
Exercise 39. Show that (Xt, Yt) = (cosWt, sinWt) is a solution to the SDE

�
dXt = −1

2
Xtdt− YtdWt

dYt = −1
2
Ytdt+XtdWt.

Show that
�

X2
t + Y 2

t is a constant for any solution (X, Y )!

Exercise 40. Solve the SDE
�
dXt = dt+ dW

(1)
t

dYt = XtdW
(2)
t ,

where W (1) and W (2) are independent SBMs.

Exercise 41. Solve the SDE
�
dXt = Ytdt+ dW

(1)
t

dYt = Xtdt+ dW
(2)
t ,

where W (1) and W (2) are independent SBMs.

6 General Markov processes

This part is from Breiman [1].

6.1 Transition probabilities and Chapman–Kolmogorov
equations

The process (Xt) is a Markov process, if for each Borel set B ∈ B(R), and
t, τR

P(Xt+τ ∈ B|Xs, s ≤ t) = P(Xt+τ ∈ B|Xt).

Choosing natural filtration Ft = σ(Xs, s ≤ t), the definition is the same
as in Subsection 3.4

Since regular conditional distributions exist, we may choose the proba-
bilities

pt2,t1(B|x) = P(Xt2 ∈ B|Xt1 = x), t2 > t1, B ∈ B,
such that
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• for x fixed, pt2,t1(·|x) is a probability measure;

• for B ∈ B fixed, pt2,t1(B|·) is measurable.

These probabilities are the transition probabilities of the Markov process
(Xt).

Let τ < s < t, B ∈ B. By the tower rule, the Markov property, and the
properties of regular conditional distribution

P(Xt ∈ B|Xτ ) = E [P(Xt ∈ B|Xτ , Xs)|Xτ ]

= E [P(Xt ∈ B|Xs)|Xτ ]

= E [h(Xs)|Xτ ]

=

�
h(y)dP(Xs ∈ dy|Xτ )

=

�
P(Xt ∈ B|Xs = y)P (Xs ∈ dy|Xτ )

=

�

R
pt,s(B|y)ps,τ (dy|Xτ ).

That is

pt,τ (B|x) =
�

pt,s(B|y)ps,τ (dy|x).

We proved the following.

Theorem 33 (Chapman–Kolmogorov equations). The transition probabili-
ties of a Markov process satisfies the equations

pt,τ (B|x) =
�

pt,s(B|y)ps,τ (dy|x), τ < s < t,B ∈ B. (23)

The expression pt,τ (B|x) is the probability that starting from x in time τ
we end up in B at time t. Consider any s between τ and t. The distribution
of Xs given Xτ = x is ps,τ (·|x), that is the probability being in y is ps,τ (dy|x).
Therefore, the Chapman–Kolmogorov equation is the law of total probability
plus Markov property.

We are cheating again a bit. What we proved is that (23) holds for fixed
τ < s < t almost surely with respect to the probability P(Xτ ∈ ·). Indeed,
in the proof we calculated conditional probabilities, where each equality is
only an almost sure equality. In what follows we assume that (23) holds for
every x.
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The Markov process (Xt) is stationary if the transition probabilities de-
pend only on the time increment, i.e. pt,τ (B|x) = pt−τ (B|x). Then pt(B|x) =
pt,0(B|x), and the Chapman–Kolmogorov equations simplify to

pt+s(B|x) =
�

pt(B|y)ps(dy|x). (24)

Assume that (Xt) is stochastically continuous at 0, that is

Xt
P−→ X0, t → 0.

If (Xt) starts at x then its distribution is denoted by Px, and the corre-
sponding expectation is Ex, that is

Px(Xt ∈ B) = P(Xt ∈ B|X0 = x), Exf(Xt) = E [f(Xt)|X0 = x] .

Example 17 (Poisson process). Let Nt be a standard Poisson process. Then
Nt −Ns ∼ Poisson(t− s), so

Px(Nt = x+ k) = pt({x+ k}|x) = tk

k!
e−t,

or, what is the same

pt(B|x) =
�

k:x+k∈B

tk

k!
e−t.

The Chapman–Kolmogorov equation (24) become

pt+s({k}|0) =
∞�

�=0

pt({k}|�)ps({�}|0),

which is just a reformulation of the fact that the sum of two independent
Poisson random variables is Poisson, and the parameter is the sum of the
parameters.

Example 18 (Wiener process). Let Wt be SBM. Then

pt(B|x) = Px(Wt ∈ B) = P0(x+Wt ∈ B) = P0(Wt ∈ B − x)

=

�

B−x

1√
2πt

e−
y2

2t dy

=

�

B

1√
2πt

e−
(y−x)2

2t dy.
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That is pt(B|x) is absolutely continuous with transition density pt(dy|x) =
ρt(y|x)dy

ρt(y|x) =
1√
2πt

e−
(y−x)2

2t .

The Chapman–Kolmogorov equation (24) become

pt+s(B|x) =
�

R
pt(B|y)ρs(y|x)dy,

or for the densities

ρt+s(z|x) =
�

R
ρt(z|y)ρs(y|x)dy.

This is a reformulation of the fact that the sum of independent normals is
normal. Recall the convolution formula for densities.

6.2 Infinitesimal generator

The infinitesimal generator of X an operator defined by

f �→ Sf : Sf(x) = lim
t→0+

1

t
Ex [f(Xt)− f(x)] , (25)

whenever the limit exists. Its domain is denoted by D(S).
We determine the infinitesimal generator of the Poisson process and the

Wiener process.

Example 19 (Poisson process). Let (Nt) be a Poisson process with intensity
1, and let f be a bounded measurable function. By definition Nt − N0 ∼
Poisson(t), thus

Exf(Nt) =
∞�

k=0

tk

k!
e−tf(k + x).

Since f is bounded the sum is finite, and as t ↓ 0

Exf(Nt) = f(x)e−t + f(x+ 1)te−t +O(t2).

Thus

Sf(x) = lim
t→0

1

t
Ex [f(Nt)− f(x)]

= lim
t→0

�
f(x)

e−t − 1

t
+ f(x+ 1)e−t

�

= f(x+ 1)− f(x).
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The limit exists for any bounded measurable function.

Example 20 (Wiener process). Let (Wt) be SBM and f ∈ C2
c twice continu-

ously differentiable function with compact support. Using Taylor expansion

f(x+ h) = f(x) + hf �(x) +
h2

2
f ��(x) + o(h2),

and since E0Wt = 0, E0W
2
t = t, we have

Exf(Wt) = E0f(x+Wt)

= E0

�
f(x) +Wtf

�(x) +
W 2

t

2
f ��(x) + o(W 2

t )

�

= f(x) +
t

2
f ��(x) + o(t).

Thus

Sf(x) = lim
t→0

1

t
Ex [f(Wt)− f(x)] =

f ��(x)

2
.

We see that C2
c ⊂ D(S).

6.3 Kolmogorov equations

Backward. Let t > 0 fix, B ∈ B(R), τ > 0 small. By the tower rule and
the Markov property

P(Xt+τ ∈ B|X0 = x) = E [P(Xt+τ ∈ B|Xτ )|X0 = x] .

With the notation ϕt(x) = pt(B|x)

ϕt+τ (x) = Exϕt(Xτ ),

which reads as

1

τ
[ϕt+τ (x)− ϕt(x)] =

1

τ
Ex [ϕt(Xτ )− ϕt(x)] .

Letting τ tend to 0, we obtain

∂

∂t
ϕt(x) = (Sϕt) (x).
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Substituting back the definition of ϕ, we obtain Kolmogorov’s backward equa-
tion

∂

∂t
pt(B|x) = (Spt(B|·)) (x). (26)

Forward. Let t > 0 fix, f ∈ D(S). By the tower rule and the Markov
property

Exf(Xt+τ ) = Ex [Ex[f(Xt+τ )|Xt]] ,

which can be rewritten as
�

f(y)pt+τ (dy|x) =
� �

f(z)pτ (dz|y)pt(dy|x) =
�

Eyf(Xτ )pt(dy|x).

Subtracting

Exf(Xt) =

�
f(y)pt(dy|x)

and dividing by τ

�
f(y)

pt+τ (dy|x)− pt(dy|x)
τ

=

�
1

τ
[Eyf(Xτ )− f(y)] pt(dy|x).

Letting τ ↓ 0 �
f(y)

∂

∂t
pt(dy|x) =

�
(Sf)(y)pt(dy|x). (27)

The adjoint of the operator S is an operator S∗ on the space of measures
such that �

(Sf)(y)µ(dy) =

�
f(y)(S∗µ)(dy).

If this holds for sufficiently many f and µ, then it is unique.
Using the definition of adjoint in (27)

�
f(y)

∂

∂t
pt(dy|x) =

�
f(y) (S∗pt(·|x)) (dy),

from which we get Kolmogorov’s forward equation

∂

∂t
pt(B|x) = (S∗pt(·|x)) (B). (28)
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Remark 2. The derivation of the forward equation is rather intuitive. What
kind of space is the domain D(S), and how the adjoint operator defined?
Furthermore, in (27)) we differentiated a family of measures with respect to
t. If the measure are absolutely continuous, i.e.

pt(dy|x) = ρt(y|x)dy,

then

lim
τ→0

ρt+τ (y|x)− ρt(y|x)
τ

=
∂

∂t
ρt(y|x).

In general, both for the backward and for the forward equations extra
conditions are needed. As it can be guessed from the derivation, for the
forward equation more restrictive conditions are needed.

The importance of the Kolmogorov equations (26) and (28) is that from
infinitesimal conditions (from the generator S) one can determine the evolu-
tion of the whole process, that is the transition probabilities. In most of the
cases the solution cannot be determined explicitly, only by simulation.

Example 21 (Poisson process). Let (Nt) be a Poisson process with intensity
1. We proved that

(Sf)(x) = f(x+ 1)− f(x).

Therefore, the backward equation reads as

∂

∂t
pt(B|x) = pt(B|x+ 1)− pt(B|x). (29)

For the forward equation we determine the adjoint of S. We need an S∗µ
such that �

[f(x+ 1)− f(x)]µ(dx) =

�
f(x)(S∗µ)(dx).

From this form we can guess that

S∗µ(A) = µ(A− 1)− µ(A),

should work, where A − 1 = {a − 1 : a ∈ A}. This indeed holds, therefore
the forward equation reads as

∂

∂t
pt(B|x) = pt(B − 1|x)− pt(B|x).
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The initial condition in both cases is

p0(B|x) = δx(B) =

�
1, if x ∈ B,

0, otherwise.

In this special case we can solve the equation (29). Let x = 0 and
B = {0}. Since the process have only upwards jumps pt({0}|1) = 0,

d

dt
pt({0}|0) = −pt({0}|0),

which together with the initial condition p0 = 1 gives

pt({0}|0) = e−t.

Now B = {1} gives

d

dt
pt({1}|0) = e−t − pt({1}|0).

Multiplying by et

d

dt

�
etpt({1}|0)

�
= 1,

which with the initial condition p0({1}|0) = 0 gives

pt({1}|0) = te−t.

In general, induction gives that

pt({k}|0) =
tk

k!
e−t.

Example 22 (Wiener process). Let (Wt) be SBM. Since (Sf)(x) = f ��(x)/2,
the backward equation is

∂

∂t
pt(B|x) = 1

2

∂2

∂x2
pt(B|x).

For the density pt(dy|x) = ρt(y|x)dy we get

∂

∂t
ρt(y|x) =

1

2

∂2

∂x2
ρt(y|x).
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This is the heat equation.
For the forward equation we need again the adjoint of S. Let µ be ab-

solutely continuous with respect to the Lebesgue measure, µ(dy) = g(y)dy,
and let f ∈ C2

c . Integration by parts twice gives

�
f ��(y)g(y)dy =

�
f(y)g��(y)dy.

That is (S∗µ)(dy) = 1
2
g��(y)dy. The forward equation is

∂

∂t
pt(y|x)dy =

1

2

∂2

∂y2
pt(y|x)dy,

which for the densities gives

∂

∂t
ρt(y|x) =

1

2

∂2

∂y2
ρt(y|x),

again the heat equation.
Recall that the fundamental solution to the heat equation

∂

∂t
u(t, x) =

1

2

∂2

∂x2
u(t, x)

is

F (t, x) =
1√
2πt

e−
x2

2t ,

which is exactly the transition density of the SBM.

6.4 Diffusion processes

Diffusions can be handled as solution to SDEs. We showed that under gen-
eral conditions unique strong solution to SDEs exists, implying the existence
of diffusion processes. This is the probabilistic approach due to Lévy and
Itô. Another more analytical approach to such processes was applied by
Kolmogorov and Feller. They treated diffusions as general Markov processes
and using tools from the theory of partial differential equations, they showed
that under suitable conditions the Kolmogorov backward and forward equa-
tions have a unique solution. Then the existence of a desired Markov process
follows from Kolmogorov’s consistency theorem, and the continuity property
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