First we change η_{k} to $X_{t_{k-1}}$. Taking the difference

$$
\begin{aligned}
& \sum_{k=1}^{m}\left[f^{\prime \prime}\left(\eta_{k}\right)-f^{\prime \prime}\left(X_{t_{k-1}}\right)\right]\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2} \\
& \leq \sup _{1 \leq k \leq m}\left|f^{\prime \prime}\left(\eta_{k}\right)-f^{\prime \prime}\left(X_{t_{k-1}}\right)\right| \cdot \sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}
\end{aligned}
$$

By the Cauchy-Schwarz inequality

$$
\begin{align*}
& \left|\mathbf{E} \sum_{k=1}^{m}\left[f^{\prime \prime}\left(\eta_{k}\right)-f^{\prime \prime}\left(X_{t_{k-1}}\right)\right]\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}\right| \\
& \leq \sqrt{\mathbf{E} \sup _{1 \leq k \leq m}\left(f^{\prime \prime}\left(\eta_{k}\right)-f^{\prime \prime}\left(X_{t_{k-1}}\right)\right)^{2}} \sqrt{\mathbf{E}\left(\sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}\right)^{2}} . \tag{16}
\end{align*}
$$

\{e q:i3-3\} ~

The first term tends to 0 because $\left(X_{t}\right)$ is continuous and $f^{\prime \prime}$ is bounded. The second is bounded by the following lemma.
Lemma 7. Let $\left(M_{t}\right)$ be a continuous bounded martingale on $[0, t]$, that is $\sup _{s, \omega}\left|M_{s}(\omega)\right| \leq K$, and let $\Pi=\left\{0=t_{0}<t_{1}<\ldots<t_{m}=t\right\}$ be a partition. Then

$$
\underset{\mathbf{E}\left[\left(\sum_{i=1}^{m}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2}\right)^{\mathbf{2}}\right] \leq 6 K^{4} . . ~ . ~ . ~}{\text {. }}
$$

$$
M_{6}=\int_{0}=U_{d} U_{d} d W_{s}
$$

Proof. Expanding the square

$$
\begin{aligned}
& \text { Expanding the square } \\
& \mathbf{E}\left[\left(\sum_{i=1}^{m}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2}\right)^{2}\right] \text { quadratic } \downarrow \text { ar. } \\
& =\sum_{i=1}^{m} \mathbf{E}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{4}+\sum_{i \neq j} \mathbf{E}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2}\left(M_{t_{j}}-M_{t_{j-1}}\right)^{2} . \\
& \text { several times that }
\end{aligned}
$$

Using several times that

$$
\begin{gathered}
b^{\mathrm{E}\left[\left(M_{t}-M_{s}\right)^{2} \mid F_{s}\right]=\mathrm{E}\left[M_{t}^{2}-M_{s}^{2} \mid F_{s}\right], s<t,} \\
0-t_{p}<\ldots<t_{n}=t \\
\sum_{i=1}^{n}\left(W_{t_{i}}-W_{t_{i-1}}\right)^{2} \xrightarrow{E^{52}} t
\end{gathered}
$$

$$
\begin{aligned}
& E\left[\left(M_{t}-M_{s}\right)^{2} \mid 7_{s}\right]=E\left[M_{t}^{2}-M_{s}^{2} \mid 7_{s}\right] \\
& E\left[M_{t}^{2}-2 M_{t} M_{s}+M_{s}^{2} \mid F_{s}\right] \\
& E\left[M_{b} \cdot M_{s} \mid 7_{s}\right]=\frac{M_{s} E\left[M_{t} \mid H_{1}\right]}{M_{s}}=M_{5}^{2}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \int_{5} \text { mixed fang }=\sum_{i \neq j} \mathrm{E}\left[\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2}\left(M_{t_{j}}-M_{t_{j-1}}\right)^{2}\right] \\
& \left.=2 \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \mathbf{E}\left[M_{t_{i}}-M_{t_{i-1}}\right)^{2}\left(M_{t_{j}}-M_{t_{j-1}}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =E\left\{\begin{array}{ll}
r_{4}^{2}-M_{i}^{2}\left(1 t_{t-1}\right. \\
t_{i}
\end{array}\right] \\
& \begin{aligned}
\sum_{i=1}^{m} \mathbf{E}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{4} & \leq 4 K^{2} \forall \sum_{i=1}^{m} \mathbf{E}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2}=4 匕^{2} \leq t M_{t_{i}}^{2}-M_{i_{i}}^{2} \\
& =4 K^{2} \mathbf{E}\left(M_{t}^{2}-M_{0}^{2}\right) \leq 4 K^{4} .
\end{aligned} \\
& \text { elexouper in }
\end{aligned}
$$

Summarizing from I_{3} we have the sum

$$
\sum_{k=1}^{m} f^{\prime \prime}\left(X_{t_{k-1}}\right)\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}
$$

We claim that

$$
\begin{gather*}
\sum_{k=1}^{m} f^{\prime \prime}\left(X_{t_{k-1}}\right)\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2} \xrightarrow{L^{1}} \int_{0}^{t} \underbrace{t}_{1} \underbrace{\prime \prime}_{1}\left(X_{s}\right) H_{s}^{2} \mathrm{~d} s \tag{17}\\
M_{t}=\int_{\infty}^{1} H_{s} d W_{\downarrow}
\end{gather*}
$$

Since X and $f^{\prime \prime}$ are continuous

$$
\sum_{k=1}^{m} f^{\prime \prime}\left(X_{t_{k-1}}\right) \int_{t_{k-1}}^{t_{k}} H_{s}^{2} \mathrm{~d} s \rightarrow \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) H_{s}^{2} \mathrm{~d} s \quad \text { a.s. }
$$

Thus it is enough to show that

$$
\sum_{k=1}^{m} f^{\prime \prime}\left(X_{t_{k-1}}\right)\left(\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}-\int_{t_{k-1}}^{t_{k}} H_{s}^{2} \mathrm{~d} s\right) \xrightarrow{L^{2}} 0 .
$$

Theorem 25 (ii) implies

$$
\begin{aligned}
\mathbf{E}\left[\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2} \mid \mathcal{F}_{t_{k-1}}\right] & =\mathbf{E}\left[\left(\int_{t_{k-1}}^{t_{k}} H_{s} \mathrm{~d} W_{s}\right)^{2} \mid \mathcal{F}_{t_{k-1}}\right] \\
& =\mathbf{E}\left[\int_{t_{k-1}}^{t_{k}} H_{s}^{2} \mathrm{~d} s \mid \mathcal{F}_{t_{k-1}}\right]
\end{aligned}
$$

so in

$$
\mathbf{E}\left(\sum_{k=1}^{m} f^{\prime \prime}\left(X_{t_{k-1}}\right)\left(\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}-\int_{t_{k-1}}^{t_{k}} H_{s}^{2} \mathrm{~d} s\right)\right)^{2}
$$

the expectation of the mixed term is 0 . Thus this equals

$$
\begin{aligned}
& =\mathbf{E} \sum_{k=1}^{m} f^{\prime \prime}\left(X_{t_{k-1}}\right)^{2}\left(\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}-\int_{t_{k-1}}^{t_{k}} H_{s}^{2} \mathrm{~d} s\right)^{2} \\
& \leq\|f\|_{\infty}^{2}\left[\mathbf{E} \sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{4}+2 \mathbf{E} \sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2} \int_{t_{k-1}}^{t_{k}} H_{s}^{2} \mathrm{~d} s\right. \\
& \\
& \left.\quad \quad+\mathbf{E} \sum_{k=1}^{m}\left(\int_{t_{k-1}}^{t_{k}} H_{s}^{2} \mathrm{~d} s\right)^{2}\right] \\
& \leq\|f\|_{\infty}^{2}\left[\mathbf{E} \sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{4}+2 K^{2} t \mathbf{E} \sup _{1 \leq k \leq m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}+K^{4} t\|\Pi\|\right] .
\end{aligned}
$$

The second and third term tend to 0 , and for the first

$$
\begin{aligned}
\mathbf{E} \sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{4} & \leq \mathbf{E}\left[\sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2} \cdot \sup _{1 \leq k \leq m}\left|M_{t_{k}}-M_{t_{k-1}}\right|^{2}\right] \\
& \leq \sqrt{\mathbf{E}\left[\sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}\right]^{2} \sqrt{\mathbf{E} \sup _{1 \leq k \leq m}\left|M_{t_{k}}-M_{t_{k-1}}\right|^{4}}} \\
& \leq \sqrt{6} K^{2} \sqrt{\mathbf{E} \sup _{1 \leq k \leq m}\left|M_{t_{k}}-M_{t_{k-1}}\right|^{4}} \rightarrow 0 .
\end{aligned}
$$

Summarizing we obtained L^{1}, L^{2} and almost sure convergence in (12)(17). Since everything is bounded, L^{1} convergence follows in each case, that is

$$
\begin{aligned}
f\left(X_{t}\right)-f\left(X_{0}\right) & =\sum_{k=1}^{m}\left[f\left(X_{t_{k}}\right)-f\left(X_{t_{k-1}}\right)\right] \\
& \xrightarrow{L^{1}} \int_{0}^{t} f^{\prime}\left(X_{s}\right) \mathrm{d} X_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) H_{s}^{2} \mathrm{~d} s
\end{aligned}
$$

Convergence in L^{1} implies a.s. convergence on a subsequence. As both sides are continuous we obtained that the two process are indistinguishable.
Example 12 (Continuation of Example 10). Let

$$
\left(x_{1}\right) a m p a t e d
$$

$$
\text { uLt } \quad \zeta_{t}^{s}=\int_{s}^{t} X_{u} \mathrm{~d} W_{u}-\frac{1}{2} \int_{s}^{t} X_{u}^{2} \mathrm{~d} u, \quad \zeta_{t}=\zeta_{t}^{0},
$$

where X_{t} is an adapted process. Then $Z_{t}=e^{\zeta_{t}}$ satisfies the stochastic differ-
ential equation

$$
Z_{t}=1+\int_{0}^{t} Z_{s} X_{s} \mathrm{~d} W_{s},
$$

or with a common notation

$$
\text { Writing } \zeta \text { as an Itô process } \quad \not \mathrm{d} Z_{t}=Z_{t} X_{t} \mathrm{~d} W_{t}, \frac{Z_{0}=1 .}{\text { inilicl } \operatorname{sh} A \text {. }}
$$

$$
\begin{aligned}
& \zeta_{t}=\underbrace{\int_{0}^{t}-\frac{1}{2} X_{u}^{2} \mathrm{~d} u}_{\text {bsundeat } 55}+\underbrace{\int_{0}^{t} \overbrace{0} X_{u} \mathrm{~d} W_{u}}_{\text {moll. }} . \\
& z_{t}=f\left(\jmath_{t}\right) \quad f(x)=e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=f^{\prime \prime}(x)=e^{x} \\
& f\left(\xi_{t}\right)=f\left(\xi_{0}\right)+\int_{0}^{t} f^{\prime}\left(\xi_{3}\right) d \xi_{3}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(\xi^{x_{0}^{2}} d s_{s}\right.
\end{aligned}
$$

Using Itô's formula with $f(x)=e^{x}$

$$
\begin{aligned}
Z_{t} & =e^{\zeta_{t}}=1+\int_{0}^{t} e^{\zeta_{s}} \mathrm{~d} \zeta_{s}+\frac{1}{2} \int_{0}^{t} e^{\zeta_{s}} X_{s}^{2} \mathrm{~d} s \\
& =1+\int_{0}^{t} e^{\zeta_{s}}(\underbrace{}_{\left.-\frac{1}{2} X_{s}^{2} \mathrm{~d} s+X_{s} \mathrm{~d} W_{s}\right)}+\frac{1}{2} \int_{0}^{t} e^{\zeta_{s}} X_{s}^{2} \mathrm{~d} s \\
& =1+\int_{0}^{t} e^{\zeta_{s} X_{s} \mathrm{~d} W_{s}} \\
& =1+\int_{0}^{t} \overbrace{Z_{s} X_{s}} \mathrm{~d} W_{s}, \\
& \int_{0} \text { amohivy dU W, }
\end{aligned}
$$

as claimed. We see that Z_{t} is martingale.
Exercise 28. Let ζ_{t} be as above. Show that $Y_{t}=e^{-\zeta_{t}}$ satisfies the SDE

$$
\mathrm{d} Y_{t}=Y_{t} X_{t}^{2} \mathrm{~d} t-X_{t} Y_{t} \mathrm{~d} W_{t}, \quad Y_{0}=1
$$

Similarly, one can show a more general version, where f depends on the time variable t.
Theorem 27 (More general Itô formula). Let X_{t} be an Ito process and $f \in 0$ $C^{1,2}$. Then

$$
\begin{aligned}
f\left(t, X_{t}\right)= & f\left(0, X_{0}\right)+\int_{0}^{t} \frac{\partial}{\partial s} f\left(s, X_{s}\right) \mathrm{d} s+\int_{0}^{t} \frac{\partial}{\partial x} f\left(s, \widehat{X_{s}}\right) \mathrm{d} X_{s} \\
& +\frac{1}{2} \int_{0}^{t} \frac{\partial^{2}}{\partial x^{2}} f\left(s, X_{s}\right) H_{s}^{2} \mathrm{~d} s
\end{aligned}
$$

4.4 Multidimensional Itô processes

Let $W=\left(W^{1}, W^{2}, \ldots, W^{r}\right)$ be an r-dimensional SBM, that is its component are iud SBM's. Then $\left(X_{t}\right)$ is a d-dimensional Ito process, if $\int \begin{aligned} & d \text { and ry } \\ & \text { con be dhiferend!, } \\ & X_{t}^{i}=X_{0}^{i}+\int_{0}^{t} K_{s}^{i} \mathrm{~d} s+\sum_{j=1}^{r} \int_{0}^{t} H_{s}^{i, j} \mathrm{~d} W_{s}^{j} \text {, }\end{aligned}$
\{eq:multid-ito\}
where $\int_{0}^{T}\left|K_{s}^{i}\right| \mathrm{d} s<\infty, \int_{0}^{T}\left(H_{s}^{i, j}\right)^{2} \mathrm{~d} s<\infty$ a.s., and $K^{i}, H^{i, j}$ are $\mathcal{F}_{t^{-}}$adapted, $i=1,2, \ldots, d, j=1,2, \ldots, r$.

$$
X_{t}^{i}=X_{0}^{i}+\int_{r}^{t} K_{1}^{i} d s+\sum_{i=1}^{r} \int_{\rho}^{r} H_{s}^{i j} d W_{s}^{(j)}
$$

Theorem 28 (Multidimensional Itô formula). Let $\left(X_{t}\right)$ be a multidimensional Ito process and $f: \mathbb{R}^{1+d} \rightarrow \mathbb{R}, f \in C_{\bullet}^{1,2}$. Then

$$
\begin{aligned}
\underbrace{f\left(t, X_{t}^{1}, \ldots, X_{t}^{d}\right.}_{\text {© }})= & f\left(0, X_{0}^{1}, \ldots, X_{0}^{d}\right)+\int_{0}^{t} \frac{\partial}{\partial s} f\left(s, X_{s}^{1}, \ldots, X_{s}^{d}\right) \mathrm{d} s \text { time } \\
\mathrm{C}^{\mathbf{2}} & +\sum_{i=1}^{d} \int_{0}^{t} \frac{\partial}{\partial x_{i}} f\left(s, X_{s}^{1}, \ldots, X_{s}^{d}\right) \mathrm{d} X_{s}^{i} \leftarrow \text { space } \\
& +\frac{1}{2} \sum_{i, j=1}^{d} \int_{0}^{t} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f\left(s, X_{s}^{1}, \ldots, X_{s}^{d}\right) \sum_{k=1}^{r} H_{s}^{i, \bar{k}} H_{s}^{j, k} \mathrm{~d} s
\end{aligned}
$$

4.5 Applications

Example 13 (Integration by parts I). Let (X, Y) be a two-dimensional Itô process with representation

$$
\left\{\begin{array}{l}
X_{t}=X_{0}+\int_{0}^{t} K_{s} \mathrm{~d} s+\int_{0}^{t} H_{s} \mathrm{~d} W_{s} \\
Y_{t}=Y_{0}+\int_{0}^{t} L_{s} \mathrm{~d} s+\int_{0}^{t} G_{s} \mathrm{~d} W_{s}
\end{array}\right.
$$

where K, L, H, G are as usual. Then

$$
\int_{0}^{t} X_{s} \mathrm{~d} Y_{s}=X_{t} Y_{t}-X_{0} Y_{0}-\int_{0}^{t} Y_{s} \mathrm{~d} X_{s}-\underbrace{\int_{0}^{t} H_{s} G_{s} \mathrm{~d} s}
$$

Note that in the deterministic integration by parts formula the last term is missing.

For the proof apply Itô's formula for (X, Y) and $f(x, y)=x y$. Then

$$
r=1, d=2, K_{s}^{1}=K_{s}, K_{s}^{2}=L_{s}, H_{s}^{1,1}=H_{s}, H_{s}^{2,1}=G_{s}
$$

Since $\frac{\partial f}{\partial x}=y, \frac{\partial f}{\partial y}=x, \frac{\partial^{2} f}{\partial^{2} x}=\frac{\partial^{2} f}{\partial^{2} y}=0$, and $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}=1$, we obtain

$$
\begin{aligned}
& X_{t} Y_{t}=X_{0} Y_{0}+\int_{0}^{t} Y_{s} \mathrm{~d} X_{s}+\int_{0}^{t} X_{s} \mathrm{~d} Y_{s}+\frac{1}{2} 2 \int_{0}^{t} H_{s} G_{s} \mathrm{~d} s,
\end{aligned}
$$

$$
+\frac{1}{2} 2 \int_{0}^{t} b_{s} \theta_{1} d s
$$

Intepradion by pants:

$$
\begin{gathered}
F(s)^{\prime}=f(s) \quad G^{\prime}(s)=g(s) \\
\int_{0}^{t} G(s) f(s) d s=[F(s) G(s)]_{(=0}^{t}-\int_{0}^{t} g(s) F(s) d s \\
(f(s) d s=d F(s) \quad g(s) d s=d G(s) \\
{\left[\int_{0}^{t} G(s) d F(s)=[F(s) G(s)]_{(=0}^{t}-\int_{0}^{t} F(s) d G(s)\right.} \\
\text { indegration ly parts for Lebesgee--stelliges ints }
\end{gathered}
$$

Example 14 (Integration by parts II). To change a bit let \widetilde{W} be another SBM independent of W and (X, Y)

$$
\|_{\|}^{X_{t}=X_{0}+\int_{0}^{t} K_{s} \mathrm{~d} s+\int_{0}^{t} H_{s} \mathrm{~d} W_{s}} \begin{aligned}
& Y_{t}=Y_{0}+\int_{0}^{t} L_{s} \mathrm{~d} s+\int_{0}^{t} G_{s} \mathrm{~d} \widetilde{W}_{s}
\end{aligned}
$$

Then

$$
\int_{0}^{t} X_{s} \mathrm{~d} Y_{s}=X_{t} Y_{t}-X_{0} Y_{0}-\int_{0}^{t} Y_{s} \mathrm{~d} X_{s}
$$

The proof is the same but here $d=r=2$, and no extra term appears.
Example 15 (Geometric Brownian motion). Let $\mu \in \mathbb{R}, \sigma>0$. Solve the SEE

$$
\int \mathrm{d} X_{t}=\mu X_{t} \mathrm{~d} t+\sigma X_{t} \mathrm{~d} W_{t}
$$

(19) \{eq:exp-BM-sde\}

We have

$$
1 X_{t}=X_{0}+\int_{0} \mathrm{~d} s+\int_{0}^{t} \sigma X_{s} \mathrm{~d} W_{s}
$$

Applying Itô's formula with $f(x)=\underline{\log x}$

$$
\begin{aligned}
\log X_{t} & =\log X_{0}+\int_{0}^{t} \frac{1}{X_{s}}\left(\mu X_{s} \mathrm{~d} s+\sigma X_{s} \mathrm{~d} W_{s}\right)+\frac{1}{2} \int_{0}^{t}-\frac{1}{X_{s}^{2}} \sigma^{2} X_{s}^{2} \mathrm{~d} s \\
& =\log X_{0}+\sigma W_{t}+\left(\mu-\frac{\sigma^{2}}{2}\right) t .
\end{aligned}
$$

Thus

$$
X_{t}=X_{0} \cdot e^{\sigma W_{t}+\left(\mu-\frac{\sigma^{2}}{2}\right) t}
$$

(20) $\{$ eq:exp-BM\}

This is martingale eff $\mu=0$.
Note that $\log x$ is not defined at 0 , so the proof is not complete. It only gives us a potential solution.
Exercise 29. Show that X_{t} in (20) is indeed a solution to the SDE (19).
A more constructive solution is to apply Itô's formula with a general f, and then choose f to obtain a simple equation. With $f(x)=\log x$ the integrand in the martingale part is constant.

Exercise 30. Show that $Y(t)=e^{t / 2} \cos W_{t}$ is martingale.

> time defenders

$$
\begin{aligned}
& \text { STE: } \quad d X_{t}=\mu X_{t} d t+\sigma X_{t} d W_{t} \\
& \rightarrow \quad X_{t}=X_{0}+\int_{0}^{t} \mu X_{s} d s+\int_{0}^{t} \sigma X_{s} d V_{s} . \\
& f \in C^{2} \\
& f\left(x_{t}\right)=f\left(x_{0}\right)+\int_{0}^{t} f^{\prime}\left(x_{s}\right) d x_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(x_{s}\right)\left(6 x_{s}\right)^{2} d s \\
& =f\left(x_{0}\right)+\int_{0}^{t} f^{\prime}\left(x_{s}\right)\left(\mu x_{s} d s+\sigma x_{s} d v_{s}\right) \\
& +\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(x_{s}\right) \sigma^{2} x_{c}^{2} d s= \\
& f\left(x_{t}\right)=f\left(x_{0}\right)+\int_{0}^{t}\left(f^{t}\left(x_{s}\right) \mu x_{s}+\frac{1}{2} f^{\prime \prime}\left(x_{s}\right)-\sigma^{2} x_{s}^{2}\right) d s \\
& +\int_{0}^{t} \sigma f^{\prime}\left(x_{s}\right) x_{s} d W_{s}
\end{aligned}
$$

$f(x)=\log x \quad f^{\prime}(x)=\frac{1}{x} \quad f^{\prime}(x) x=1$.

$$
\int_{0}^{t} \tau d W_{s}=\sigma W_{t}
$$

$$
\begin{aligned}
& \begin{array}{l}
f(x)=\log x \\
f^{\prime}(x) \\
=\frac{1}{x} \quad f^{\prime \prime}(x)=-\frac{1}{x^{2}} \\
\log x_{t}
\end{array}=\log x_{0}+\int_{0}^{t}\left(\mu-\frac{\sigma^{2}}{2}\right) d s+\sigma W_{t} \\
& =\log x_{0}+t \cdot\left(\mu-\frac{\sigma^{2}}{2}\right)+\sigma \omega_{t} \\
& \left\{x_{t}\right.
\end{aligned}=x_{0} \cdot \exp \left\{t \cdot\left(\mu-\frac{\sigma^{2}}{2}\right)+\sigma\left(x_{t}\right\} .\right.
$$

Exercise 31. Show that

$$
\int_{0}^{t} W_{s}^{2} \mathrm{~d} W_{s}=\frac{1}{3} W_{t}^{3}-\int_{0}^{t} W_{s} \mathrm{~d} s
$$

and

$$
\int_{0}^{t} W_{s}^{3} \mathrm{~d} W_{s}=\frac{1}{4} W_{t}^{4}-\frac{3}{2} \int_{0}^{t} W_{s}^{2} \mathrm{~d} s
$$

Exercise 32. Let $\mathbf{W}=\left(W^{1}, \ldots, W^{r}\right)$ be an r-dimensional SBM, $r \geq 2$, and
let

$$
R_{t}=\sqrt{\sum_{i=1}^{r}\left(W_{t}^{i}\right)^{2}}
$$

Show that R satisfies the SDE

$$
\mathrm{d} R_{t}=\frac{r-1}{2 R_{t}} \mathrm{~d} t+\sum_{i=1}^{r} \frac{W_{t}^{i}}{R_{t}} \mathrm{~d} W_{t}^{i}
$$

This is the Bessel equation and R is the Bessel process.
4.6 Quadratic variation and the Doob-Meyer decomposition

We proved that

$$
\mathbf{E}\left[\left(\int_{s}^{t} X_{u} \mathrm{~d} W_{u}\right)^{2} \mid \mathcal{F}_{s}\right]=\mathbf{E}\left[\int_{s}^{t} X_{u}^{2} \mathrm{~d} u \mid \mathcal{F}_{s}\right]
$$

which means that the process

$$
\begin{equation*}
\boldsymbol{p}\left(\int_{0}^{t} X_{u} \mathrm{~d} W_{u}\right)^{2}-\int_{0}^{t} X_{u}^{2} \mathrm{~d} u \lessdot \tag{21}
\end{equation*}
$$

is a continuous martingale. In the decomposition

$$
\left(\int_{0}^{t} X_{u} \mathrm{~d} W_{u}\right)^{2}=\int_{0}^{t} X_{u}^{2} \mathrm{~d} u+\left(\int_{0}^{t} X_{u} \mathrm{~d} W_{u}\right)^{2}-\int_{0}^{t} X_{u}^{2} \mathrm{~d} u
$$

the first term is an increasing process and the second term is a martingale, that is we obtained the Doob-Meyer decomposition of $I_{t}(X)^{2}$.

$$
E\left[\left(\int_{0}^{t} x_{n} d w_{u}\right)^{2}-\int_{0}^{\infty} x_{n}^{2} d u \mid f_{s}\right]=
$$

$$
\begin{aligned}
& =E \underset{\substack{I_{r} \text { meas. }}}{[\left(\int_{0}^{s}+S_{s}^{t}\right)^{2}-\underbrace{s} \int_{0}^{s}-\int_{1}^{t} \mid F_{1}]} \\
& =\left(\int_{0}^{1} x_{u} d V_{n}\right)^{2}-\int_{0}^{1} x_{u}^{2} d u+ \\
& +E\left[\left(\int_{s}^{t} x_{u} d N_{u}\right)^{2}-\int_{s}^{t} x_{u}^{2} d u \mid F_{3}\right]=0 \\
& +E\left[\int_{0}^{s} \cdots d \omega_{u} \cdot \int_{s}^{t} \cdots d \omega_{u} \mid 7_{s}\right]=0 \\
& E\left[S_{0}^{t}-S_{0}^{s} \mid T_{s}\right]=0 \text {. } \\
& =\left(\int_{0}^{3} x_{n} d W_{n}\right)^{2}-\int_{0}^{1} x_{u}^{3} d u, \text { os it in witf. } \\
& =0=
\end{aligned}
$$

Doob-Meyer dec.
$\left(Y_{t}\right)$ enbunty. $\left.E\left[Y_{t} \mid Y_{s}\right]\right) Y_{s}$

$$
Y_{t}=M_{t}+\underline{A_{t}}
$$

miy. inceasing

$$
\Sigma^{\prime}\left(M_{H_{1}}-\mu_{m_{n}}\right)^{2}
$$

On the other hand, at the proof of Itô's formula we showed (see (17)) that

$$
\sum_{i=1}^{n}\left(\int_{t_{i-1}}^{t_{i}} X_{u} \mathrm{~d} W_{u}\right)^{2} \xrightarrow{L^{1}} \int_{0}^{t} X_{u}^{2} \mathrm{~d} u, \quad \text { as }\left\|\Pi_{n}\right\| \rightarrow 0
$$

The left-hand side is exactly the quadratic variation process of the martingale $I_{t}(X)$.

Summarizing, we proved the following.

[
Theorem 29. For any Ito process X_{t}, the quadratic variation of $I_{t}(X)$ and the increasing process in the Doob-Meyer decomposition of $I_{t}(X)^{2}$ are the same.

This result holds in a more general setup.
Let $\left(X_{t}\right)$ be a (continuous) square integrable martingale, $X \in \mathcal{M}$ (or $X \in$ (10). Then X_{t}^{2} is a submartingale, so by the Doob-Meyer decomposition there exists a unique (up to indistinguishibility) adapted increasing process A_{t}, such that $A_{0}=0$ a.s. and $X_{t}^{2}-A_{t}$ is a martingale. The process $\langle X\rangle_{t}=A_{t}$ is the quadratic variation of X.

With this notation, Theorem 29 states that

$$
\left\langle\int_{0} X_{u} \mathrm{~d} W_{u}\right\rangle_{t}=\langle I(X)\rangle_{t}=\int_{0}^{t} X_{u}^{2} \mathrm{~d} u
$$

Without proof we mention that Theorem 29 holds not only for Itô processes but for continuous square integrable martingales.
Theorem 30. Let $X \in \mathcal{A}$ For partition Π of $[0, t]$ we have

$$
V_{t}^{(2)}(\Pi):=\sum_{k=1}^{n}\left(X_{t_{k}}-X_{t_{k-1}}\right)^{2} \xrightarrow{\mathbf{P}}\langle X\rangle_{t} \quad \text { as }\|\Pi\| \rightarrow 0 .
$$

For square integrable martingales X, Y the crossvariation process of X and Y is

$$
\langle X, Y\rangle_{t}=\frac{1}{4}\left(\langle X+Y\rangle_{t}-\langle X-Y\rangle_{t}\right)
$$

The processes X and Y are orthogonal if $\langle X, Y\rangle_{t}=0$ ass. for any t.
Exercise 33. Show that if $X, Y \in \mathcal{M}_{2}$, then $X Y-\langle X, Y\rangle$ is a martingale.

One can define stochastic integral with respect to more general processes. The process $\left(X_{t}\right)$ is a continuous semimartingale if

$$
X_{t}=M_{t}^{\boldsymbol{6}}+A_{t},
$$

where M_{t} is a continuous martingale and A_{t} is of bounded variation, and both are adapted. As in Lemma 6 it can be shown that this decomposition is essentially unique.

We can define stochastic integral with respect to semimartingales. Indeed, integral with respect to A_{t} can be defined pathwise, since A is of bounded variation, and integration with respect to continuous M_{t} can be defined similarly as for SBM.

The following version of Itô's formula holds.

Theorem 31 (Itô formula for semimartingales). Let $X_{t}=M_{t}+A_{t}$ be a continuous semimartingale, and let $f \in C^{2}$. Then

$$
f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{0}^{t} f^{\prime}\left(X_{s}\right) \mathrm{d} X_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) \mathrm{d}\langle M\rangle_{s}
$$

5 Stochastic differential equations $H_{s}^{2} d s$

We define the strong solution of SEEs and obtain existence and uniqueness
 results.

The followings are given:

- probability space $(\Omega, \mathcal{A}, \mathbf{P})$;
- with a filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$;
- a d-dimensional SBM $W_{t}=\left(W_{t}^{1}, \ldots, W_{t}^{r}\right)$ with respect to the filtration $\left(\mathcal{F}_{t}\right)$;
- measurable functions $f: \mathbb{R}^{d} \times[0, T] \rightarrow \mathbb{R}^{d}, \sigma: \mathbb{R}^{d} \times[0, T] \rightarrow \mathbb{R}^{d \times r}$;
- \mathcal{F}_{0}-measurable rv $\xi: \Omega \rightarrow \mathbb{R}^{d}$.

The (d-dimensional) process $\left(X_{t}\right)$ is strong solution to the $S D E$

$$
\begin{align*}
\mathrm{d} X_{t} & =f\left(X_{t}, t\right) \mathrm{d} t+\sigma\left(X_{t}, t\right) \mathrm{d} W_{t}, \\
X_{0} & =\xi, \tag{22}
\end{align*}
$$

\{eq:sde\}

