where $B(x, r)=\{y:|x-y| \leq r\}$ is the ball of radius r, and $|B(x, r)|$ is the volume of the ball.

If $\mu \geq 0$ then S_{n} is a submartingale. Applying the first result to $\xi_{i}^{\prime}=\xi_{i}-\mu$ we see that $S_{n}-n \mu$ is a martingale.

Example 4.2.2. Quadratic martingale. Suppose now that $\mu=E \xi_{i}=$ 0 and $\sigma^{2}=\operatorname{var}\left(\xi_{i}\right)<\infty$. In this case $S_{n}^{2}-n \sigma^{2}$ is a martingale.
Since $\left(S_{n}+\xi_{n+1}\right)^{2}=S_{n}^{2}+2 S_{n} \xi_{n+1}+\xi_{n+1}^{2}$ and ξ_{n+1} is independent of \mathcal{F}_{n}, we have

$$
\begin{aligned}
E\left(S_{n+1}^{2}-(n+1) \sigma^{2} \mid \mathcal{F}_{n}\right) & =S_{n}^{2}+2 S_{n} E\left(\xi_{n+1} \mid \mathcal{F}_{n}\right)+E\left(\xi_{n+1}^{2} \mid \mathcal{F}_{n}\right)-(n+1) \sigma^{2} \\
& =S_{n}^{2}+0+\sigma^{2}-(n+1) \sigma^{2}=S_{n}^{2}-n \sigma^{2}
\end{aligned}
$$

Example 4.2.3. Exponential martingale. Let Y_{1}, Y_{2}, \ldots be nonnegative i.i.d. random variables with $E Y_{m}=1$. If $\mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$ then $M_{n}=\prod_{m \leq n} Y_{m}$ defines a martingale. To prove this note that

$$
E\left(M_{n+1} \mid \mathcal{F}_{n}\right)=M_{n} E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=Y_{n}
$$

Suppose now that $Y_{i}=e^{\theta \xi_{i}}$ and $\phi(\theta)=E e^{\theta \xi_{i}}<\infty . Y_{i}=\exp (\theta \xi) / \phi(\theta)$ has mean 1 so $E Y_{i}=1$ and

$$
M_{n}=\prod_{i=1}^{n} Y_{i}=\exp \left(\theta S_{n}\right) / \phi(\theta)^{n} \quad \text { is a martingale. }
$$

We will see many other examples below, so we turn now to deriving properties of martingales. Our first result is an immediate consequence of the definition of a supermartingale. We could take the conclusion of the result as the definition of supermartingale, but then the definition would be harder to check.

Theorem 4.2.4. If X_{n} is a supermartingale then for $n>m, E\left(X_{n} \mid \mathcal{F}_{m}\right) \leq$ X_{m}.

Proof. The definition gives the result for $n=m+1$. Suppose $n=m+k$ with $k \geq 2$. By Theorem 4.1.2,

$$
E\left(X_{m+k} \mid \mathcal{F}_{m}\right)=E\left(E\left(X_{m+k} \mid \mathcal{F}_{m+k-1}\right) \mid \mathcal{F}_{m}\right) \leq E\left(X_{m+k-1} \mid \mathcal{F}_{m}\right)
$$

by the definition and (4.1.2). The desired result now follows by induction.

Theorem 4.2.5. (i) If X_{n} is a submartingale then for $n>m, E\left(X_{n} \mid \mathcal{F}_{m}\right) \geq$ X_{m}.
(ii) If X_{n} is a martingale then for $n>m, E\left(X_{n} \mid \mathcal{F}_{m}\right)=X_{m}$.

Proof. To prove (i), note that $-X_{n}$ is a supermartingale and use (4.1.1). For (ii), observe that X_{n} is a supermartingale and a submartingale.

4.2. MARTINGALES, ALMOST SURE CONVERGENCE

Remark. The idea in the proof of Theorem 4.2 .5 will be used many times below. To keep from repeating ourselves, we will just state the result for either supermartingales or submartingales and leave it to the reader to translate the result for the other two.
Theorem 4.2.6. If X_{n} is a martingale w.r.t. \mathcal{F}_{n} and φ is a convex function with $E\left|\varphi\left(X_{n}\right)\right|<\infty$ for all n then $\varphi\left(X_{n}\right)$ is a submartingale w.r.t. \mathcal{F}_{n}. Consequently, if $p \geq 1$ and $E\left|X_{n}\right|^{p}<\infty$ for all n, then $\left|X_{n}\right|^{p}$ is a submartingale w.r.t. \mathcal{F}_{n}.
Proof By Jensen's inequality and the definition

$$
\begin{aligned}
& \text { sen's inequality and the definition un te } \\
& E\left(\varphi\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right) \geq \varphi\left(E\left(X_{n+1} \mid \mathcal{F}_{n}\right)\right) \stackrel{\text { と }}{=} \varphi\left(X_{n}\right)
\end{aligned}
$$

$F_{n}=c\left(z_{y}=-7 x^{3}\right)$
x_{n}^{2} sulu by.

Theorem 4.2.7. If X_{n} is a submartingale w.r.t. \mathcal{F}_{n} and φ is an increasing convex function with $\overline{E \mid \varphi} \varphi\left(X_{n}\right) \mid<\infty$ for all n, then $\varphi\left(X_{n}\right)$ is a

$f(x)=(x-a)+$

 submartingale w.r.t. \mathcal{F}_{n}. Consequently (i) If X_{n} is a submartingale then $\left(X_{n}-a\right)^{+}$is a submartingale. (ii) If X_{n} is a supermartingale then $X_{n} \wedge a$ is a supermartingale.
Proof By Jensen's inequality and the assumptions Jensen

$$
\begin{aligned}
& \text { sen's inequality and the assumptions } \varphi \dot{\varphi} \dot{\text { u }} \text { iveleniy } \\
& E\left(\varphi\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right) \geq \varphi\left(E\left(X_{n+1} \mid \mathcal{F}_{n}\right)\right) \geq \varphi\left(X_{n}\right) \text { trabut } \\
& >0 \text { be a filtration. } H_{n}, n>1 \text { is said to be a predictable }
\end{aligned}
$$

Let $\mathcal{F}_{n}, n \geq 0$ be a filtration. $H_{n}, n \geq 1$ is said to be a predictable sequence if $H_{n} \in \mathcal{F}_{n-1}$ for all $n \geq 1$. In words, the value of H_{n} may be predicted (with certainty) from the information available at time $n-1$. In this section, we will be thinking of H_{n} as the amount of money a gambler will bet at time n. This can be based on the outcomes at times $1, \ldots, n-1$ but not on the outcome at time n !

Once we start thinking of H_{n} as a gambling system, it is natural to ask how much money we would make if we used it. Let X_{n} be the net amount of money you would have won at time n if you had bet one dollar each time. If you bet according to a gambling system H then your winnings at time n would be

\rightarrow

$$
(H \cdot X)_{n}=\sum_{m=1}^{n} H_{m}\left(X_{m}-X_{m-1}\right)
$$

since if at time m you have wagered $\$ 3$ the change in your fortune would be 3 time that of a person who wagered $\$ 1$. Alternatively you can think of X_{m} is the value of a stock and H_{m} the number of shares you hold from time $m-1$ to time m.

Suppose now that $\xi_{m}=X_{m}-X_{m-1}$ have $P\left(\xi_{m}=1\right)=p$ and $P\left(\xi_{m}=\right.$ $-1)=1-p$. A famous gambling system called the "martingale" is defined by $H_{1}=1$ and for $n \geq 2$,

$$
H_{n}= \begin{cases}2 H_{n-1} & \text { if } \xi_{n-1}=-1 \\ 1 & \text { if } \xi_{n-1}=1\end{cases}
$$

Feusen inequality:

$$
\varphi(E(x)) \leq E \varphi(X)
$$

$$
(H \cdot x)_{n}=\sum_{w=1}^{n} \overbrace{w} \cdot\left(X_{w}-X_{m-1}\right)
$$

In words, we double our bet when we lose, so that if we lose k times and then win, our net winnings will be 1 . To see this consider the following concrete situation

$$
\begin{array}{cccccc}
H_{n} & 1 & 2 & 4 & 8 & 16 \\
\xi_{n} & -1 & -1 & -1 & -1 & 1 \\
(H \cdot X)_{n} & -1 & -3 & -7 & -15 & 1
\end{array}
$$

This system seems to provide us with a "sure thing" as long as $P\left(\xi_{m}=\right.$ $1)>0$. However, the next result says there is no system for beating an unfavorable game.
Theorem 4.2.8. Let $X_{n}, n \geq 0$, be a supermartingale. If $H_{n} \geq 0$ is predictable and each H_{n} is bounded then $(H \cdot X)_{n}$ is a supermartingale.
Proof. Using the fact that conditional expectation is linear, $(H \cdot X)_{n} \in$ $\mathcal{F}_{n}, H_{n} \in \mathcal{F}_{n-1}$, and (4.1.14), we have

$$
\begin{aligned}
E\left((H \cdot X)_{n+1} \mid \mathcal{F}_{n}\right) & =(H \cdot X)_{n}+E\left(H_{n+1}\left(X_{n+1}-X_{n}\right) \mid \mathcal{F}_{n}\right) \\
& =(H \cdot X)_{n}+H_{n+1} E\left(\left(X_{n+1}-X_{n}\right) \mid \mathcal{F}_{n}\right) \leq(H \cdot X)_{n}
\end{aligned}
$$

since $E\left(\left(X_{n+1}-X_{n}\right) \mid \mathcal{F}_{n}\right) \leq 0$ and $H_{n+1} \geq 0$.
Remark. The same result is obviously true for submartingales and for martingales (in the last case, without the restriction $H_{n} \geq 0$).

We will now consider a very special gambling system bet $\$ 1$ ar each
 that time. If we let $H_{n}=1_{\{N \geq n\}}$, then $\{N \geq n\}=\{N \leq n-1\}^{c} \in \mathcal{F}_{n-1}$, so \underline{H}_{n} is predictable, and it follows from Theorem 4.2.8 that $(H \cdot X)_{n}=$

$$
\begin{aligned}
& a \wedge b= \\
& =\min \{a, b\}
\end{aligned}
$$ $X_{N \wedge n}-X_{0}$ is a supermartingale. Since the constant sequence $Y_{n}=X_{0}$ is a supermartingale and the sum of two supermartingales is also, we have:

Theorem 4.2.9. If N is a stopping time and X_{n} is a supermartingale, then $X_{N \wedge n}$ is a supermartingale.

Although Theorem 4.2.8 implies that you cannot make money with gambling systems, you can prove theorems with them. Suppose X_{n}, $n \geq 0$, is a submartingale. Let $a<b$, let $N_{0}=-1$, and for $k \geq 1$ let

$$
\left.\begin{array}{rl}
N_{2 k-1} & =\inf \left\{m>N_{2 k-2}: X_{m} \leq a\right\} \\
N_{2 k} & =\inf \left\{m>N_{2 k-1}: X_{m} \geq b\right\}
\end{array} \quad \mathbb{N}_{1}=\min _{1}\{m\rangle-1: X_{m}<a\right\}
$$

The N_{j} are stopping times and $\left\{N_{2 k-1}<m \leq N_{2 k}\right\}=\left\{N_{2 k-1} \leq m-\right.$

$$
\left(X_{n}\right)_{\text {sup. rif. }} \Rightarrow\left(X_{N_{1 n}}\right)_{n=0}^{\infty} \text { is sup. wite. }
$$

$$
\begin{aligned}
& (H \cdot x)_{n}=\sum_{n=01}^{n} \dot{H}_{m}\left(x_{m}-x_{m-1}\right) \\
& E\left[(H \cdot X)_{n+1} \mid \Psi_{n}\right]=E[\underbrace{(H \cdot X)_{n}}_{F_{n} \text { weas. }}+H_{n+i}\left(X_{n+1}-X_{n}\right) \mid \\
& =(H \circ X)_{n}+\underset{F_{n-\text { meas. }}^{E} \underbrace{}_{n+1}\left(X_{n+1}-X_{n}\right) \mid F_{n}]}{ }
\end{aligned}
$$

$$
\begin{aligned}
& H_{m} \text { is Fm-1 var. ide. puedictate } \\
& \text { 4.2. MARTINGALES, ALMOST SURE CONVERGENCE }
\end{aligned}
$$

defines a predictable sequence. $X\left(N_{2 k-1}\right) \leq a$ and $X\left(N_{2 k}\right) \geq b$, so between times $N_{2 k-1}$ and $N_{2 k}, X_{m}$ crosses from below a to above $b . H_{m}$ is a gambling system that tries to take advantage of these "upcrossings."
In stock market terms, we buy when $X_{m} \leq a$ and sell when $X_{m} \geq b$, so every time an upcrossing is completed, we make a profit of $\geq(b-a)$. Finally $U_{n}=\sup \left\{k: N_{2 k} \leq n\right\}$ is the number of upcrossings completed by time

Figure 4.2: Upcrossings of (a, b). Lines indicate increments that are included in $(H \cdot X)_{n}$. In Y_{n} the points $<a$ are moved up to a.

Theorem 4.2.10. Uncrossing inequality. If $X_{m}, m \geq 0$, is a submartingale then

Proof. Let $Y_{m}=a+\left(X_{m}-a\right)^{+}$. By Theorem 4.2.7, Y_{m} is a submartingale. Clearly, it uncrosses $[a, b]$ the same number of times that X_{m} does, and we have $(b-a) U_{n} \leq(H \cdot Y)_{n}$, since each uncrossing results in a profit $\geq(b-a)$ and a Anal incomplete uncrossing (if there is one) makes a nonnegative contribution to the right-hand side. It is for this reason we had to replace X_{m} by Y_{m}.

Let $K_{m}=1-H_{m}$. Clearly, $Y_{n}-Y_{0}=(H \cdot Y)_{n}+(K \cdot Y)_{n}$, and it follows from Theorem 4.2.8 that $E(K \cdot Y)_{n} \geq E(K \cdot Y)_{0}=0$ so $E(H \cdot Y)_{n} \leq E\left(Y_{n}-Y_{0}\right)$, proving the desired inequality.

We have proved the result in its classical form, even though this is a little misleading. The key fact is that $E(K \cdot Y)_{n} \geq 0$, i.e., no matter how hard you try you can't lose money betting on a submartingale. From the

Theorem 4.2.11. Martingale convergence theorem. If X_{n} is a submartingale with $\sup _{n} E X_{n}^{+}<\infty$ then as $n \rightarrow \infty, X_{n}$ converges ass. to a limit X with $E|X|^{\text {n }}<\infty$.

$$
E(H \cdot y)_{n} \geqslant E(b-a) U_{n}=(b-a) E\left(U_{n}\right)
$$

$$
a<b
$$

222
Proof. Since $(X-a)^{+} \leq X^{+}+|a|$, Theorem 4.2.10 implies that

$$
E U_{n} \leq\left(|a|+E X_{n}^{+}\right) /(b-a)
$$

As $n \uparrow \infty, U_{n} \uparrow U$ the number of upcrossings of $[a, b]$ by the whole sequence, so if $\sup E X_{n}^{+}<\infty$ then $E U<\infty$ and hence $U<\infty$ ass. fix $a, 6$ this
Since the last conclusion holds for all rational a and b, \rightarrow for

and hence $\lim \sup X_{n}=\lim \inf X_{n}$ a.s., i.e., $\lim X_{n}$ exists a.s. Fatou's lemma guarantees $E X^{+} \leq \lim \inf E X_{n}^{+}<\infty$, so $X<\infty$ a.s. To see $X>-\infty$, we observe that

$$
E X_{n}^{-}=E X_{n}^{+}-E X_{n} \leq E X_{n}^{+}-E X_{0}
$$

(since X_{n} is a submartingale), so another application of Fatou's lemma shows

$$
E X^{-} \leq \liminf _{n \rightarrow \infty} E X_{n}^{-} \leq \sup _{n} E X_{n}^{+}-E X_{0}<\infty
$$

and completes the proof.
Remark. To prepare for the proof of Theorem 4.7.1, the reader should note that we have shown that if the number of upcrossings of (a, b) by X_{n} is finite for all $a, b \in \mathrm{Q}$, then the limit of X_{n} exists.

An important special case of Theorem 4.2.11 is
Theorem 4.2.12. If $X_{n} \geq 0$ is a supermartingale then as $n \rightarrow \infty$, $X_{n} \rightarrow X$ ass. and $E X \leq E X_{0}$.

Proof. $Y_{n}=-X_{n} \leq 0$ is a submartingale with $E Y_{n}^{+}=0$. Since $E X_{0} \geq$ $E X_{n}$, the inequality follows from Fatou's lemma.

In the next section, we will give several applications of the last two results. We close this one by giving two "counterexamples."

Example 4.2.13. The first shows that the assumptions of Theorem 4.2.12 (or 4.2.11) do not guarantee convergence in L^{1}. Let S_{n} be a symmetric simple random walk with $S_{0}=1$, i.e., $S_{n}=S_{n-1}+\xi_{n}$ where ξ_{1}, ξ_{2}, \ldots are i.i.d. with $P\left(\xi_{i}=1\right)=P\left(\xi_{i}=-1\right)=1 / 2$. Let $N=\inf \left\{n: S_{n}=0\right\}$ and let $X_{n}=S_{N \wedge n}$. Theorem 4.2.9 implies that X_{n} is a nonnegative martingale. Theorem 4.2.12 implies X_{n} converges to a limit $X_{\infty}<\infty$ that must be $\equiv 0$, since convergence to $k>0$ is impossible. (If $X_{n}=k>0$ then $X_{n+1}=k \pm 1$.) Since $E X_{n}=E X_{0}=1$ for all n and $X_{\infty}=0$, convergence cannot occur in L^{1}.

Example 4.2.13 is an important counterexample to keep in mind you read the rest of this chapter. The next one is not as important

$$
x_{2}=s_{\underline{L n m}}
$$

\pm sopping Line

$$
\begin{gathered}
\forall n \\
z\left(x_{n}\right)=1
\end{gathered}
$$

$$
\left.\begin{array}{l}
\lim _{n \rightarrow \infty} X_{n} \text { exissls a.s. } \\
O \text { can be a lamit }
\end{array}\right\} y^{x_{n} \rightarrow 0} \text { as. }
$$

Example 4.2.14. We will now give an example of a martingale with $X_{k} \rightarrow 0$ in probability but not a.s. Let $X_{0}=0$. When $X_{k-1}=0$, let $X_{k}=1$ or -1 with probability $1 / 2 k$ and $=0$ with probability $1-1 / k$. When $X_{k-1} \neq 0$, let $X_{k}=k X_{k-1}$ with probability $1 / k$ and $=0$ with probability $1-1 / k$. From the construction, $P\left(X_{k}=0\right)=1-1 / k$ so $X_{k} \rightarrow 0$ in probability. On the other hand, the second Borel-Cantelli lemma implies $P\left(X_{k}=0\right.$ for $\left.k \geq K\right)=0$, and values in $(-1,1)-\{0\}$ are impossible, so X_{k} does not converge to 0 a.s.

Exercises

4.2.1. Suppose X_{n} is a martingale w.r.t. \mathcal{G}_{n} and let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. Then $\mathcal{G}_{n} \supset \mathcal{F}_{n}$ and X_{n} is a martingale w.r.t. \mathcal{F}_{n}.
4.2.2. Give an example of a submartingale X_{n} so that X_{n}^{2} is a supermartingale. Hint: X_{n} does not have to be random.
4.2.3. Generalize (i) of Theorem 4.2 .7 by showing that if X_{n} and Y_{n} are submartingales w.r.t. \mathcal{F}_{n} then $X_{n} \vee Y_{n}$ is also.
4.2.4. Let $X_{n}, n \geq 0$, be a submartingale with $\sup X_{n}<\infty$. Let $\xi_{n}=$ $X_{n}-X_{n-1}$ and suppose $E\left(\sup \xi_{n}^{+}\right)<\infty$. Show that X_{n} converges a.s.
4.2.5. Give an example of a martingale X_{n} with $X_{n} \rightarrow-\infty$ a.s. Hint: Let $X_{n}=\xi_{1}+\cdots+\xi_{n}$, where the ξ_{i} are independent (but not identically distributed) with $E \xi_{i}=0$.
4.2.6. Let Y_{1}, Y_{2}, \ldots be nonnegative i.i.d. random variables with $E Y_{m}=1$ and $P\left(Y_{m}=1\right)<1$. By example 4.2.3 that $X_{n}=\prod_{m \leq n} Y_{m}$ defines a martingale. (i) Use Theorem 4.2.12 and an argument by contradiction to show $X_{n} \rightarrow 0$ a.s. (ii) Use the strong law of large numbers to conclude $(1 / n) \log X_{n} \rightarrow c<0$.
4.2.7. Suppose $y_{n}>-1$ for all n and $\sum\left|y_{n}\right|<\infty$. Show that $\prod_{m=1}^{\infty}(1+$ y_{m}) exists.
4.2.8. Let X_{n} and Y_{n} be positive integrable and adapted to \mathcal{F}_{n}. Suppose

$$
E\left(X_{n+1} \mid \mathcal{F}_{n}\right) \leq\left(1+Y_{n}\right) X_{n}
$$

with $\sum Y_{n}<\infty$ a.s. Prove that X_{n} converges a.s. to a finite limit by finding a closely related supermartingale to which Theorem 4.2.12 can be applied.
4.2.9. The switching principle. Suppose X_{n}^{1} and X_{n}^{2} are supermartingales with respect to \mathcal{F}_{n}, and N is a stopping time so that $X_{N}^{1} \geq X_{N}^{2}$. Then

$$
\begin{aligned}
& Y_{n}=X_{n}^{1} 1_{(N>n)}+X_{n}^{2} 1_{(N \leq n)} \text { is a supermartingale. } \\
& Z_{n}=X_{n}^{1} 1_{(N \geq n)}+X_{n}^{2} 1_{(N<n)} \text { is a supermartingale. }
\end{aligned}
$$

4.2.10. Dubins' inequality. For every positive supermartingale X_{n}, $n \geq 0$, the number of upcrossings U of $[a, b]$ satisfies

$$
P(U \geq k) \leq\left(\frac{a}{b}\right)^{k} E \min \left(X_{0} / a, 1\right)
$$

To prove this, we let $N_{0}=-1$ and for $j \geq 1$ let

$$
\begin{aligned}
N_{2 j-1} & =\inf \left\{m>N_{2 j-2}: X_{m} \leq a\right\} \\
N_{2 j} & =\inf \left\{m>N_{2 j-1}: X_{m} \geq b\right\}
\end{aligned}
$$

Let $Y_{n}=1$ for $0 \leq n<N_{1}$ and for $j \geq 1$

$$
Y_{n}= \begin{cases}(b / a)^{j-1}\left(X_{n} / a\right) & \text { for } N_{2 j-1} \leq n<N_{2 j} \\ (b / a)^{j} & \text { for } N_{2 j} \leq n<N_{2 j+1}\end{cases}
$$

(i) Use the switching principle in the previous exercise and induction to show that $Z_{n}^{j}=Y_{n \wedge N_{j}}$ is a supermartingale. (ii) Use $E Y_{n \wedge N_{2 k}} \leq E Y_{0}$ and let $n \rightarrow \infty$ to get Dubins' inequality.

4.3 Examples

In this section, we will apply the martingale convergence theorem to generalize the second Borel-Cantelli lemma and to study Polya's urn scheme, Radon-Nikodym derivatives, and branching processes. The four topics are independent of each other and are taken up in the order indicated.

4.3.1 Bounded Increments

Our first result shows that martingales with bounded increments either converge or oscillate between $+\infty$ and $-\infty$.
Theorem 4.3.1. Let X_{1}, X_{2}, \ldots be a martingale with $\left|X_{n+1}-X_{n}\right| \leq$ $M<\infty$. Let

$$
\begin{aligned}
& C=\left\{\lim X_{n} \text { exists and is finite }\right\} \\
& D=\left\{\limsup X_{n}=+\infty \text { and } \liminf X_{n}=-\infty\right\}
\end{aligned}
$$

Then $P(C \cup D)=1$.
Proof. Since $X_{n}-X_{0}$ is a martingale, we can without loss of generality suppose that $X_{0}=0$. Let $0<K<\infty$ and let $N=\inf \left\{n: X_{n} \leq-K\right\}$. $X_{n \wedge N}$ is a martingale with $X_{n \wedge N} \geq-K-M$ a.s. so applying Theorem 4.2.12 to $X_{n \wedge N}+K+M$ shows $\lim X_{n}$ exists on $\{N=\infty\}$. Letting $K \rightarrow$ ∞, we see that the limit exists on $\left\{\lim \inf X_{n}>-\infty\right\}$. Applying the last conclusion to $-X_{n}$, we see that $\lim X_{n}$ exists on $\left\{\lim \sup X_{n}<\infty\right\}$ and the proof is complete.

Joseph les Vol
4.3. EXAMPLES

To prepare for an application of this result we need
Theorem 4.3.2. Doob's decomposition. Any submartingale $X_{n}, n \geq$
0 , can be written in a unique way as $X_{n}=\left(M_{n}\right)+A_{n}$, where \bar{M}_{n} is a 0 , can be written in a unique way as $X_{n}=\left(M_{n}\right)+A_{n}$, where \bar{M}_{n} is a martingale and A_{n} is a predictable increasing sequence with $A_{0}=0$.

Proof. We want $X_{n}=M_{n}+A_{n}, E\left(M_{n} \mid \mathcal{F}_{n-1}\right)=M_{n-1}$, and $A_{n} \in \mathcal{F}_{n-1}$. So we must have

$$
\begin{aligned}
E\left(X_{n} \mid \mathcal{F}_{n-1}\right) & =E\left(M_{n} \mid \mathcal{F}_{2-1}\right)+E\left(A_{n} \mid \mathcal{F}_{n-1}\right) \\
& =M_{n-1}+A_{n}=X_{n-1}-A_{n-1}+A_{n}
\end{aligned}
$$

and it follows that
,

Since $A_{0}=0$, we have

$$
A_{n}=\sum_{m=1}^{n} E\left(\begin{array}{c}
\left.X_{\boldsymbol{m}}-X_{\boldsymbol{m}-1} \mid \mathcal{F}_{\boldsymbol{\prime}-1}\right) \tag{4.3.2}\\
\mathbf{m} \mathbf{m}
\end{array}\right.
$$

t has to be

To check that our recipe works, we observe that $A_{n}-A_{n-1} \geq 0$ since X_{n} is a submartingale and $A_{n} \in \mathcal{F}_{n-\boldsymbol{\Pi}}$. To prove that $M_{n}=X_{n}-A_{n}$ is a martingale, we note that using $A_{n} \in \mathcal{F}_{n-1}$ and (4.3.1)

$$
\begin{aligned}
& \qquad \begin{aligned}
& E\left(M_{n} \mid \mathcal{F}_{n-1}\right)=E\left(X_{n}-A_{n} \mid \mathcal{F}_{n-1}\right) \quad\left(\begin{array}{l}
\text { h. 3. } 1) \\
\\
\end{array}\right. \\
&=E\left(X_{n} \mid \mathcal{F}_{n-1}\right)-A_{n}=X_{n-1}-A_{n-1}=M_{n-1}
\end{aligned} \\
& \text { which completes the proof. }
\end{aligned}
$$

The illustrate the use of this result we do the following important example.

Example 4.3.3. Let and suppose $B_{n} \in \mathcal{F}_{n}$. Using (4.3.2)

$$
M_{n}=\sum_{m=1}^{n} 1_{B_{m}}-E\left(1_{B_{m}} \mid \mathcal{F}_{m-1}\right)
$$

Theorem 4.3.4. Second Borel-Cantelli lemma, II. Let $\mathcal{F}_{n}, n \geq 0$ be a filtration with $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and let $B_{n}, n \geq 1$ a sequence of eventem with $B_{n} \in \mathcal{F}_{n}$. Then
B_{n} index.

$$
F_{n}=\sigma\left(B_{1 m}, R_{n}\right)
$$

$$
B_{n} \text { ind of } F_{n-1}
$$

$$
\begin{aligned}
& 7 \\
& \left\{B_{n} \text { onus infinite flex }\right\}
\end{aligned}
$$

Bonel-Candelli lemma:
(7.) $B_{n} \in \neq, \quad \frac{\sum_{n}}{} P\left(B_{n}\right)<\infty$
$\Rightarrow P\left(B_{n}\right.$ occurs findely many timer $)=1$
(II) $B_{n} \in \neq, \sum_{n} P\left(B_{n}\right)=\infty$ and $B_{n}^{\prime} c^{\prime}$ indep $\Rightarrow P\left(B_{n}\right.$ oceler \quad i.o. $)=1$

Proof. If we let $X_{0}=0$ and $X_{n}=\sum_{m \leq n} 1_{B_{m}}$, then X_{n} is a submartingale. (4.3.2) implies $A_{n}=\sum_{m=1}^{n} E\left(1_{B_{m}} \mid \mathcal{F}_{m-1}\right)$ so if $M_{0}=0$ and

$$
M_{n}=\sum_{m=1}^{n}\left(1_{B_{m}}-P\left(B_{m} \mid \mathcal{F}_{m-1}\right)\right)
$$

for $n \geq 1$ then M_{n} is a martingale with $\left|M_{n}-M_{n-1}\right| \leq 1$ Using the notation of Theorem 4.3.1 we have:

$$
\begin{aligned}
& \text { on } C, \quad \sum_{n=1}^{\infty} 1_{B_{n}}=\infty \quad \text { if and only if } \quad \sum_{n=1}^{\infty} P\left(B_{n} \mid \mathcal{F}_{n-1}\right)=\infty \\
& \text { on } D, \quad \sum_{n=1}^{\infty} 1_{B_{n}}=\infty \quad \text { and } \quad \sum_{n=1}^{\infty} P\left(B_{n} \mid \mathcal{F}_{n-1}\right)=\infty
\end{aligned}
$$

Since $P(C \cup D)=1$, the result follows.

4.3.2 Polya's Urn Scheme

An urn contains r red and g green balls. At each time we draw a ball out, then replace it, and add c more balls of the color drawn. Let X_{n} be the fraction of green balls after the nth draw. To check that X_{n} is a martingale, note that if there are i red balls and j green balls at time n, then

$$
X_{n+1}= \begin{cases}(j+c) /(i+j+c) & \text { with probability } j /(i+j) \\ j /(i+j+c) & \text { with probability } i /(i+j)\end{cases}
$$

and we have

$$
\frac{j+c}{i+j+c} \cdot \frac{j}{i+j}+\frac{j}{i+j+c} \cdot \frac{i}{i+j}=\frac{(j+c+i) j}{(i+j+c)(i+j)}=\frac{j}{i+j}
$$

Since $X_{n} \geq 0$, Theorem 4.2.12 implies that $X_{n} \rightarrow X_{\infty}$ a.s. To compute the distribution of the limit, we observe (a) the probability of getting green on the first m draws then red on the next $\ell=n-m$ draws is

$$
\frac{g}{g+r} \cdot \frac{g+c}{g+r+c} \cdots \frac{g+(m-1) c}{g+r+(m-1) c} \cdot \frac{r}{g+r+m c} \cdots \frac{r+(\ell-1) c}{g+r+(n-1) c}
$$

and (b) any other outcome of the first n draws with m green balls drawn and ℓ red balls drawn has the same probability since the denominator remains the same and the numerator is permuted. Consider the special case $c=1, g=1, r=1$. Let G_{n} be the number of green balls after the nth draw has been completed and the new ball has been added. It follows from (a) and (b) that

$$
P\left(G_{n}=m+1\right)=\binom{n}{m} \frac{m!(n-m)!}{(n+1)!}=\frac{1}{n+1}
$$

