One can define stochastic integral with respect to more general processes. The process $\left(X_{t}\right)$ is a continuous semimartingale if

$$
X_{t}=M_{t}+A_{t}
$$

where M_{t} is a continuous martingale and A_{t} is of bounded variation, and both are adapted. As in Lemma 6 it can be shown that this decomposition is essentially unique.

We can define stochastic integral with respect to semimartingales. Indeed, integral with respect to A_{t} can be defined pathwise, since A is of bounded variation, and integration with respect to continuous M_{t} can be defined similarly as for SBM.

The following version of Itô's formula holds.
Theorem 31 (Itô formula for semimartingales). Let $X_{t}=M_{t}+A_{t}$ be a continuous semimartingale, and let $f \in C^{2}$. Then

$$
f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{0}^{t} f^{\prime}\left(X_{s}\right) \mathrm{d} X_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) \mathrm{d}\langle M\rangle_{s} .
$$

5 Stochastic differential equations

5.1 Existence and uniqueness

We define the strong solution of SDEs and obtain existence and uniqueness results.

The followings are given:

- probability space $(\Omega, \mathcal{A}, \mathbf{P})$;
- with a filtration $\underline{\left(\overline{\mathcal{F}_{t}}\right)_{t \in[0, T]}}$;
- a (-dimensional SBM $W_{t}=\left(W_{t}^{1}, \ldots, W_{t}^{r}\right)$ with respect to the filtration
$\left(\mathcal{F}_{t}\right) ;$
- measurable functions $\mathcal{f}: \mathbb{R}^{d} \times[0, T] \rightarrow \mathbb{R}^{d}, \sigma: \mathbb{R}^{d} \times[0, T] \rightarrow \mathbb{R}^{d \times r} ;$
- \mathcal{F}_{0}-measurable rv $\xi: \Omega \rightarrow \mathbb{R}^{d}$.

The (d-dimensional) process $\left(X_{t}\right)$ is strong solution to the $S D E$

$$
\left[\begin{array}{rl}
\mathrm{d} X_{t} & =f\left(X_{t}^{\prime}, t\right) \mathrm{d} t+ \tag{22}\\
X_{0} & =\overline{\xi,}+\underset{\sim}{\sigma\left(X_{t}, t\right)} \mathrm{d} W_{t}, \\
\text { dnutit }
\end{array}\right.
$$

$$
\Delta x_{t}=x_{t+h}-x_{t}=\underline{h} \cdot f\left(x_{4}\right)+\left(w_{t+h}-w_{h}\right) \cdot \sigma\left(X_{t,} t\right)
$$

if $\int_{0}^{t} f\left(X_{s}, s\right) \mathrm{d} s$ are $\int_{0}^{t} \sigma\left(X_{s}, s\right) \mathrm{d} W_{s}$ well-defined for all $t \in[0, T]$ and the integral version of (22) holds, ie.

$$
\sum X_{t}=\xi+\int_{0}^{t} f\left(X_{s}, s\right) \mathrm{d} s+\int_{0}^{t} \sigma\left(X_{s}, s\right) \mathrm{d} W_{s}, \quad \text { for all } t \in[0, T] \text { a.s. }
$$

Written coordinatewise

$$
X_{t}^{i}=\xi^{i}+\int_{0}^{t} f^{i}\left(X_{s}, s\right) \mathrm{d} s+\int_{0}^{t} \sum_{j=1}^{r} \sigma_{i, j}\left(X_{s}, s\right) \mathrm{d} W_{s}^{j}, \quad i=1,2, \ldots, d
$$

It is important to emphasize that with strong solutions not only the SDE (22) is given, but the driving SBM, the initial condition (not just distribudion!) ξ and the filtration.

For d-dimensional vectors $|x|=\sqrt{x_{1}^{2}+\ldots+x_{d}^{2}}$ stands for the usual Euclidean norm, and for a matrix $\sigma \in \mathbb{R}^{d \times r}$, define $|\sigma|=\sqrt{\sum_{i, j} \sigma_{i j}^{2}}$,
Picard -
Lindelif
Wham.
for
ode
Theorem 32. Assume that for the functions in (22) the following hold:
\{thm:sde-exuni\}
ODE $\left\{\begin{array}{l}|f(x, t)-f(y, t)|+|\sigma(x, t)-\sigma(y, t)| \leq K|x-y|, \\ |f(x, t)|^{2}+|\sigma(x, t)|^{2} \leq K_{0}\left(1+|x|^{2}\right),\end{array} \quad\right.$ Lip<ditz-cont.
initial $\rightarrow \mathrm{E}|\xi|^{2}<\infty$.
Then (22) has a unique strong solution X, and

$$
\underset{0 \leq t \leq T}{\mathbf{E} \sup _{0 \leq t}\left|X_{t}\right|^{2} \leq C\left(1+\mathbf{E}|\xi|^{2}\right)}
$$

Proof. We only prove for $d=r=1$. The general case is similar, but notatonally messy.

Recall the following statement from the theory of ordinary differential equations.
Lemma 8 (Gronwall-Bellman). Let α, β be integrable functions for which

$$
\text { for some } H \geq 0 \text {. Then }
$$

$$
\left\{\begin{array}{l}
d x_{t}=f\left(x_{t}, t\right) d t+\sigma\left(x_{t}, t\right) d w_{t} \\
\left.x_{0}=\right\}
\end{array}\right.
$$

$$
X_{\text {Uniqueness. . }}^{x+1}+\underset{X_{t}, Y_{i} \text { be solutions. Then }}{t} \rho_{0}^{t} f\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}, s\right) d V_{s} .
$$

Uniqueness. Let X_{t}, Y_{t} be solutions. Then

$$
X_{t}-Y_{t}=\int_{0}^{t}\left(f\left(X_{s}, s\right)-f\left(Y_{s}, s\right)\right) \mathrm{d} s+\int_{0}^{t}\left(\sigma\left(X_{s}, s\right)-\sigma\left(Y_{s}, s\right)\right) \mathrm{d} W_{s}
$$

Since $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$, by Theorem 25 (ii) and the Cauchy-Schwarz inequality

With the notation $\varphi(t)=\mathbf{E}\left(X_{t}-Y_{t}\right)^{2}$ we obtained

$$
\varphi(t) \leq 2(T+1) K^{2} \int_{0}^{t} \varphi(s) \mathrm{d} s
$$

By the Gronwall-Bellman lemma $\varphi(t) \equiv 0$, i.e. $X_{t}=Y_{t}$ ass. Since $X_{t}-Y_{t}$ is continuous, the two processes are indistinguishable, meaning

$$
\mathbf{P}\left(X_{t}=Y_{t}, \forall t \in[0, T]\right)=1 .
$$

Thus the uniqueness is proved.
Existence. Sketch. The proof goes similarly as the proof of the Picard-
Lindelöf theorem for ODEs. We do Picard iteration. Let $X_{t}^{(0)} \equiv \xi$, and if
$X_{t}^{(n)}$ is given, let

Write

$$
\begin{aligned}
& X_{t}^{(n+1)}=\xi+\int_{0}^{t} f\left(X_{s}^{(n)}, s\right) \mathrm{d} s+\int_{0}^{t} \sigma\left(X_{s}^{(n)}, s\right) \mathrm{d} W_{s} .
\end{aligned}
$$

$$
\begin{aligned}
& X_{t}^{(n+1)}-X_{t}^{(n)}=\int_{0}^{t}\left(f\left(X_{s}^{(n)}, s\right)-f\left(X_{s}^{(n-1)}, s\right)\right) \mathrm{d} s \\
& +\int_{0}^{t}\left(\sigma\left(X_{s}^{(n)}, s\right)-\sigma\left(X_{s}^{(n-1)}, s\right)\right) \mathrm{d} W_{s} \\
& =: B_{t}^{(n)}+M_{t}^{(n)} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq t \leq T \\
& \leq 2(T+1) K^{2} \int_{0}^{t} \mathrm{E}\left(X_{s}-Y_{s}\right)^{2}{ }^{\stackrel{\Sigma}{\mathrm{d}} .} K^{2}\left(X_{s}-Y_{S}\right)^{Z}
\end{aligned}
$$

$$
\begin{aligned}
& E\left[\left(\int_{0}^{t} \rho\left(x_{s, s}\right)-f\left(x_{s, s}\right) d s\right)^{2}\right] \leqq \\
& \leqq E\left[\int_{0}^{t}\left(f\left(x_{s}, s\right)-\rho\left(x_{s, s}\right)^{2} d s \cdot \int_{0}^{t} 1 d s\right]\right. \\
& S \rho g \leq \sqrt{\int \rho^{2}} \cdot \sqrt{\rho_{g} 2} \\
& \leqq t \cdot \int_{0}^{t} E\left(K^{2} \cdot\left(x_{s}-y_{s}\right)^{2}\right) d s \\
& =t \cdot K^{2} \int_{0}^{t} E\left[\left(x_{s}-y_{s}\right)^{2}\right] d s
\end{aligned}
$$

$$
\begin{aligned}
\text { wits } \rightarrow & M_{t}^{(n)}=\int_{0}^{t}\left(\sigma\left(X_{s}^{(n)}, s\right)-\sigma\left(X_{s}^{n-1)}, s\right)\right) d\left(v_{s}\right. \\
& E\left[\left(M_{t}\right)^{2}\right]=\int_{0}^{t}()^{2} d s
\end{aligned}
$$

By Doob's maximal inequality, as in the proof of uniqueness

$$
\left(p_{1}^{P}\right)^{p}=4
$$

$$
\begin{aligned}
\mathbf{E}\left(\sup _{s \in[0, t]}\left(M_{s}^{(n)}\right)^{2}\right) & \leq 4 \mathbf{E} \int_{0}^{t}\left(\sigma\left(X_{s}^{(n)}, s\right)-\sigma\left(X_{s}^{(n-1)}, s\right)\right)^{2} \mathrm{~d} s \\
& \left.\leq 4 K^{2} \int_{0}^{t} \mathbf{E}\left[X_{s}^{(n)}-X_{s}^{(n-1)}\right)^{2}\right] \mathrm{d} s
\end{aligned}
$$

$$
1-2
$$

This implies
On the other hand, by Cauchy-Schwarz \& Cipedhts prop. $B_{t}=\int_{0}^{t} \rho\left(x_{s}^{(n)} s\right)-\rho|\cdot \cdot| d s$

$$
\mathbf{E}\left(\sup _{s \in[0, t]}\left(B_{s}^{(n)}\right)^{2}\right) \leq t K^{2} \int_{0}^{t}\left(X_{s}^{(n)}-X_{s}^{(n-1)}\right)^{2} \mathrm{~d} s
$$

5

$$
\mathbf{E}\left(\sup _{s \in[0, t]}\left(X_{s}^{(n+1)}-X_{s}^{(n)}\right)^{2}\right) \leq L \int_{0}^{t} \mathbf{E}\left(X_{s}^{(\bar{n})}-X_{s}^{(n-1)}\right)^{2} \mathrm{~d} s
$$

with $L=2(T+4) K^{2}$. Iterating and changing the order of integration

$$
n \leq 3
$$

$$
\mathbf{E}\left(\sup _{s \in[0, t]}\left(X_{s}^{(n+1)}-X_{s}^{(n)}\right)^{2}\right) \leq L \int_{0}^{t} \sqrt{\mathrm{E}\left(X_{s}^{(n)}-X_{s}^{(n-1)}\right)^{2}} \mathrm{~d} s
$$

$$
\int_{0}^{t} d u \int_{\boldsymbol{\mu}}^{t} d s, \leq L^{2} \int_{0}^{t}\left(\int_{0}^{s} \mathbf{E}\left(X_{u}^{(n-1)}-X_{u}^{(n-2)}\right)^{2} \mathrm{~d} u\right) \mathrm{d} s
$$

Continuing, and using the assumption on ξ we obtain induccicos

$$
\left.\begin{array}{l}
\mathbf{E}\left(\sup _{s \in[0, t]}\left(X_{s}^{(n+1)}-X_{s}^{(n)}\right)^{2}\right) \\
\leq L^{n} \int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} \mathbf{E}\left(X_{s}^{1}-\xi\right)^{2} \mathrm{~d} s \leq C \frac{(L T)^{n}}{n!}
\end{array}\right\}
$$

By Chebyshev

$$
\sum_{n=1}^{\infty} \mathbf{P}\left(\sup _{0 \leq t \leq T}\left|X_{t}^{(n+1)}-X_{t}^{n}\right|\left(n^{-2}\right) \leq \sum_{n=1}^{\infty} C^{\prime} n^{4} \frac{(L T)^{n}}{n!}<\infty . \quad \sum_{n=1}^{\infty} \frac{(L T)^{n}}{n!}<\alpha\right.
$$

$$
\Rightarrow I \text {. Bad-Canelli }
$$

Therefore, applying the first Borel-Cantelli lemma the infinite sum

$$
\sum_{n=0}^{\infty}\left(X_{t}^{(n+1)}-X_{t}^{n}\right)
$$

converges ass. Clearly the sum is a solution to the $\operatorname{SDE}(22)$.

5.2 Examples

Most of the examples and exercises are from Evans [4].
Example 16. Let g be a continuous function, and consider the SDE

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=g(t) X_{t} \mathrm{~d} W_{t} \\
X_{0}=1
\end{array}\right.
$$

Show that the unique solution is

$$
X_{t}=\exp \left\{-\frac{1}{2} \int_{0}^{t} g(s)^{2} \mathrm{~d} s+\int_{0}^{t} g(s) \mathrm{d} W_{s}\right\}
$$

The uniqueness follows from Theorem 32, assuming g is nice enough. To check that X_{t} is indeed a solution, we use Itô's formula. Let

$$
\text { have } Y_{t}=-\frac{1}{2} \int_{0}^{t} g(s)^{2} \mathrm{~d} s+\int_{0}^{t} g(s) \mathrm{d} W_{s} . \quad \theta\left(Y_{t}\right)=\rho\left(Y_{0}\right) t
$$

$$
\begin{aligned}
X_{t} & =e^{Y_{t}}=1+\int_{0}^{t} e^{Y_{s}} \mathrm{~d} Y_{s}+\frac{1}{2} \int_{0}^{t} e^{Y_{s}} g^{2}(s) \mathrm{d} s \\
& =1+\int_{0}^{t} X_{s} g(s) \mathrm{d} W_{s}
\end{aligned}
$$

as claimed.
Exercise 34. Let f and g be continuous functions, and consider the SDE

With $f(x)=e^{x}$, we have

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=f(t) X_{t} \mathrm{~d} t \\
X_{0}=1
\end{array}\right.
$$

Show that the unique solution is

$$
X_{t}=\exp \left\{\int_{0}^{t}\left[f(s)-\frac{1}{2} g(s)^{2}\right] \mathrm{d} s+\int_{0}^{t} g(s) \mathrm{d} W_{s}\right\}
$$

Exercise 35 (Brownian bridge). Show that

$$
B_{t}=(1-t) \int_{0}^{t} \frac{1}{1-s} \mathrm{~d} W_{s}
$$

is the unique solution of the SDE

$$
\left\{\begin{array}{l}
\mathrm{d} B_{t}=-\frac{B_{t}}{1-t} \mathrm{~d} t+\mathrm{d} W_{t} \\
B_{0}=0 .
\end{array}\right.
$$

Calculate the mean and covariance function of B.
A mean zero Gaussian process B_{t} on $[0,1]$ is called Brownian bridge if its covariance function is

$$
\operatorname{Cov}\left(B_{s}, B_{t}\right)=\min (s, t)-s t . \quad\left(\mathbf{N}_{\mathbf{t} \mathbf{r}} \mathbf{t}_{\mathbf{t}}\right)
$$

Exercise 36. Show that if W is SBM then $B_{t}=W_{t}-t$ is Brownian bridge.

and show that it explodes in a finite random time. Hint: Look for a solution $X_{t}=u\left(W_{t}\right)$.

Exercise 38. Solve the SDE

$$
\mathrm{d} X_{t}=-X_{t} \mathrm{~d} t+e^{-t} \mathrm{~d} W_{t} .
$$

Exercise 39. Show that $\left(X_{t}, Y_{t}\right)=\left(\cos W_{t}, \sin W_{t}\right)$ is a solution to the SDE

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=-\frac{1}{2} X_{t} \mathrm{~d} t-Y_{t} \mathrm{~d} W_{t} \\
\mathrm{~d} Y_{t}=-\frac{1}{2} Y_{t} \mathrm{~d} t+X_{t} \mathrm{~d} W_{t} .
\end{array}\right.
$$

Show that $\sqrt{X_{t}^{2}+Y_{t}^{2}}$ is a constant for any solution (X, Y) !
35. $\left\{\begin{array}{l}d B_{t}=-\frac{B_{t}}{1-t} d t+d W_{t} \\ B_{0}=0\end{array}\right.$
$B_{t}=(n-t) \cdot \int_{0}^{t} \frac{1}{n-b} d d l_{s}$ us a colution. $t<1$

$$
\int_{0}^{t}\left(\frac{1}{1-s}\right)^{2} d s<\infty
$$

$t<1$

$$
t=1: \quad \int_{0}^{1} \frac{1}{(1-s)^{2}} d s=\int_{0}^{1} \frac{1}{s^{2}} d s=\left[-\frac{1}{s}\right]_{0}^{1}=\infty
$$

- T poblem

$$
\begin{aligned}
& d B_{t}=-\frac{B_{t}}{1-t} d t+d W_{t}, B_{0}=0 \\
& B_{t}=\underbrace{(n-t)}_{x_{t}} \cdot \underbrace{\int_{0}^{t} \frac{1}{n-s} d d / s}_{y_{t}} \\
& f\left(x_{2}, y_{t}\right)=X_{t} \cdot y_{t}=x_{0} \cdot y_{0}+\int_{0}^{t} y_{s} d X_{s}+\int_{0}^{t} x_{s} d y_{s}+\frac{1}{2} \int_{0}^{t} 2 \cdot 10 d \\
& f(x, y)=x, y \quad \frac{2}{\theta_{x}} f=y \quad \frac{2}{d y} f=x \\
& \frac{\partial^{2}}{\partial x^{2} f}=\frac{\partial^{2}}{\partial x^{2}} f=0 \quad \frac{\partial}{\partial x \partial y} f=1
\end{aligned}
$$

$$
\begin{aligned}
& =-\int_{0}^{t} Y_{s} d s+\int_{0}^{t}(1-s) \frac{1}{1-s} d W_{s} \\
& =-\int_{0}^{t} \frac{B_{s}}{1-s} d s+W_{t} \\
& {\left[B_{t}=-\int_{0}^{t} \frac{B_{s}}{1-s} d s+W_{t} \quad\right.} \\
& d B_{t}=-\frac{B_{t}}{1-t} d t+d W_{t} \\
& B_{t}=(1-t) \cdot \int_{\rho}^{t} \frac{1}{1-s} d W_{s} \\
& {\left[d B_{t}=-1 \cdot d t \int_{0}^{t} \frac{1}{1-s} d W_{s}+(1-t) \frac{1}{1-t} \cdot d W_{t}\right.} \\
& =-\frac{B_{t}}{1-t} d t+d W_{t} .
\end{aligned}
$$

$$
\begin{aligned}
& B_{t}=(1-t) \cdot \int_{0}^{t} \frac{1}{1-s} d N_{s} \rightarrow \text { Gausian proues } \\
& E\left(B_{t}\right)=E\left(B_{0}\right)=0 . \quad \int_{0}^{t} \text { angthing } d W_{s} \text { UNing } \\
& \operatorname{Cor}\left(B_{t}, B_{s}\right)=E\left(B_{s} B_{t}\right)= \\
& 3<t \\
& =(1-t)(1-s) E(\int_{0}^{s} \frac{1}{1-u} d d d_{u} \cdot \underbrace{\int_{0}^{t} \frac{1}{1-u} d d u})
\end{aligned}
$$

$$
\begin{aligned}
& =0 \\
& =(1-x)(1-s) E\left[\left(\int_{0}^{s} \frac{1}{1-n} d d u\right)^{2}\right] \\
& =(1-t)(1-s) E \int_{0}^{s} \frac{1}{(1-u)^{2}} d u=(1-t)(1-s)\left(\frac{1}{1-s}-1\right)= \\
& \begin{array}{l}
L=1-t-(1-s)(1-t) \\
{\left.\left[\frac{1}{1-u}\right]_{0}^{s}=\frac{1}{1-s}-1 \right\rvert\,=1-t-1-s t+s+t}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =s-s t . \\
& \operatorname{Cor}\left(B_{s}, B_{4}\right)=(s \wedge t)-s t . \\
& E\left(B_{1}^{2}\right)=\operatorname{Crr}\left(B_{1}, B_{1}\right)=0 . \\
& \| B_{1}=0 \text { a.s. }
\end{aligned}
$$

Brownian bridge
$\left[\begin{array}{l}\text { Silat: } U_{11} U_{2}, \ldots \text { iid Unibom }(0,1) \\ \sqrt{\Pi}\left(F_{n}(t)-t\right) \underset{i \rightarrow \infty}{\rightarrow} \text { Brompanan lindge. }\end{array}\right.$

$$
\text { and } \frac{1}{2} u^{\prime \prime}(x)=-\frac{1}{2} e^{-2 u(x)}
$$

then $X_{t}=u\left(U_{f}\right)$ is inbeed a salution

$$
\left\{\begin{array}{l}
u^{\prime}=e^{-u} \\
u(0)=0
\end{array}\right.
$$

$$
\begin{aligned}
& 36 . \\
& \text { 36. }\left\{\begin{array}{l}
d x_{t}=-\frac{1}{2} e^{-2 x_{t}} d t+e^{-x_{t}} d w_{t} \\
x_{0}=0
\end{array}\right. \\
& X_{t}=u\left(w_{t}\right) . \quad v \in C^{2} \\
& X_{t}=u\left(W_{4}\right)=u\left(W_{0}\right)+\int_{0}^{t r} u^{\prime}\left(W_{g}\right) d W_{s}+ \\
& +\frac{1}{2} \int_{0}^{t} u^{\prime \prime}\left(W_{l}\right) d s \\
& u^{\prime}\left(W_{s}\right)=e^{-X_{s}}=e^{-u\left(W_{s}\right)} \\
& \rightarrow u^{\prime}(x)=e^{-\mu(x)} \& u(0)=0 \text {. }
\end{aligned}
$$

$$
\begin{array}{r}
\left(e^{u}\right)^{\prime}=e^{u} u^{\prime}=1 \\
e^{u(t)}=t+C \\
u(t)=\lg (t+c) \\
u(0)=0 \Rightarrow e=1 \\
u(t)=\log (1+t)
\end{array}
$$

the end eq.

$$
x_{t}=\lg \left(1+W_{t}\right)
$$

The shulorn explodes when W_{t} hits -1

$$
\tau=\operatorname{unf}\left\{t: v_{t}=-1\right\} .
$$

