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where B(x, r) = {y : |x− y| ≤ r} is the ball of radius r, and |B(x, r)| is
the volume of the ball.

If µ ≥ 0 then Sn is a submartingale. Applying the first result to
ξ�i = ξi − µ we see that Sn − nµ is a martingale.

Example 4.2.2. Quadratic martingale. Suppose now that µ = Eξi =
0 and σ2 = var (ξi) < ∞. In this case S2

n − nσ2 is a martingale.

Since (Sn + ξn+1)
2 = S2

n + 2Snξn+1 + ξ2
n+1 and ξn+1 is independent of Fn,

we have

E(S2
n+1 − (n + 1)σ2|Fn) = S2

n + 2SnE(ξn+1|Fn) + E(ξ2
n+1|Fn)− (n + 1)σ2

= S2
n + 0 + σ2 − (n + 1)σ2 = S2

n − nσ2

Example 4.2.3. Exponential martingale. Let Y1, Y2, . . . be nonneg-
ative i.i.d. random variables with EYm = 1. If Fn = σ(Y1, . . . , Yn) then
Mn =

�
m≤n Ym defines a martingale. To prove this note that

E(Mn+1|Fn) = MnE(Xn+1|Fn) = Yn

Suppose now that Yi = eθξi and φ(θ) = Eeθξi < ∞. Yi = exp(θξ)/φ(θ)
has mean 1 so EYi = 1 and

Mn =
n�

i=1

Yi = exp(θSn)/φ(θ)n is a martingale.

We will see many other examples below, so we turn now to deriving
properties of martingales. Our first result is an immediate consequence
of the definition of a supermartingale. We could take the conclusion of
the result as the definition of supermartingale, but then the definition
would be harder to check.

Theorem 4.2.4. If Xn is a supermartingale then for n > m, E(Xn|Fm) ≤
Xm.

Proof. The definition gives the result for n = m + 1. Suppose n = m + k
with k ≥ 2. By Theorem 4.1.2,

E(Xm+k|Fm) = E(E(Xm+k|Fm+k−1)|Fm) ≤ E(Xm+k−1|Fm)

by the definition and (4.1.2). The desired result now follows by induction.

Theorem 4.2.5. (i) If Xn is a submartingale then for n > m, E(Xn|Fm) ≥
Xm.
(ii) If Xn is a martingale then for n > m, E(Xn|Fm) = Xm.

Proof. To prove (i), note that −Xn is a supermartingale and use (4.1.1).
For (ii), observe that Xn is a supermartingale and a submartingale.
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Remark. The idea in the proof of Theorem 4.2.5 will be used many
times below. To keep from repeating ourselves, we will just state the
result for either supermartingales or submartingales and leave it to the
reader to translate the result for the other two.

Theorem 4.2.6. If Xn is a martingale w.r.t. Fn and ϕ is a convex
function with E|ϕ(Xn)| < ∞ for all n then ϕ(Xn) is a submartingale
w.r.t. Fn. Consequently, if p ≥ 1 and E|Xn|p < ∞ for all n, then |Xn|p
is a submartingale w.r.t. Fn.

Proof By Jensen’s inequality and the definition

E(ϕ(Xn+1)|Fn) ≥ ϕ(E(Xn+1|Fn)) = ϕ(Xn)

Theorem 4.2.7. If Xn is a submartingale w.r.t. Fn and ϕ is an in-
creasing convex function with E|ϕ(Xn)| < ∞ for all n, then ϕ(Xn) is a
submartingale w.r.t. Fn. Consequently (i) If Xn is a submartingale then
(Xn−a)+ is a submartingale. (ii) If Xn is a supermartingale then Xn∧a
is a supermartingale.

Proof By Jensen’s inequality and the assumptions

E(ϕ(Xn+1)|Fn) ≥ ϕ(E(Xn+1|Fn)) ≥ ϕ(Xn)

Let Fn, n ≥ 0 be a filtration. Hn, n ≥ 1 is said to be a predictable
sequence if Hn ∈ Fn−1 for all n ≥ 1. In words, the value of Hn may be
predicted (with certainty) from the information available at time n− 1.
In this section, we will be thinking of Hn as the amount of money a
gambler will bet at time n. This can be based on the outcomes at times
1, . . . , n− 1 but not on the outcome at time n!

Once we start thinking of Hn as a gambling system, it is natural to ask
how much money we would make if we used it. Let Xn be the net amount
of money you would have won at time n if you had bet one dollar each
time. If you bet according to a gambling system H then your winnings
at time n would be

(H · X)n =
n�

m=1

Hm(Xm −Xm−1)

since if at time m you have wagered $3 the change in your fortune would
be 3 time that of a person who wagered $1. Alternatively you can think
of Xm is the value of a stock and Hm the number of shares you hold from
time m− 1 to time m.

Suppose now that ξm = Xm−Xm−1 have P (ξm = 1) = p and P (ξm =
−1) = 1 − p. A famous gambling system called the “martingale” is
defined by H1 = 1 and for n ≥ 2,

Hn =

�
2Hn−1 if ξn−1 = −1

1 if ξn−1 = 1
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In words, we double our bet when we lose, so that if we lose k times and
then win, our net winnings will be 1. To see this consider the following
concrete situation

Hn 1 2 4 8 16
ξn −1 −1 −1 −1 1

(H · X)n −1 −3 −7 −15 1

This system seems to provide us with a “sure thing” as long as P (ξm =
1) > 0. However, the next result says there is no system for beating an
unfavorable game.

Theorem 4.2.8. Let Xn, n ≥ 0, be a supermartingale. If Hn ≥ 0 is
predictable and each Hn is bounded then (H · X)n is a supermartingale.

Proof. Using the fact that conditional expectation is linear, (H · X)n ∈
Fn, Hn ∈ Fn−1, and (4.1.14), we have

E((H · X)n+1|Fn) = (H · X)n + E(Hn+1(Xn+1 −Xn)|Fn)

= (H · X)n + Hn+1E((Xn+1 −Xn)|Fn) ≤ (H · X)n

since E((Xn+1 −Xn)|Fn) ≤ 0 and Hn+1 ≥ 0.

Remark. The same result is obviously true for submartingales and for
martingales (in the last case, without the restriction Hn ≥ 0).

We will now consider a very special gambling system: bet $1 ar each
time n ≤ N then stop playing. A random variable N is said to be a
stopping time if {N = n} ∈ Fn for all n < ∞, i.e., the decision to stop
at time n must be measurable with respect to the information known at
that time. If we let Hn = 1{N≥n}, then {N ≥ n} = {N ≤ n−1}c ∈ Fn−1,
so Hn is predictable, and it follows from Theorem 4.2.8 that (H · X)n =
XN∧n−X0 is a supermartingale. Since the constant sequence Yn = X0 is
a supermartingale and the sum of two supermartingales is also, we have:

Theorem 4.2.9. If N is a stopping time and Xn is a supermartingale,
then XN∧n is a supermartingale.

Although Theorem 4.2.8 implies that you cannot make money with
gambling systems, you can prove theorems with them. Suppose Xn,
n ≥ 0, is a submartingale. Let a < b, let N0 = −1, and for k ≥ 1 let

N2k−1 = inf{m > N2k−2 : Xm ≤ a}
N2k = inf{m > N2k−1 : Xm ≥ b}

The Nj are stopping times and {N2k−1 < m ≤ N2k} = {N2k−1 ≤ m −
1} ∩ {N2k ≤ m− 1}c ∈ Fm−1, so

Hm =

�
1 if N2k−1 < m ≤ N2k for some k

0 otherwise
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defines a predictable sequence. X(N2k−1) ≤ a and X(N2k) ≥ b, so be-
tween times N2k−1 and N2k, Xm crosses from below a to above b. Hm is
a gambling system that tries to take advantage of these “upcrossings.”
In stock market terms, we buy when Xm ≤ a and sell when Xm ≥ b, so
every time an upcrossing is completed, we make a profit of ≥ (b − a).
Finally, Un = sup{k : N2k ≤ n} is the number of upcrossings completed
by time n.
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Figure 4.2: Upcrossings of (a, b). Lines indicate increments that are included in
(H · X)n. In Yn the points < a are moved up to a.

Theorem 4.2.10. Upcrossing inequality. If Xm, m ≥ 0, is a sub-
martingale then

(b− a)EUn ≤ E(Xn − a)+ − E(X0 − a)+

Proof. Let Ym = a+(Xm−a)+. By Theorem 4.2.7, Ym is a submartingale.
Clearly, it upcrosses [a, b] the same number of times that Xm does, and
we have (b − a)Un ≤ (H · Y )n, since each upcrossing results in a profit
≥ (b − a) and a final incomplete upcrossing (if there is one) makes a
nonnegative contribution to the right-hand side. It is for this reason we
had to replace Xm by Ym.

Let Km = 1 − Hm. Clearly, Yn − Y0 = (H · Y )n + (K · Y )n, and
it follows from Theorem 4.2.8 that E(K · Y )n ≥ E(K · Y )0 = 0 so
E(H · Y )n ≤ E(Yn − Y0), proving the desired inequality.

We have proved the result in its classical form, even though this is a
little misleading. The key fact is that E(K ·Y )n ≥ 0, i.e., no matter how
hard you try you can’t lose money betting on a submartingale. From the
upcrossing inequality, we easily get

Theorem 4.2.11. Martingale convergence theorem. If Xn is a
submartingale with sup EX+

n < ∞ then as n →∞, Xn converges a.s. to
a limit X with E|X| < ∞.
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Proof. Since (X − a)+ ≤ X+ + |a|, Theorem 4.2.10 implies that

EUn ≤ (|a| + EX+
n )/(b− a)

As n ↑ ∞, Un ↑ U the number of upcrossings of [a, b] by the whole
sequence, so if sup EX+

n < ∞ then EU < ∞ and hence U < ∞ a.s.
Since the last conclusion holds for all rational a and b,

∪a,b∈Q{lim inf Xn < a < b < lim supXn} has probability 0

and hence lim supXn = lim inf Xn a.s., i.e., limXn exists a.s. Fatou’s
lemma guarantees EX+ ≤ lim inf EX+

n < ∞, so X < ∞ a.s. To see
X > −∞, we observe that

EX−
n = EX+

n − EXn ≤ EX+
n − EX0

(since Xn is a submartingale), so another application of Fatou’s lemma
shows

EX− ≤ lim inf
n→∞

EX−
n ≤ sup

n
EX+

n − EX0 < ∞

and completes the proof.

Remark. To prepare for the proof of Theorem 4.7.1, the reader should
note that we have shown that if the number of upcrossings of (a, b) by
Xn is finite for all a, b ∈ Q, then the limit of Xn exists.

An important special case of Theorem 4.2.11 is

Theorem 4.2.12. If Xn ≥ 0 is a supermartingale then as n → ∞,
Xn → X a.s. and EX ≤ EX0.

Proof. Yn = −Xn ≤ 0 is a submartingale with EY +
n = 0. Since EX0 ≥

EXn, the inequality follows from Fatou’s lemma.

In the next section, we will give several applications of the last two
results. We close this one by giving two “counterexamples.”

Example 4.2.13. The first shows that the assumptions of Theorem
4.2.12 (or 4.2.11) do not guarantee convergence in L1. Let Sn be a
symmetric simple random walk with S0 = 1, i.e., Sn = Sn−1 + ξn

where ξ1, ξ2, . . . are i.i.d. with P (ξi = 1) = P (ξi = −1) = 1/2. Let
N = inf{n : Sn = 0} and let Xn = SN∧n. Theorem 4.2.9 implies that
Xn is a nonnegative martingale. Theorem 4.2.12 implies Xn converges
to a limit X∞ < ∞ that must be ≡ 0, since convergence to k > 0 is
impossible. (If Xn = k > 0 then Xn+1 = k ± 1.) Since EXn = EX0 = 1
for all n and X∞ = 0, convergence cannot occur in L1.

Example 4.2.13 is an important counterexample to keep in mind as
you read the rest of this chapter. The next one is not as important.
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Example 4.2.14. We will now give an example of a martingale with
Xk → 0 in probability but not a.s. Let X0 = 0. When Xk−1 = 0, let
Xk = 1 or −1 with probability 1/2k and = 0 with probability 1 − 1/k.
When Xk−1 �= 0, let Xk = kXk−1 with probability 1/k and = 0 with
probability 1 − 1/k. From the construction, P (Xk = 0) = 1 − 1/k so
Xk → 0 in probability. On the other hand, the second Borel-Cantelli
lemma implies P (Xk = 0 for k ≥ K) = 0, and values in (−1, 1)−{0} are
impossible, so Xk does not converge to 0 a.s.

Exercises

4.2.1. Suppose Xn is a martingale w.r.t. Gn and let Fn = σ(X1, . . . , Xn).
Then Gn ⊃ Fn and Xn is a martingale w.r.t. Fn.

4.2.2. Give an example of a submartingale Xn so that X2
n is a super-

martingale. Hint: Xn does not have to be random.

4.2.3. Generalize (i) of Theorem 4.2.7 by showing that if Xn and Yn are
submartingales w.r.t. Fn then Xn ∨ Yn is also.

4.2.4. Let Xn, n ≥ 0, be a submartingale with sup Xn < ∞. Let ξn =
Xn −Xn−1 and suppose E(sup ξ+

n ) < ∞. Show that Xn converges a.s.

4.2.5. Give an example of a martingale Xn with Xn → −∞ a.s. Hint:
Let Xn = ξ1 + · · ·+ ξn, where the ξi are independent (but not identically
distributed) with Eξi = 0.

4.2.6. Let Y1, Y2, . . . be nonnegative i.i.d. random variables with EYm = 1
and P (Ym = 1) < 1. By example 4.2.3 that Xn =

�
m≤n Ym defines a

martingale. (i) Use Theorem 4.2.12 and an argument by contradiction to
show Xn → 0 a.s. (ii) Use the strong law of large numbers to conclude
(1/n) log Xn → c < 0.

4.2.7. Suppose yn > −1 for all n and
� |yn| < ∞. Show that

�∞
m=1(1+

ym) exists.

4.2.8. Let Xn and Yn be positive integrable and adapted to Fn. Suppose

E(Xn+1|Fn) ≤ (1 + Yn)Xn

with
�

Yn < ∞ a.s. Prove that Xn converges a.s. to a finite limit by
finding a closely related supermartingale to which Theorem 4.2.12 can
be applied.

4.2.9. The switching principle. Suppose X 1
n and X2

n are supermartin-
gales with respect to Fn, and N is a stopping time so that X 1

N ≥ X2
N .

Then

Yn = X1
n1(N>n) + X2

n1(N≤n) is a supermartingale.

Zn = X1
n1(N≥n) + X2

n1(N<n) is a supermartingale.



224 CHAPTER 4. MARTINGALES

4.2.10. Dubins’ inequality. For every positive supermartingale Xn,
n ≥ 0, the number of upcrossings U of [a, b] satisfies

P (U ≥ k) ≤
�a

b

�k

E min(X0/a, 1)

To prove this, we let N0 = −1 and for j ≥ 1 let

N2j−1 = inf{m > N2j−2 : Xm ≤ a}
N2j = inf{m > N2j−1 : Xm ≥ b}

Let Yn = 1 for 0 ≤ n < N1 and for j ≥ 1

Yn =

�
(b/a)j−1(Xn/a) for N2j−1 ≤ n < N2j

(b/a)j for N2j ≤ n < N2j+1

(i) Use the switching principle in the previous exercise and induction to
show that Zj

n = Yn∧Nj
is a supermartingale. (ii) Use EYn∧N2k

≤ EY0 and
let n →∞ to get Dubins’ inequality.

4.3 Examples

In this section, we will apply the martingale convergence theorem to gen-
eralize the second Borel-Cantelli lemma and to study Polya’s urn scheme,
Radon-Nikodym derivatives, and branching processes. The four topics
are independent of each other and are taken up in the order indicated.

4.3.1 Bounded Increments

Our first result shows that martingales with bounded increments either
converge or oscillate between +∞ and −∞.

Theorem 4.3.1. Let X1, X2, . . . be a martingale with |Xn+1 − Xn| ≤
M < ∞. Let

C = {limXn exists and is finite}
D = {lim sup Xn = +∞ and lim inf Xn = −∞}

Then P (C ∪D) = 1.

Proof. Since Xn −X0 is a martingale, we can without loss of generality
suppose that X0 = 0. Let 0 < K < ∞ and let N = inf{n : Xn ≤ −K}.
Xn∧N is a martingale with Xn∧N ≥ −K −M a.s. so applying Theorem
4.2.12 to Xn∧N +K +M shows limXn exists on {N = ∞}. Letting K →
∞, we see that the limit exists on {lim inf Xn > −∞}. Applying the last
conclusion to −Xn, we see that limXn exists on {lim sup Xn < ∞} and
the proof is complete.
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To prepare for an application of this result we need

Theorem 4.3.2. Doob’s decomposition. Any submartingale Xn, n ≥
0, can be written in a unique way as Xn = Mn + An, where Mn is a
martingale and An is a predictable increasing sequence with A0 = 0.

Proof. We want Xn = Mn + An, E(Mn|Fn−1) = Mn−1, and An ∈ Fn−1.
So we must have

E(Xn|Fn−1) = E(Mn|Fn−1) + E(An|Fn−1)

= Mn−1 + An = Xn−1 − An−1 + An

and it follows that

An − An−1 = E(Xn|Fn−1)−Xn−1 (4.3.1)

Since A0 = 0, we have

An =
n�

m=1

E(Xn −Xn−1|Fn−1) (4.3.2)

To check that our recipe works, we observe that An −An−1 ≥ 0 since
Xn is a submartingale and An ∈ Fn−1. To prove that Mn = Xn − An is
a martingale, we note that using An ∈ Fn−1 and (4.3.1)

E(Mn|Fn−1) = E(Xn − An|Fn−1)

= E(Xn|Fn−1)− An = Xn−1 − An−1 = Mn−1

which completes the proof.

The illustrate the use of this result we do the following important
example.

Example 4.3.3. Let and suppose Bn ∈ Fn. Using (4.3.2)

Mn =
n�

m=1

1Bm − E(1Bm |Fm−1)

Theorem 4.3.4. Second Borel-Cantelli lemma, II. Let Fn, n ≥ 0
be a filtration with F0 = {∅, Ω} and let Bn, n ≥ 1 a sequence of events
with Bn ∈ Fn. Then

{Bn i.o.} =

� ∞�

n=1

P (Bn|Fn−1) = ∞
�
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Proof. If we let X0 = 0 and Xn =
�

m≤n 1Bm , then Xn is a submartingale.

(4.3.2) implies An =
�n

m=1 E(1Bm |Fm−1) so if M0 = 0 and

Mn =
n�

m=1

1Bm − P (Bm|Fm−1)

for n ≥ 1 then Mn is a martingale with |Mn − Mn−1| ≤ 1. Using the
notation of Theorem 4.3.1 we have:

on C,
∞�

n=1

1Bn = ∞ if and only if
∞�

n=1

P (Bn|Fn−1) = ∞

on D,
∞�

n=1

1Bn = ∞ and
∞�

n=1

P (Bn|Fn−1) = ∞

Since P (C ∪D) = 1, the result follows.

4.3.2 Polya’s Urn Scheme

An urn contains r red and g green balls. At each time we draw a ball
out, then replace it, and add c more balls of the color drawn. Let Xn

be the fraction of green balls after the nth draw. To check that Xn is a
martingale, note that if there are i red balls and j green balls at time n,
then

Xn+1 =

�
(j + c)/(i + j + c) with probability j/(i + j)

j/(i + j + c) with probability i/(i + j)

and we have

j + c

i + j + c
· j

i + j
+

j

i + j + c
· i

i + j
=

(j + c + i)j

(i + j + c)(i + j)
=

j

i + j

Since Xn ≥ 0, Theorem 4.2.12 implies that Xn → X∞ a.s. To compute
the distribution of the limit, we observe (a) the probability of getting
green on the first m draws then red on the next � = n−m draws is

g

g + r
· g + c

g + r + c
· · · g + (m− 1)c

g + r + (m− 1)c
· r

g + r + mc
· · · r + (�− 1)c

g + r + (n− 1)c

and (b) any other outcome of the first n draws with m green balls drawn
and � red balls drawn has the same probability since the denominator
remains the same and the numerator is permuted. Consider the special
case c = 1, g = 1, r = 1. Let Gn be the number of green balls after
the nth draw has been completed and the new ball has been added. It
follows from (a) and (b) that

P (Gn = m + 1) =

�
n

m

�
m!(n−m)!

(n + 1)!
=

1

n + 1


