
First we change ηk to Xtk−1
. Taking the difference

m�

k=1

[f ��(ηk)− f ��(Xtk−1
)](Mtk −Mtk−1

)2

≤ sup
1≤k≤m

|f ��(ηk)− f ��(Xtk−1
)| ·

m�

k=1

(Mtk −Mtk−1
)2.

By the Cauchy–Schwarz inequality
�����E

m�

k=1

[f ��(ηk)− f ��(Xtk−1
)](Mtk −Mtk−1

)2

�����

≤
�

E sup
1≤k≤m

(f ��(ηk)− f ��(Xtk−1
))2

����E

�
m�

k=1

(Mtk −Mtk−1
)2

�2

.

(16) {eq:i3-3}

The first term tends to 0 because (Xt) is continuous and f �� is bounded. The
second is bounded by the following lemma.

{lemma:Ito-aux}
Lemma 7. Let (Mt) be a continuous bounded martingale on [0, t], that is
sups,ω |Ms(ω)| ≤ K, and let Π = {0 = t0 < t1 < . . . < tm = t} be a partition.
Then

E

�
m�

i=1

(Mti −Mti−1
)2

�2

≤ 6K4.

Proof. Expanding the square

E

�
m�

i=1

(Mti −Mti−1
)2

�2

=
m�

i=1

E(Mti −Mti−1
)4 +

�

i�=j

E(Mti −Mti−1
)2(Mtj −Mtj−1

)2.

Using several times that

E[(Mt −Ms)
2|Fs] = E[M 2

t −M2
s |Fs], s < t,
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we obtain
�

i�=j

E(Mti −Mti−1
)2(Mtj −Mtj−1

)2

= 2
m−1�

i=1

m�

j=i+1

E(Mti −Mti−1
)2(Mtj −Mtj−1

)2

= 2
m−1�

i=1

m�

j=i+1

E
�
E[(Mti −Mti−1

)2(Mtj −Mtj−1
)2|Ftj−1

]
�

= 2
m−1�

i=1

m�

j=i+1

E(Mti −Mti−1
)2(M2

tj
−M2

tj−1
)

= 2
m−1�

i=1

E(Mti −Mti−1
)2(M2

t −M2
ti
)

≤ 2K2

m−1�

i=1

E(Mti −Mti−1
)2

= 2K2

m−1�

i=1

E(M2
ti
−M2

ti−1
) ≤ 2K4.

While, for the sum of 4th powers

m�

i=1

E(Mti −Mti−1
)4 ≤ 4K2E

m�

i=1

E(Mti −Mti−1
)2

= 4K2E(M2
t −M2

0 ) ≤ 4K4.

Summarizing from I3 we have the sum

m�

k=1

f ��(Xtk−1
)(Mtk −Mtk−1

)2.

We claim that
m�

k=1

f ��(Xtk−1
)(Mtk −Mtk−1

)2
L1

−→
� t

0

f ��(Xs)H
2
sds. (17) {eq:i3-negyzetesvalt}
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Since X and f �� are continuous

m�

k=1

f ��(Xtk−1
)

� tk

tk−1

H2
sds →

� t

0

f ��(Xs)H
2
sds a.s.

Thus it is enough to show that

m�

k=1

f ��(Xtk−1
)

�
(Mtk −Mtk−1

)2 −
� tk

tk−1

H2
sds

�
L2

−→ 0.

Theorem 25 (ii) implies

E
�
(Mtk −Mtk−1

)2|Ftk−1

�
= E



�� tk

tk−1

Hs dWs

�2

|Ftk−1




= E

�� tk

tk−1

H2
s ds|Ftk−1

�
,

so in

E

�
m�

k=1

f ��(Xtk−1
)

�
(Mtk −Mtk−1

)2 −
� tk

tk−1

H2
sds

��2

the expectation of the mixed term is 0. Thus this equals

= E
m�

k=1

f ��(Xtk−1
)2

�
(Mtk −Mtk−1

)2 −
� tk

tk−1

H2
sds

�2

≤ �f�2∞
�
E

m�

k=1

(Mtk −Mtk−1
)4 + 2E

m�

k=1

(Mtk −Mtk−1
)2
� tk

tk−1

H2
sds

+ E
m�

k=1

�� tk

tk−1

H2
sds

�2 �

≤ �f�2∞
�
E

m�

k=1

(Mtk −Mtk−1
)4 + 2K2tE sup

1≤k≤m
(Mtk −Mtk−1

)2 +K4t�Π�
�
.
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The second and third term tend to 0, and for the first

E
m�

k=1

(Mtk −Mtk−1
)4 ≤ E

�
m�

k=1

(Mtk −Mtk−1
)2 · sup

1≤k≤m
|Mtk −Mtk−1

|2
�

≤

����E

�
m�

k=1

(Mtk −Mtk−1
)2

�2�
E sup

1≤k≤m
|Mtk −Mtk−1

|4

≤
√
6K2

�
E sup

1≤k≤m
|Mtk −Mtk−1

|4 → 0.

Summarizing we obtained L1, L2 and almost sure convergence in (12)–
(17). Since everything is bounded, L1 convergence follows in each case, that
is

f(Xt)− f(X0) =
m�

k=1

[f(Xtk)− f(Xtk−1
)]

L1

−→
� t

0

f �(Xs)dXs +
1

2

� t

0

f ��(Xs)H
2
sds.

Convergence in L1 implies a.s. convergence on a subsequence. As both sides
are continuous we obtained that the two process are indistinguishable.

{example:exp-2}
Example 12 (Continuation of Example 10). Let

ζst =

� t

s

XudWu −
1

2

� t

s

X2
udu, ζt = ζ0t ,

where Xt is an adapted process. Then Zt = eζt satisfies the stochastic differ-
ential equation

Zt = 1 +

� t

0

ZsXsdWs,

or with a common notation

dZt = ZtXtdWt, Z0 = 1.

Writing ζ as an Itô process

ζt =

� t

0

−1

2
X2

udu+

� t

0

XudWu.
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Using Itô’s formula with f(x) = ex

Zt = eζt = 1 +

� t

0

eζsdζs +
1

2

� t

0

eζsX2
sds

= 1 +

� t

0

eζs
�
−1

2
X2

sds+XsdWs

�
+

1

2

� t

0

eζsX2
sds

= 1 +

� t

0

eζsXsdWs

= 1 +

� t

0

ZsXsdWs,

as claimed. We see that Zt is martingale.

Exercise 28. Let ζt be as above. Show that Yt = e−ζt satisfies the SDE

dYt = YtX
2
t dt−XtYtdWt, Y0 = 1.

Similarly, one can show a more general version, where f depends on the
time variable t.

Theorem 27 (More general Itô formula). Let Xt be an Itô process and f ∈
C1,2. Then

f(t, Xt) = f(0, X0) +

� t

0

∂

∂s
f(s,Xs)ds+

� t

0

∂

∂x
f(s,Xs)dXs

+
1

2

� t

0

∂2

∂x2
f(s,Xs)H

2
sds.

4.4 Multidimensional Itô processes

Let W = (W 1,W 2, . . . ,W r) be an r-dimensional SBM, that is its component
are iid SBM’s. Then (Xt) is a d-dimensional Itô process, if

X i
t = X i

0 +

� t

0

Ki
sds+

r�

j=1

� t

0

H i,j
s dW j

s , (18) {eq:multid-ito}

where
� T

0
|K i

s|ds < ∞,
� T

0
(H i,j

s )2ds < ∞ a.s., and K i, H i,j are Ft-adapted,
i = 1, 2, . . . , d, j = 1, 2, . . . , r.
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Theorem 28 (Multidimensional Itô formula). Let (Xt) be a multidimen-
sional Itô process and f : R1+d → R, f ∈ C1,2. Then

f(t, X1
t , . . . , X

d
t ) = f(0, X1

0 , . . . , X
d
0 ) +

� t

0

∂

∂s
f(s,X1

s , . . . , X
d
s ) ds

+
d�

i=1

� t

0

∂

∂xi

f(s,X1
s , . . . , X

d
s ) dX

i
s

+
1

2

d�

i,j=1

� t

0

∂2

∂xi∂xj

f(s,X1
s , . . . , X

d
s )

r�

k=1

H i,k
s Hj,k

s ds.

4.5 Applications

Example 13 (Integration by parts I). Let (X, Y ) be a two-dimensional Itô
process with representation

Xt = X0 +

� t

0

Ks ds+

� t

0

Hs dWs

Yt = Y0 +

� t

0

Ls ds+

� t

0

Gs dWs,

where K,L,H,G are as usual. Then
� t

0

XsdYs = XtYt −X0Y0 −
� t

0

YsdXs −
� t

0

HsGsds.

Note that in the deterministic integration by parts formula the last term
is missing.

For the proof apply Itô’s formula for (X, Y ) and f(x, y) = xy. Then

r = 1, d = 2, K1
s = Ks, K2

s = Ls, H1,1
s = Hs, H2,1

s = Gs.

Since ∂f
∂x

= y, ∂f
∂y

= x, ∂2f
∂2x

= ∂2f
∂2y

= 0, and ∂2f
∂x∂y

= ∂2f
∂y∂x

= 1, we obtain

XtYt = X0Y0 +

� t

0

YsdXs +

� t

0

XsdYs +
1

2
2

� t

0

HsGsds,

as claimed.

57





Example 14 (Integration by parts II). To change a bit let �W be another
SBM independent of W and (X, Y )

Xt = X0 +

� t

0

Ks ds+

� t

0

Hs dWs

Yt = Y0 +

� t

0

Ls ds+

� t

0

Gs d�Ws.

Then � t

0

XsdYs = XtYt −X0Y0 −
� t

0

YsdXs.

The proof is the same but here d = r = 2, and no extra term appears.
{pelda:exp-BM}

Example 15 (Geometric Brownian motion). Let µ ∈ R, σ > 0. Solve the
SDE

dXt = µXtdt+ σXtdWt. (19) {eq:exp-BM-sde}

We have

Xt = X0 +

� t

0

µXsds+

� t

0

σXsdWs.

Applying Itô’s formula with f(x) = log x

logXt = logX0 +

� t

0

1

Xs

(µXsds+ σXsdWs) +
1

2

� t

0

− 1

X2
s

σ2X2
sds

= logX0 + σWt +

�
µ− σ2

2

�
t.

Thus
Xt = X0 · eσWt+

�
µ−σ2

2

�
t
. (20) {eq:exp-BM}

This is martingale iff µ = 0.
Note that log x is not defined at 0, so the proof is not complete. It only

gives us a potential solution.

Exercise 29. Show that Xt in (20) is indeed a solution to the SDE (19).

A more constructive solution is to apply Itô’s formula with a general
f , and then choose f to obtain a simple equation. With f(x) = log x the
integrand in the martingale part is constant.

Exercise 30. Show that Y (t) = et/2 cosWt is martingale.
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Exercise 31. Show that
� t

0

W 2
s dWs =

1

3
W 3

t −
� t

0

Wsds,

and � t

0

W 3
s dWs =

1

4
W 4

t − 3

2

� t

0

W 2
s ds.

Exercise 32. Let W = (W 1, . . . ,W r) be an r-dimensional SBM, r ≥ 2, and
let

Rt =

����
r�

i=1

(W i
t )

2.

Show that R satisfies the SDE

dRt =
r − 1

2Rt

dt+
r�

i=1

W i
t

Rt

dW i
t .

This is the Bessel equation and R is the Bessel process.

4.6 Quadratic variation and the Doob–Meyer decompo-
sition

We proved that

E

��� t

s

XudWu

�2 ��Fs

�
= E

�� t

s

X2
u du

��Fs

�
,

which means that the process
�� t

0

Xu dWu

�2

−
� t

0

X2
u du (21) {eq:doob-meyer}

is a continuous martingale. In the decomposition
�� t

0

XudWu

�2

=

� t

0

X2
u du+

�� t

0

XudWu

�2

−
� t

0

X2
u du

the first term is an increasing process and the second term is a martingale,
that is we obtained the Doob–Meyer decomposition of It(X)2.

59





On the other hand, at the proof of Itô’s formula we showed (see (17))
that

n�

i=1

�� ti

ti−1

XudWu

�2
L1

−→
� t

0

X2
udu, as �Πn� → 0.

The left-hand side is exactly the quadratic variation process of the martingale
It(X).

Summarizing, we proved the following.
{thm:quad-DM}

Theorem 29. For any Itô process Xt, the quadratic variation of It(X) and
the increasing process in the Doob–Meyer decomposition of I t(X)2 are the
same.

This result holds in a more general setup.
Let (Xt) be a (continuous) square integrable martingale, X ∈ M2 (or X ∈

Mc
2). Then X2

t is a submartingale, so by the Doob–Meyer decomposition
there exists a unique (up to indistinguishibility) adapted increasing process
At, such that A0 = 0 a.s. and X2

t −At is a martingale. The process �X�t = At

is the quadratic variation of X.
With this notation, Theorem 29 states that

�� ·

0

XudWu

�

t

= �I(X)�t =
� t

0

X2
u du.

Without proof we mention that Theorem 29 holds not only for Itô pro-
cesses but for continuous square integrable martingales.

Theorem 30. Let X ∈ Mc
2. For partition Π of [0, t] we have

V
(2)
t (Π) :=

n�

k=1

(Xtk −Xtk−1
)2

P−→ �X�t as �Π� → 0.

For square integrable martingales X, Y the crossvariation process of X
and Y is

�X, Y �t =
1

4
(�X + Y �t − �X − Y �t) .

The processes X and Y are orthogonal if �X, Y �t = 0 a.s. for any t.

Exercise 33. Show that if X, Y ∈ M2, then XY − �X, Y � is a martingale.

60



One can define stochastic integral with respect to more general processes.
The process (Xt) is a continuous semimartingale if

Xt = Mt + At,

where Mt is a continuous martingale and At is of bounded variation, and
both are adapted. As in Lemma 6 it can be shown that this decomposition
is essentially unique.

We can define stochastic integral with respect to semimartingales. Indeed,
integral with respect to At can be defined pathwise, since A is of bounded
variation, and integration with respect to continuous Mt can be defined sim-
ilarly as for SBM.

The following version of Itô’s formula holds.

Theorem 31 (Itô formula for semimartingales). Let Xt = Mt + At be a
continuous semimartingale, and let f ∈ C 2. Then

f(Xt) = f(X0) +

� t

0

f �(Xs)dXs +
1

2

� t

0

f ��(Xs)d�M�s.

5 Stochastic differential equations
We define the strong solution of SDEs and obtain existence and uniqueness
results.

The followings are given:
• probability space (Ω,A,P);
• with a filtration (Ft)t∈[0,T ];
• a d-dimensional SBM Wt = (W 1

t , . . . ,W
r
t ) with respect to the filtration

(Ft);
• measurable functions f : Rd × [0, T ] → Rd, σ : Rd × [0, T ] → Rd×r;
• F0-measurable rv ξ : Ω → Rd .
The (d-dimensional) process (Xt) is strong solution to the SDE

dXt = f(Xt, t) dt+ σ(Xt, t) dWt,

X0 = ξ,
(22) {eq:sde}
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