First we change n;, to X;, ,. Taking the difference
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By the Cauchy-Schwarz inequality

EZ[f”(ﬁk) - f”(th—l)](Mtk - Mtk71)2
= - 5 (16) {eq:i3-3}
S \/E 1§2£m(f”(77k) - f/,(th1>)2J E <Z(Mtk - Mtk1)2> .

The first term tends to 0 because (X;) is continuous and f” is bounded. The

second is bounded by the following lemma.
{lemma:Ito-aux}

sup, , |M(w)| < K, and let Il = {0 =ty < t; < ... <ty =t} be a partition.

Then J(_Ao(aE<m > Coxt Mﬁ fU\d(l/

l Lemma 7. Let (M;) be a continuous bounded martingale on [0,t], that is

Z(Mtz - Mtiq )2
=1 I

Proof. Expanding the square
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we obtain

5 wul)téﬂl te“‘") =

Z E£Mtz - Mt'i,—l)Q(Mtj - Mtj—1>2‘1

i# =
i_zj Z EX]’WLZ - Mti—1>2(Mtj - Mtj—1>2]
i=1 j=itl b
=W d \~_/?:2:£:
R S
=2 My, — My, (M7 — M7
’\M (\ 2 ;J;l(-;-\l‘)( )1
— H{‘({’M{o_,)“ P EEMti—Mt D2(M2 — M?)
}:4"'1 i=1
IRVIES = < 2K? m_lE(Mt. — M,,_,)?
ST My s
/ Qmi 2 2 4
=2K° Y B(M] - M ) < 2K
Lewndsd - Sy
Whhfllgsfor the sum of 4th powers Q,IZ E I‘?{ M

ZE<Mt2 - Mti—1)4
i=1
= 4AK*E(M?
7”
L ovpt s,
Summarizing from I3 we have the sum
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Since X and f” are continuous
m t t
> F(X,) / H%ds — / FI(X)H2ds  as.
k=1 b1 0
Thus it is enough to show that
m th 12
Z f//(th—l) (Mtk - Mtk—l)Q - / HSQdS — 0.
k=1 k-1

Theorem 25 (ii) implies
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the expectation of the mixed term is 0. Thus this equals
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The second and third term tend to 0, and for the first

EZ M, — M, )'<E
=1

Z My, — Mtk 1)+ Sup ’Mtk - Mtk1|2]
1 1<k<m

2

< E Z(Mtk _Mtkfl)Q \/E sup ‘Mtk - Mtk71|4
1 1<k<m
< \/EKQ\/E sup |My, — M, _,|* — 0.
1<k<m

Summarizing we obtained L', L? and almost sure convergence in (12)-
(17). Since everything is bounded, L' convergence follows in each case, that
is

f( Z th th—l)]

i/f dX+/f” X,)H2ds.

Convergence in L! implies a.s. convergence on a subsequence. As both sides
are continuous we obtained that the two process are indistinguishable O

Example 12 (Continuation of Exampled0). Let x’i) M W
A /XdW——/X2du G =,

where X; is an adapted process. Then'Zt = & 'satisﬁes the stochastic differ-
ential equation {_

or with a common notation

{example:exp-2}

- oft
<Z 47, = Z,X,dAW,, Z,=1. a 6

Writing ¢ as an Itd process
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Using 1to’s formula with f(x

:1+/OtZEdWi, Sjaw)lﬁ\'uj ﬂN/,; w? .

as claimed. We see that Z; is martingale.

Exercise 28. Let (; be as above. Show that Y, = e~ satisfies the SDE
% dY, = Y, X72dt — X, Y, dW,, Y,=1.

Similarly, one can show a more general version, where f depends on the

time variable ¢. )é + y [14 + _(U M

Theorem 27 (More general 1t6 formula). Let X, be an Ito proc ss and f € ©
CY2. Then -
N N

Lo Lo
£ = 10X + [ S Xds + [ S p(s Xax,

+1faw(me

2 J, Ox? > S.gss'

4.4 Multidimensional Itdé processes

Let W = (W1 W2 ..., W") be an r-dimensional SBM, that is its component
are iid SBM’s. Then (X}) is a d-dimensional It6 process, if

l )(Z X+ /Klds—&—Z/ H”dW] (18) {eq:multid-ito}

where fOT |Kilds < oo,fOT(HSi’j)st < oo a.s., and K, H* are F;-adapted,
i=1.2. .. .d, =12 .1
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Theorem 28 (Multidimensional It6 formula). Let (X;) be a multidimen-
sional Ito process and f : R - R, f € CL2. Then

t
0
f(‘t:thaan):f(OaXéyng)_l_/o %f(stsl’)Xg>dS ";\"2

ot C?

fls, X1 ..., XHdX! &= \ PAR

1 o : N ik i
52/ awiaxjf(s,xs,...,xs)ZHs» HI* ds.

k=1

4.5 Applications
Example 13 (Integration by parts I). Let (X,Y) be a two-dimensional Itd

process with representation
‘l"':4 04 = _2
t t
Xt = XO + Ks dS + / Hs dWs N—
0 0 — h'l\UAb\
t

ﬂW\.
e R A
(1D et

t g
n=n+/@®+/eﬁm,
0 0 - g'g

where K, L, H, G are as usual. Then

t t
/XdY XY, — XOYU /Y;dX /HGds
0
Note that in the determmlstl nfegratlon by parts formula the last term
is missing.
For the proof apply It6’s formula for (X,Y) and f(x,y) = xy. Then
r=1,d=2, K. =K,, K:=1L,, H'=H, H*' =G,

S S S

a2 2 2
Since df =, gi x, % = % =0, and ddxdy = 8de; = 1, we obtain

XY = XOYO /YdX+/XdY+ 2/HGds

asclainffd.*"f /,Y)}/) 4'_(' ﬂﬂ)(“y)a{)/sl,( r//)/)a/)/"'
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Example 14 (Integration by parts II). To change a bit let W be another
SBM independent of W and (X,Y)

j/ Xt:Xo+/Othd5+/0tH5dVE f% LIZUM/

t t N
Yt:YO+/ Lsds+/ G, dW,.
0 0 -

t t
/ XdYs = X4Yy — XoYo —/ YodX,. 77
0 0

Then

The proof is the same but here d = r = 2, and no extra term appears.
{pelda:exp-BM}
Example 15 (Geometric Brownian motion). Let y € R, o > 0. Solve the

SDE
1 dX; = uX;dt + o X, dW,. (19) {eq:exp-BM-sde}
We have
‘ X; = X0+ %ds—k/aXdW
Applying 1t6’s formula with f(x log x

bt
log X; = log Xy + / < (uXsds + o X dWy) / ——02X2ds
0 s

o2
=log Xo + oW, + (u - ?) t.

Thus )
X=X UWQ+(“_%?)? (20) {eq:exp-BM}

This is martingale iff y = 0.
Note that log z is not defined at 0, so the proof is not complete. It only
gives us a potential solution.

ﬂ Exercise 29. Show that X, in (20) is indeed a solution to the SDE (19). {~ drme W

A more constructive solution is to apply Ité’s formula with a general
f, and then choose f to obtain a simple equation. With f(z) = logz the
integrand in the martingale part is constant.

l Exercise 30. Show that Y( ) = et/ cos W, is martingale.

4w W
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Exercise 31. Show that

/ W2dW, = / W,ds,

and
t 1 3 t
/ W3dW, = ~ W — —/ W2ds.
0 4 2 Jo
(~  Exercise 32. Let W = (W1, ..., W") be an r-dimensional SBM, r > 2, and
let

r

> (Wi

=1

Rt -
g
Show that R satisfies the SDE

dr, =~ Lat tdW’
u o th +Z R,

This is the Bessel equation and R is the Bessel process.

4.6 Quadratic variation and the Doob—Meyer decompo-
sition

We proved that

t 2 t
(/ Xuqu> | 7 :EU XZdu}}"S},

which means that the process

f (/Ot Xy dW, ) / X2du Cﬁ (21) {eq:doob-meyer}

is a continuous martingale. In the decomposition J&

v\ﬂy“"%fr-—' (/de) /X2du+[<7tXudW) /X2du

the first term is an increasing process and the second term is a martingale,
that is we obtained the Doob-Meyer decomposition of I;(X)?.
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On the other hand[at the proof of 1t6’s formula we showed (see (17))

that
& n ti 2 I (t\-?
Z(/ Xuqu) —>/ X2du, as ||| — 0.
i=1 “ti-1 0

The left-hand side is exactly the quadratic variation process of the martingale
L(X). ] (“l
Summarizing, we proved the following. j/f =)<°f _C Z{ 3 + Q &‘d/%

{thm: quad-DM}
Theorem 29. For any Ito process X, the quadratic variation of I;(X) and
the increasing process in the Doob—Meyer decomposition of I;(X)? are the
same.

This result holds in a more general setup.
Let (X;) be a (continuous) square integrable martingale, X € (or X €
. Then X7 is a submartingale, so by the Doob-Meyer decolfiposition
there exists a unique (up to indistinguishibility) adapted increasing process
Ay, such that Ag = 0 a.s. and X? — A, is a martingale. The process (X); = A;
'h. - >u

is the W_af?ﬂeww LD
With this notation, Theorem 29 states that ’
. t
</ Xuqu> =(I(X)); = / X2du.
0 t 0

Without proof we mention that Theorem 29 holds not only for Ité pro-
cesses but for continuous square integrable martingales.

Theorem 30. Let X € /\Q For partition 11 of [0,t] we have

- P
VIO =Y (X — X )* = (X)r as ]| 0.
k=1
For square integrable martingales X,Y the crossvariation process of X N
andY is 'L“W 6’0‘&/

1 o

IR oy

The processes X and Y are orthogonal if (X,Y), =0 a.s. for any .

<X7 Y>t =
‘ Exercise 33. Show that if X, Y € Ms, then XY — (XY is a martingale.
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One can define stochastic integral with respect to more general processes.
The process (X;) is a continuous semimartingale if
S ————

T
Xt — Mt‘|‘At,
- ———

where M, is a continuous martingale and A; is of bounded variation, and
both are adapted. As in Lemma 6 it can be shown that this decomposition
is essentially unique.

We can define stochastic integral with respect to semimartingales. Indeed,
integral with respect to A; can be defined pathwise, since A is of bounded
variation, and integration with respect to continuous M; can be defined sim-
ilarly as for SBM.

The following version of 1t6’s formula holds.

Theorem 31 (Itd6 formula for semimartingales). Let X; = M; + A; be a
continuous semimartingale, and let f € C?. Then -

px) = s+ [ roaxcs [ rpn,

. . . Htof
5 Stochastic differential equations W #5

We define the strong solution of SDEs and obtain existence and uniqueness
results.
The followings are given:

probability space (€2, A, P);
with a filtration (F)iepo,r;

a d-dimensional SBM W, = (W}, ..., W/) with respect to the filtration
(F2);

measurable functions f : R? x [0,7] — R?, o : R? x [0,T] — R¥>";
e Fo-measurable rv £ : Q — RY |
The (d-dimensional) process (X;) is strong solution to the SDE

dXt = f(Xt, t) dt + O'(Xt, t) th7

Xo=¢, (22)
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