcal{F}_{t}\right)_{t \in F_{n}}$ is a discrete time martingale, therefore, by the upcrossing inequality

$$
(b-a) \mathbf{E} U_{F_{n}} \leq \mathbf{E}\left(X_{T}-a\right)^{+}-\mathbf{E}\left(X_{S}-a\right)^{+} \star
$$

Since F_{n} is increasing, $U_{F_{n}}$ is increasing, and by the right-continuity of $\left(X_{t}\right)$

$$
\lim _{n \rightarrow \infty} U_{F_{n}}=U_{[S, T]} \quad \text { a.s. }
$$

In particular, $U_{[S, T]}$ is measurable, and by the monotone convergence theorem the result follows.

Theorem 7 (Martingale convergence theorem). Let $\left(X_{t}\right)$ be a right-continuous submartingale such that

$$
\sup _{t \geq 0} \mathbf{E}\left(X_{t}^{+}\right)<\infty
$$

Then $\lim _{t \rightarrow \infty} X_{t}=X$ exists a.s. and $\mathbf{E}|X|<\infty$.
Proof. By the upcrossing inequality and the monotone convergence theorem for any $a<b$

$$
\left.\mathbf{E} U_{[0, \infty)}(a, b) \leq \frac{\sup _{t \geq 0} \mathbf{E} X_{t}^{+}+|a|}{b-a} .\right]
$$

Therefore, for any $a<b$ the upcrossings $U_{[0, \infty)}(a, b)$ are a.s. finite. Thus almost surely the uppcrossings are finite for all $a<b$ rationals, implying the existence of the limit.

The integrability of the limit follows from Fatou's lemma.

