One can define stochastic integral with respect to more general processes.
The process (X;) is a continuous semimartingale if

Xt — Mt‘|‘At,

where M, is a continuous martingale and A; is of bounded variation, and
both are adapted. As in Lemma 6 it can be shown that this decomposition
is essentially unique.

We can define stochastic integral with respect to semimartingales. Indeed,
integral with respect to A; can be defined pathwise, since A is of bounded
variation, and integration with respect to continuous M; can be defined sim-
ilarly as for SBM.

The following version of 1t6’s formula holds.

Theorem 31 (Itd6 formula for semimartingales). Let X; = M; + A; be a
continuous semimartingale, and let f € C?. Then

£ = 100+ [ Fax+ g [ e,

5 Stochastic differential equations

5.1 Existence and uniqueness

We define the strong solution of SDEs and obtain existence and uniqueness
results.
The followings are given:
e probability space (€2, A, P);
—_—

o with a filtration (F3)scqo,r7;

-JK e aXNcdimensional SBM W; = (W}, ..., W) with respect to the filtration
(Ft);

e measurable functions_f : R? x [0,7] = R% o : R x [0,T] — R™";

e Fy-measurable rv £ : @ — R? . d

The (d-dimensional) process (X;) is strong solution to the SDE
/7

dXt = f(Xt,t) dt + O'(Xt,t) th7
Xo=¢ T
00—

g
A, = Xort, = bf0) ¢ 0) Y

(22) {eq:sde}
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if f(f f(Xs, s)ds are fOtU(Xs,s)dWs well-defined for all ¢ € [0,7] and the
integral version of (22) holds, i.e.

t t
E X, = §+/ f(Xs,s) ds+/ o(Xs,s)dW,, forallt e [0,7T] a.s.
0 0

Written coordinatewise
. ) t ) t T I Fﬂ
XZZ(S“r/ fZ(Xs,s)ds+/ > 00X s) AW, i=1,2,....d.
0 (R

It is important to emphasize that with strong solutions not only the SDE
(22) is given, but the driving SBM, the initial condition (not just distribu-
tion!) ¢ and the filtration.

For d-dimensional vectors || = y/z1 + ... + 27 stands for the usual Eu-

clidean norm, and for a matrix o € R*", define 0| = /3", 07,

< - - — {thm:sde-exuni}
\ 15016‘ Theorem 32. Assume that for the functions in (22) the following hold:

Linb@f oD {!ﬂ%ﬂ—f@@%ﬂd%ﬂ—U@JHSKh—yL Lipeditz - cant.

(@, )] + o (z, ) < Ko(1+|z]*),

J/éup.,_ il = E[¢)? < oo.

64\/ Then (22) has a unique strong solution X, and
o D& E sup | X2 < C(1+Elg?).
0<t<T

Proof. We only prove for d = r = 1. The general case is similar, but nota-
tionally messy.

Recall the following statement from the theory of ordinary differential
equations.

r Lemma 8 (Gronwall-Bellman). Let «, 8 be integrable functions for which

a(t) < B(t) + H/toz(s) ds, t€la,b], |

for some H > 0. Then
1

t w7
a(t) < B(t) + H/a A=) 5(s) ds. '{ede\
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Uniqueness. X;,Y, be solutions. Then

XY= / (X0 = FVs) s+ [ (0(X,09) = o0 5)) AW,

Since (a + b)? < 2a% + 2b%, by Theorem 25 (ii) and the Cauchy—Schwarz
inequality

(X, <2E{/ X,.s) — f(Yo 5))d ] r<5( -C OMI
_ 1._/———
l oV )

11‘\

+2E o(Xs,s) —

2(T+10)K2/ E(X, — YQd'fs-z()(,_\/)

With the notation ¢(t) = E(X, — Y;)? we obtained

o(t) <2(T + 1)K2/0 o(s) ds.]

By the Gronwall-Bellman lemmalcp(t) = O,li.e. X, =Y, as. Since X; — Y, is
continuous, the two processes are indistinguishable, meaning

P(X, =Y, Vte[0,T]) =1. '

Thus the uniqueness is proved.
Existence. Sketch. The proof goes similarly as the proof of the Picard-
Lindeldf theorem for ODEs. We do Picard iteration. Let X = ¢, and if

X™ is given, let ———

(n+1) (n ¢ n
X+ §+/f >s)ds+/0 (X()s)dW. { X

Wie ><g‘g+ q/ x,,,<1s+(d(ys,g]om{ onifidy

X(n+1) Xt(n):/ (f(Xs(n) ) f(Xs(n 1) ))ds

t
+/ (U(Xs(n), s) —o(XMY, s)) AW
0
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By Doob’s maximal inequality, as in the proof of uniqueness f_ P b
(¢=1) 7

¢
E (sup (Ms(”))Q) < 4E/ (J(XS("), s) — (XY, s))2 ds
0

s€0,t]
< 4K? / t EEXS(”) — X§"—1>)“{kds. A -
0
On the other hand, by CauchnychwarzA DM ?,',? B{; > § g(%‘s \ﬂ\ "(/ .lﬂlg
Q

t
E (sup (B§”>)2> <tK?E / (XM — X)* ds.
0

s€0,t] »

This implies

t . .
i E (sup (XD — Xﬁ’”f) <L / E(X{" — X{""V)2ds,
s€[0,t] 0

with L = 2(T + 4)K?. Tterating and changing the order of integration

tr———’_F_/-'-\
E <sup (X X§">)2) <L / E(X™ — x=1)2qs

s€[0,t]

-+ /(/ E(X Y — x(n=2))2 dz)d

g <I? / (t — s)E(X" Y — x(n=2))2 g5,

( 0

ontinuing, and using the assumption on ¢ we obtain /\’\dMéi- L' =)

E  p (x0 - x007 )

s€(0,t]

Pt—st LT
gL"/O ﬁ]&:(x _epds < oI n_) } \»\w\w“}w(,_
By Chebyshev g’ LLTS 406

l
o0 LT v~ .
E:P(Sllp |Xn+1) Xn’:@) ' 4 ) < .
n=1 0<t<T n=1 I) n'

-

> 1. - Cawelll
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Therefore, applying the first Borel-Cantelli lemma the infinite sum

> =X
n=0
converges a.s. Clearly the sum is a solution to the SDE (22). O

5.2 Examples

Most of the examples and exercises are from Evans [4].

Example 16. Let g be a continuous function, and consider the SDE

dXt == g(t)Xtth
X, = 1.

Show that the unique solution is

Xo=ep {3 [Caterass [,

The uniqueness follows from Theorem 32, assuming g is nice enough. To
check that X; is indeed a solution, we use It6’s formula. Let

vie— [ atsras+ [ o,

With f(z) = e®, we have e g()-/f}:f[\/a) ¥

X, = eV 1+/t6Y5.OE+%/OteYSgQ(s)ds J_ |
=1+/Othg(s)dWs, "f f(YU%r

as claimed g‘ ” )/ ') (ﬁké
Exercise 34. Let f and g be continuous functions, and consider the SDE Z

dX, = f(O)X,dt + g(t) X, dW,
Xy =1.

Show that the unique solution is

X; = exp {/Ot {f(S) - %9(8)2} ds + /Otg(S)dWs} :

65



Exercise 35 (Brownian bridge). Show that

t
1
By =(1—-t d
= -n) [ =,
is the unique solution of the SDE

By = 0.

Calculate the mean and covariance function of B.

A mean zero Gaussian process B; on [0, 1] is called Brownian bridge if its

covariance function is
Cov (B, B;) = min(s,t) — st. (W'éf E}

Exercise 36. Show that if W is SBM then B; = W, — tZ?is Brownian éé 0 ]]
bridge. == = |
-Exercise 37. Solve the SDE

{dXt = —Le2Xeqp 4 e XedW, w4 W

X(0)=0

and show that it explodes in a finite random time. Hint: Look for a solution
Xt = U(Wt)

Exercise 38. Solve the SDE
dXt = —Xtdt + e_tth.

Exercise 39. Show that (X;,Y;) = (cos W,,sin W;) is a solution to the SDE

dXt - —%Xtdt — }/;det
dY; = —3Ydt + X, dW,.

Show that /X7 + Y;? is a constant for any solution (X,Y)!
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