Next we prove (9). Since

$$
\varepsilon W_{t_{i+1}}+(1-\varepsilon) W_{t_{i}}=\frac{W_{t_{i+1}}+W_{t_{i}}}{2}+\left(\varepsilon-\frac{1}{2}\right)\left(W_{t_{i+1}}-W_{t_{i}}\right)
$$

we have to determine the limits

$$
\sum_{i=0}^{n-1}\left(W_{t_{i+1}}-W_{t_{i}}\right)^{2}, \quad \sum_{i=0}^{n-1}\left(W_{t_{i+1}}^{2}-W_{t_{i}}^{2}\right)
$$

The first is exactly the quadratic variation of SBM, therefore converges to t in L^{2}, while the second is a telescopic sum, giving W_{t}^{2}.

Example 10. Let X be simple process and W SBM. Let

$$
\zeta_{t}^{s}(X)=\int_{s}^{t} X_{u} \mathrm{~d} W_{u}-\frac{1}{2} \int_{s}^{t} X_{u}^{2} \mathrm{~d} u, \quad \zeta_{t}=\zeta_{t}^{0}
$$

We show that $\left(Y_{t}=e^{\zeta_{t}}\right)$ is martingale.
Since X is simple, we have

$$
\text { appcial care } x_{u} \equiv \lambda
$$

$$
X_{t}=\xi_{0} \mathbf{I}_{\{0\}}(t)+\sum_{i=0}^{n-1} \xi_{i} \mathbf{I}_{\left(t_{i}, t_{i+1}\right]}(t)
$$

where ξ_{i} is $\left.\mathcal{F}_{t_{i}-\text {-measurable. Thus if } s \in\left(t_{k}, t_{k+1}\right], t \in\left(t_{m}, t_{m+1}\right] \text {, then }\left(e^{\lambda W_{t}}-\frac{1}{2} \lambda^{2} t\right.}\right)$

Since ζ_{s} is \mathcal{F}_{s}-measurable we obtain

$$
\begin{aligned}
& \text { only have to show that } \underbrace{\mathbf{E}\left[e^{s_{i}} \mid \mathcal{F}_{s}\right]=e^{\zeta_{s}} \mathbf{E}\left[e^{\left[s^{i} \mid \mathcal{F}_{s}\right.}\right.}_{\underbrace{}_{\mathbf{E}\left[e^{\epsilon_{i}} \mid \mathcal{F}_{s}\right]=1}} \\
& \left.E\left[e^{\xi^{\xi} t} \mid F_{s}\right]=e^{{ }^{46}}\right\}_{3}
\end{aligned}
$$

$$
\}_{t}=\right\}_{t}^{3}+\right\}_{s}^{0}
$$

mearnadle with respect to f_{s}

$$
E\left[e^{I_{t}^{3}} \mid F_{s}\right] \stackrel{t_{\text {on m } n k e}}{=} E\left[E\left[e^{3^{3}} \mid F_{t_{m}}\right] \mid F_{s}\right]
$$

$$
=E\left[e ^ { 3 ^ { 3 } } \cdot E \left[e^{\left.\xi-\left(x_{t}-w_{m}\right)-\frac{1}{2} \xi^{2} \xi^{2}+t_{n}\right)}\right.\right.
$$

This can be done by a repeated application of the tower rule. In (10) all terms but the last are $\mathcal{F}_{t_{m}}$-measurable and

In the exponent of the RHS ξ_{m} is $\mathcal{F}_{t_{m}}$-measurable and $W_{t}-W_{t_{m}}$ is independent of $\mathcal{F}_{t_{m}}$, therefore (by the next exercise) ξ_{m} can be handled as a constant. We have

$$
\begin{aligned}
& \text { We have } \\
& \text { therefore } \quad\left[\mathbf{E} e^{\lambda Z}=e^{\frac{\lambda^{2}}{2}},\right. \\
& \text { Summarizing }\left[\exp \left\{\xi_{m}\left(W_{t}-W_{t_{m}}\right)\right\} \mid \mathcal{F}_{t_{m}}\right]=e^{\frac{\xi_{m}^{2}}{2}\left(t-t_{m}\right)} \\
& \mathbf{E}\left[\left.\exp \left\{\xi_{m}\left(W_{t}-W_{t_{m}}\right)-\frac{\xi_{m}^{2}}{2}\left(t-t_{m}\right)\right\} \right\rvert\, \mathcal{F}_{t_{m}}\right]=1
\end{aligned}
$$

therefore

Summarizing \ldots... we obtain that each factor equals 1 .

Using the Ito formula we show that Y is martingale for more general processes and it satisfies a certain stochastic differential equation.
Exercise 27. Let X, Y be random variables, X is \mathcal{G}-measurable, and Y is independent of \mathcal{G}. Then

$$
\mathbf{E}[h(X, Y) \mid \mathcal{G}]=\int h(X, y) \mathrm{d} F(y)
$$

where $F(y)=\mathbf{P}(Y \leq y)$ is the distribution function of Y.
4.3 Itô's formula

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, $\left(\mathcal{F}_{t}\right)$ a filtration, and $\left(W_{t}\right) \mathrm{SBM}$ for this filtration. Then $\left(X_{t}\right)$ is Ito process if

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} K_{s} \mathrm{~d} s+\int_{0}^{t} H_{s} \mathrm{~d} W_{s} \tag{11}
\end{equation*}
$$

\{eq:ito-proc\}
where

K_{b}, H_{s}^{47} adapted

$$
\begin{aligned}
& \begin{array}{l}
\quad \mathbf{E}\left[\left.\exp \left\{\xi_{m}\left(W_{t}-W_{t_{m}}\right)-\frac{\xi_{m}^{2 \alpha}}{2}\left(t-t_{m}\right)\right\} \right\rvert\, \mathcal{F}_{t_{m}}\right]
\end{array} \\
& =e^{-\frac{\xi_{m}^{2}}{2}\left(t-t_{m}\right)} \mathbf{E}\left[\exp \left\{\xi_{m}\left(W_{t}-W_{t_{m}}\right)\right\} \mid \mathcal{F}_{t_{m}}\right] \text { induphant } \sim N\left(O, t-t_{\text {Lu }}\right)
\end{aligned}
$$

- $X_{0} \mathcal{F}_{0}$-measurable;
- K, H are $\mathcal{F}_{t^{-}}$-adapted processes;
- $\int_{0}^{T}\left|K_{u}\right| \mathrm{d} u<\infty, \int_{0}^{T} H_{s}^{2} \mathrm{~d} s<\infty$ a.s.

The part $\int_{0}^{t} K_{s} \mathrm{~d} s$ is the bounded variation part of the process, while $\int_{0}^{t} H_{s} \mathrm{~d} W_{s}$ is the martingale part.
Lemma 6. If $M_{t}=\int_{0}^{t} K_{s} \mathrm{~d} s$ is a continuous martingale and $\int_{0}^{T}\left|K_{s}\right| \mathrm{d} s<\infty$ almost surely then $M_{t} \equiv 0$.

Proof. Assume that $\int_{0}^{T}\left|K_{s}\right| \mathrm{d} s \leq C$ for some $C<\infty$. Then for a sequence of partitions $\left(\Pi_{n}=\left\{0=t_{0}<t_{1}<\ldots<t_{n}=T\right\}\right)$ of $[0, T]$

$$
\begin{aligned}
\mathbf{E} \sum_{i=0}^{n-1}\left(M_{t_{i+1}}-M_{t_{i}}\right)^{2} & \leq \mathbf{F}\left(\sup _{0 \leq i \leq n-1}\left|M_{t_{i+1}}-M_{t_{i}}\right| \int_{0}^{T}\left|K_{s}\right| \mathrm{d} s\right) \sum_{i=1}^{n-1}\left|\int_{i=1}^{t_{i}} t_{i} k_{s} d_{s}\right| \\
& \leq C \mathbf{E} \sup _{0 \leq i \leq n-1}\left|M_{t_{i+1}}-M_{t_{i}}\right| \rightarrow 0
\end{aligned}
$$

as $\left\|\Pi_{n}\right\| \rightarrow 0$. We used that continuous function is uniformly continuous on compacts and Lebesgue's dominated convergence can be used because of the boundedness.

Furthermore,

$$
\begin{aligned}
& E\left(M_{t}^{2}+M_{s}^{2}-2 M_{t} M_{S}\right) \\
= & \mathbf{E} M_{t}^{2}+\mathbf{E} M_{s}^{2}-2 \mathbf{E}(\underbrace{\left.\mathbf{E}\left[M_{t} M_{s} \mid \mathcal{F}_{s}\right]\right)}_{t} \\
= & \mathbf{E} M_{t}^{2}-\mathbf{E} M_{s}^{2},
\end{aligned}
$$

for $s<t$, thus

$$
\begin{aligned}
& s<t \\
& E\left[u_{t} \left\lvert\, \frac{1}{n}\right.\right]_{T}=M_{s}
\end{aligned}
$$

Therefore $\mathbf{E} M_{t}^{2}=0$ for all t, and the statement follows.
Corollary 7. Representation (11) is unique.

$$
\int_{0}^{t} K_{s} \mathrm{~d} s+\int_{0}^{t} H_{s} \mathrm{~d} W_{s}=\int_{0}^{t} L_{s} \mathrm{~d} s+\int_{0}^{t} G_{s} \mathrm{~d} W_{s}
$$

cont, mule \& prodratic ion. $\rightarrow 0$

$$
\Rightarrow \text { trivial }
$$

then

$$
\int_{0}^{t}\left(K_{s}-L_{s}\right) \mathrm{d} s=\int_{0}^{t}\left(G_{s}-H_{s}\right) \mathrm{d} W_{s} .
$$

$$
G=H .
$$

The RHS is a continuous martingale, therefore by the previous lemma it has to be contant 0 .

In what follows we use the notation

$$
x_{t}=x_{0}+\int_{0}^{t} x_{s} d s+\int_{0}^{d} H_{s} d v / s
$$

$$
\mathrm{d} X_{t}=K_{t} \mathrm{~d} t+H_{t} \mathrm{~d} W_{t} .
$$

Theorem 26 (Itô formula (1944)). Let $X_{t}=X_{0}+\int_{0}^{t} K_{s} \mathrm{~d} s+\int_{0}^{t} H_{s} \mathrm{~d} W_{s}$ be an Ito process and $f \in C^{2}$. Then

$$
[f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{0}^{t} f^{\prime}\left(X_{s}\right) \mathrm{d} X_{s}+\underbrace{\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) H_{s}^{2} \mathrm{~d} s}
$$

That is $\left(f\left(X_{t}\right)\right)$ is an Ito process too, with representation (11)

$$
f\left(X_{t}\right)=f\left(X_{0}\right)+\underbrace{\int_{0}^{t}\left(f^{\prime}\left(X_{s}\right) K_{s}+\frac{1}{2} f^{\prime \prime}\left(X_{s}\right) H_{s}^{2}\right) \mathrm{d} s}+\int_{0}^{t} f^{\prime}\left(X_{s}\right) H_{s} \mathrm{~d} W_{s}^{\prime}
$$

Example 11. We already calculated the stochastic integral $\int W_{s} \mathrm{~d} W_{s}$ in Example 9. Now we determine it again.

The SBM as an Ito process can be represented with $K_{s} \equiv 0, H_{s} \equiv 1$. Let $f(x)=x^{2}$. Then

$$
W_{t}^{2}=W_{0}^{2}+\int_{0}^{t} 2 W_{s} \mathrm{~d} W_{s}+\frac{1}{2} \int_{0}^{t} 2 \mathrm{~d} s .
$$

From this we obtain

$$
\int_{0}^{t} W_{s} \mathrm{~d} W_{s}=\frac{W_{t}^{2}-t}{2}
$$

We see immediately that $W_{t}^{2}-t$ is martingale.
Proof. We only prove under the following extra assumptions: f is compactly supported; $\sup _{s, \omega}\left|K_{s}(\omega)\right|<K$, $\sup _{s, \omega}\left|H_{s}(\omega)\right|<K$ for some $K<\infty$. (This is not an essential restriction.)

$$
\begin{aligned}
& X_{t}=X_{0}+S_{0}^{t} K_{s} d s+S_{0}^{t} H_{s} d d V_{s} \\
& d X_{t}=K_{t} d t+H_{t} d v_{4} \\
& f\left(x_{t}\right)=f\left(x_{0}\right)+\int_{0}^{t} f^{\prime}\left(x_{s}\right) d x_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime}\left(x_{c}\right) d_{s}^{2} d s \\
& \text { 1to } \quad\left[d f\left(x_{t}\right)=f^{\prime}\left(x_{t}\right) d x_{t}+\frac{1}{2} f^{\prime \prime}\left(x_{t}\right) \cdot H_{t}^{2} d t\right. \text {. } \\
& \text { usnal chain mble }
\end{aligned}
$$

$$
\begin{aligned}
& X_{t}=W_{t} \quad f(x)=x^{2} \quad f^{\prime}(x)=2 x \\
& f\left(x_{t}\right)=w_{t}^{2}=f\left(x_{0}\right)+\int_{0}^{t} f^{\prime}\left(x_{s}\right) d x_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(x_{s}\right) d s \\
& =\int_{0}^{t} 2 w_{s} d w_{s}+\frac{1}{2} \int_{\rho}^{t} 2 d s \\
& =2 \int_{0}^{t} w_{c} d l_{s}+t \\
& \int_{0}^{t} w_{c} d d_{\xi}=\frac{w_{t}^{2}-t}{2} . \\
& \text { intg } \rightarrow \int_{0}^{t} \operatorname{amsthing} d d s
\end{aligned}
$$

$$
f\left(X_{t}\right)-f\left(X_{0}\right)=\sum_{k=1}^{m}\left[f\left(X_{t_{k}}\right)-f\left(X_{t_{k-1}}\right)\right]
$$

$$
+\frac{1}{2} \sum_{k=1}^{m} f^{\prime \prime}\left(\eta_{k}\right)\left(X_{t_{k}}-X_{t_{k-1}}\right)^{2}
$$

$$
=I_{1}+I_{2}+I_{3}
$$

where $\eta_{k}(\omega)$ is between $X_{t_{k-1}}(\omega)$ and $X_{t_{k}}(\omega)$.
It is easy to handle I_{1}. As f^{\prime} and X_{t} are continuous
\square

$$
\begin{equation*}
I_{1}=\sum_{k=1}^{m} f^{\prime}\left(X_{t_{k-1}}\right) \int_{t_{k-1}}^{t_{k}} K_{s} \mathrm{~d} s \longrightarrow \int_{0}^{t} f^{\prime}\left(X_{s}\right) K_{s} \mathrm{~d} s \tag{12}
\end{equation*}
$$

\{e q:i1\} ~
as $\|\Pi\| \rightarrow 0$.
Rewrite I_{2} as

Indeed, for any $\omega \in \Omega$ fix the integrand is bounded and by continuity goes to 0 , therefore the dominated Lebesgue convergence theorem applies. Theorem 25 (ii) implies

$$
\begin{align*}
& I_{2}=\int_{0}^{t} \sum_{k=1}^{m} f^{\prime}\left(X_{t_{k-1}}\right) I_{\left(t_{k-1}, t_{k}\right]}(s) H_{s} \mathrm{~d} W \stackrel{L^{2}}{\longrightarrow} \int_{0}^{t} f^{\prime}\left(X_{s}\right) H_{s} \mathrm{~d} W_{s} . \tag{13}\\
& \text { \{eq:i2-konv\} }
\end{align*}
$$

$$
\begin{aligned}
& I_{2}=\sum_{k=1}^{m} f^{\prime}\left(X_{t_{k-1}}\right) \int_{t_{k-1}}^{t_{k}} H_{s} \mathrm{~d} W_{s}=\int_{0}^{t} \sum_{k=1}^{m} f^{\prime}\left(X_{t_{k-1}}\right) \mathbf{I}_{\left(t_{k-1}, t_{k}\right]}(s) H_{s} \mathrm{~d} W_{s} . \\
& \text { As }\|\Pi\| \rightarrow 0 \quad W_{\text {and }} \operatorname{losinw}^{k=1} \underline{I}_{2} \rightarrow \int_{0}^{t} f\left(X_{S}\right) \text { tad } W_{S} \\
& \text { E } \int_{0}^{t}\left(f^{\prime}\left(X_{s}\right) H_{s}-\sum_{k=1}^{m} f^{\prime}\left(X_{t_{k-1}}\right) \mathbf{I}_{\left(t_{k-1}, t_{k}\right]}(s) H_{s}\right)^{2} \mathrm{~d} s \rightarrow 0 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { I2 bolwent } x_{a-1}, x_{2} \text {. } \\
& f\left(x_{2}\right)-g\left(x_{1}-1\right)=g^{\prime}\left(x_{1}\right) \cdot\left(x_{2}-x_{y}\right) \\
& +f_{\text {formula }}^{\prime \prime}\left(\eta_{\varepsilon}\right) \cdot \frac{\left(x_{\varepsilon}-x_{\xi-1}\right)^{2}}{2} \\
& =\sum_{k=1}^{m} f^{\prime}\left(X_{t_{k-1}}\right)\left(X_{t_{k}}-X_{t_{k-1}}\right)+\frac{1}{2} \sum_{k=1}^{m} f^{\prime \prime}\left(\eta_{k}\right)\left(X_{t_{k}}-X_{t_{k-1}}\right)^{2} \\
& =\sum_{k=1}^{m} f^{\prime}\left(X_{t_{k-1}}\right) \int_{t_{k-1}}^{t_{k}} K_{s} \mathrm{~d} s+\sum_{k=1}^{m} f^{\prime}\left(X_{t_{k-1}}\right) \int_{t_{k-1}}^{t_{k}} H_{s} \mathrm{~d} W_{s}
\end{aligned}
$$

Theosan on If inhered
Next comes I_{3}, the difficult part. We have to show that

$$
I_{3} \rightarrow \frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) H_{s}^{2} d s . \quad I_{3}=\frac{1}{2} \frac{1}{\varepsilon} f^{\prime \prime}\left(\eta_{s}\right)\left(X_{t_{\xi}}-X_{t_{1}-1}\right)^{2}
$$

Write

$$
\begin{aligned}
& X_{t}=X_{\rho}+\int_{\rho}^{+} V_{\rho} d_{s}+\int_{\rho}^{t} H_{\rho} d V V_{s} \quad=\left(\int_{t_{k-1}}^{t_{k}} K_{s} \mathrm{~d} s\right)^{2}+2 \int_{t_{k-1}}^{t_{k}} K_{s} \mathrm{~d} s \cdot \int_{t_{k-1}}^{t_{k}} H_{s} \mathrm{~d} W_{s} \\
& k\left(t_{t_{2}}-t_{s}-1\right)^{2}+\left(\int_{t_{k-1}}^{t_{k}} H_{s} \mathrm{~d} W_{s}\right)^{2} \text {. }
\end{aligned}
$$

We show that the contribution of the first two terms is negligible to the whole sum. For the first

To handle the second introducte $M_{t}=\int_{0}^{t} H_{s} \mathrm{~d} W_{s}$; Then

$$
\begin{align*}
& \left|\sum_{k=1}^{m} f^{\prime \prime}\left(\eta_{k}\right) \int_{t_{k-1}}^{t_{k}} K_{s} \mathrm{~d} s \cdot \int_{t_{k-1}}^{t_{k}} H_{s} \mathrm{~d} W_{s}\right|^{m} \\
& \leq\left\|f^{\prime \prime}\right\|_{\infty} \cdot K \underbrace{\sup _{1 \leq m}\left|M_{t_{k}}-M_{t_{k-1}}\right| \cdot \sum_{k=1}^{m}\left(t_{k}-t_{k-1}\right)}_{1 \leq k \leq m} \tag{15}\\
& =\left\|f^{\prime \prime}\right\|_{\infty} \cdot K \underbrace{\sup _{1 \leq m}\left|M_{t_{k}}-M_{t_{k-1}}\right|}_{1 \leq k \leq m} \rightarrow 0, \quad \text { a.s. } \\
& { }_{0}^{t} H_{s} \mathrm{~d} W_{s} \text { is a continuous martingale. }
\end{align*}
$$

\{e q:i3-2\} ~
since $M_{t}=\int_{0}^{t} H_{s} \mathrm{~d} W_{s}$ is a continuous martingale.
We have to deal with the sum

$$
\underbrace{\sum_{\operatorname{lQ}_{k=1}^{m}}^{m} f^{\prime \prime}\left(\eta_{k}\right)\left(\int_{t_{k-1}}^{t_{k}} H_{s} \mathrm{~d} W_{s}\right)^{2}}_{\substack{51}}
$$

First we change η_{k} to $X_{t_{k-1}}$. Taking the difference

$$
\begin{aligned}
& \sum_{k=1}^{m}\left[f^{\prime \prime}\left(\eta_{k}\right)-f^{\prime \prime}\left(X_{t_{k-1}}\right)\right]\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2} \\
& \leq \sup _{1 \leq k \leq m}\left|f^{\prime \prime}\left(\eta_{k}\right)-f^{\prime \prime}\left(X_{t_{k-1}}\right)\right| \cdot \sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2} .
\end{aligned}
$$

By the Cauchy-Schwarz inequality $\operatorname{and}(\not x)$

$$
\begin{align*}
& \left|\mathbf{E} \sum_{k=1}^{m}\left[f^{\prime \prime}\left(\eta_{k}\right)-f^{\prime \prime}\left(X_{t_{k-1}}\right)\right]\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}\right| \\
& \leq \sqrt{\mathbf{E} \sup _{1 \leq k \leq m}\left(f^{\prime \prime}\left(\eta_{k}\right)-f^{\prime \prime}\left(X_{t_{k-1}}\right)\right)^{2}} \sqrt{\mathbf{E}\left[\left(\sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}\right)^{2}\right]} \tag{16}
\end{align*}
$$

\{eq:i3-3\}

The first term tends to 0 because $\left(X_{t}\right)$ is continuous and $f^{\prime \prime}$ is bounded. The second is bounded by the following lemma.
Lemma 7. Let $\left(M_{t}\right)$ be a continuos bounded martingale on $[0, t]$, that is $\sup _{s, \omega}\left|M_{s}(\omega)\right| \leq K$, and let $\Pi=\left\{0=t_{0}<t_{1}<\ldots<t_{m}=t\right\}$ be a partition. Then

$$
\mathbf{E}\left[\left(\sum_{i=1}^{m}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2}\right)^{2}\right] \leq 6 K^{4}
$$

Proof. Expanding the square

$$
\begin{aligned}
& \mathbf{E}\left(\sum_{i=1}^{m}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2}\right)^{2} \\
& =\sum_{i=1}^{m} \mathbf{E}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{4}+\sum_{i \neq j} \mathbf{E}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2}\left(M_{t_{j}}-M_{t_{j-1}}\right)^{2} .
\end{aligned}
$$

Using several times that

$$
\mathbf{E}\left[\left(M_{t}-M_{s}\right)^{2} \mid \mathcal{F}_{s}\right]=\mathbf{E}\left[M_{t}^{2}-M_{s}^{2} \mid \mathcal{F}_{s}\right], \quad s<t,
$$

we obtain

$$
\begin{aligned}
& \sum_{i \neq j} \mathbf{E}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2}\left(M_{t_{j}}-M_{t_{j-1}}\right)^{2} \\
& =2 \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \mathbf{E}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2}\left(M_{t_{j}}-M_{t_{j-1}}\right)^{2} \\
& =2 \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \mathbf{E}\left[\mathbf{E}\left[\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2}\left(M_{t_{j}}-M_{t_{j-1}}\right)^{2} \mid \mathcal{F}_{t_{j-1}}\right]\right] \\
& =2 \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \mathbf{E}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2}\left(M_{t_{j}}^{2}-M_{t_{j-1}}^{2}\right) \\
& =2 \sum_{i=1}^{m-1} \mathbf{E}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2}\left(M_{t}^{2}-M_{t_{i}}^{2}\right) \\
& \leq 2 K^{2} \sum_{i=1}^{m-1} \mathbf{E}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2} \\
& =2 K^{2} \sum_{i=1}^{m-1} \mathbf{E}\left(M_{t_{i}}^{2}-M_{t_{i-1}}^{2}\right) \leq 2 K^{4} .
\end{aligned}
$$

While, for the sum of 4th powers

$$
\begin{aligned}
\sum_{i=1}^{m} \mathbf{E}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{4} & \leq 4 K^{2} \mathbf{E} \sum_{i=1}^{m} \mathbf{E}\left(M_{t_{i}}-M_{t_{i-1}}\right)^{2} \\
& =4 K^{2} \mathbf{E}\left(M_{t}^{2}-M_{0}^{2}\right) \leq 4 K^{4}
\end{aligned}
$$

Summarizing from I_{3} we have the sum

$$
\sum_{k=1}^{m} f^{\prime \prime}\left(X_{t_{k-1}}\right)\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2} .
$$

We claim that

$$
\underbrace{\sum_{k=1}^{m} f^{\prime \prime}\left(X_{t_{k-1}}\right)\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}}_{53} \stackrel{\underbrace{}}{ } \underbrace{\int_{0}^{k^{1}} f^{\prime \prime}\left(X_{s}\right) H_{s}^{2} \mathrm{~d} s}
$$

Since X and $f^{\prime \prime}$ are continuous

$$
\underbrace{\sum_{k=1}^{m} f^{\prime \prime}\left(X_{t_{k-1}}\right) \int_{t_{k-1}}^{t_{k}} H_{s}^{2} \mathrm{~d} s} \rightarrow \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) H_{s}^{2} \mathrm{~d} s \quad \text { a.s. }=
$$

Thus it is enough to show that

$$
\begin{aligned}
& M_{t}=\int_{0}^{t} H_{c} d d N_{s} \\
& E\left(M_{t}^{2}\right)= \\
& =E \int_{0}^{t} H_{s}^{2} d s
\end{aligned}
$$

Theorem 25 (ii) implies

$$
\begin{aligned}
& \mathbf{E}\left[\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2} \mid \mathcal{F}_{t_{k-1}}\right]=\mathbf{E}\left[\left(\int_{t_{k-1}}^{t_{k}} H_{s} \mathrm{~d} W_{s}\right)^{2} \mid \mathcal{F}_{t_{k-1}}\right] \\
&=\mathbf{E}\left[\int_{t_{k-1}}^{t_{k}} H_{s}^{2} \mathrm{~d} s \mid \mathcal{F}_{t_{k-1}}\right]
\end{aligned}
$$

$$
\mathbf{E}\left[\left(\sum_{k=1}^{m} f^{\prime \prime}\left(X_{t_{k-1}}\right)\left(\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}-\int_{t_{k-1}}^{t_{k}} H_{s}^{2} \mathrm{~d} s\right)\right)^{2}\right] \longrightarrow
$$

$$
\begin{aligned}
& =\mathbf{E}\left[\sum_{k=1}^{m} f^{\prime \prime}\left(X_{t_{k-1}}\right)^{2}\left(\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}-\int_{t_{k-1}}^{t_{k}} H_{s}^{2} \mathrm{~d} s\right)^{2}\right] \\
& \leq\|f\|_{\infty}^{2}\left[\mathbf{E} \sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{4}+2 \mathbf{E} \sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2} \int_{t_{k-1}}^{t_{k}} H_{s}^{2} \mathrm{~d} s\right. \\
& \\
& \left.\quad+\mathbf{E} \sum_{k=1}^{m}\left(\int_{t_{k-1}}^{t_{k}} H_{s}^{2} \mathrm{~d} s\right)^{2}\right] \\
& \leq\|f\|_{\infty}^{2}\left[\mathbf{E} \sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{4}+2 K^{2} t \mathbf{E} \sup _{1 \leq k \leq m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}+K^{4} t\|\Pi\|\right]
\end{aligned}
$$

$$
\begin{aligned}
& E\left\{\sum_{\frac{1}{k=1}}^{m} f^{\prime \prime}\left(X_{t_{a-1}}\right)^{2}\left(\left(M_{t_{\varepsilon}}-M_{t_{-1}}\right)^{2}-\int_{t_{-1}}^{t_{q}} t_{t}^{2} d s\right)^{2}\right. \\
& \left.+\sum_{k \neq l} f^{\prime \prime}\left(x_{t_{s-1}}\right) f^{\prime \prime}\left(x_{t_{l-1}}\right) \cdot\left(M_{t_{\varepsilon}}-M_{k-1}\right)^{2}-\int_{t_{g-1}}^{t_{\xi}} H_{s} d_{s}\right) . \\
& \left.\cdot\left(\left(M_{t}-M_{t_{l-1}}\right)^{2}-\int_{t_{e-1}}^{t_{e}} H_{e}^{2} d s\right)\right\} \\
& \text { L<l mixed: E[E[-: } \left.\left.\left(\mu_{t-1}-m_{l, 1}^{2}\right)^{2}\right)\left(F_{t_{l-1}}\right]\right] \\
& =0 \text {. }
\end{aligned}
$$

The second and third term tend to 0 , and for the first

$$
\begin{aligned}
\mathbf{E} \sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{4} & \leq \mathbf{E}\left[\sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2} \cdot \sup _{1 \leq k \leq m}\left|M_{t_{k}}-M_{t_{k-1}}\right|^{2}\right] \\
& \leq \sqrt{\mathbf{E}\left[\sum_{k=1}^{m}\left(M_{t_{k}}-M_{t_{k-1}}\right)^{2}\right]^{2}} \sqrt{\mathbf{E} \sup _{1 \leq k \leq m}\left|M_{t_{k}}-M_{t_{k-1}}\right|^{4}} \\
& \leq \sqrt{6} K^{2} \sqrt{\mathbf{E} \sup _{1 \leq k \leq m}\left|M_{t_{k}}-M_{t_{k-1}}\right|^{4}} \rightarrow 0 .
\end{aligned}
$$

Summarizing we obtained L^{1}, L^{2} and almost sure convegence in (12)(17). Since everthing is bounded, L^{1} convergence follows in each case, that is

$$
\begin{aligned}
& \qquad \underbrace{f\left(X_{t}\right)-f\left(X_{0}\right)}=\sum_{k=1}^{m}\left[f\left(X_{t_{k}}\right)-f\left(X_{t_{k-1}}\right)\right] \\
& \\
& \xrightarrow{L^{1}} \int_{0}^{t} f^{\prime}\left(X_{s}\right) \mathrm{d} X_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) H_{s}^{2} \mathrm{~d} s . \quad \forall \& t H^{2}+d V_{s} \\
& \text { Convergence in } L^{1} \text { implies a.s. convergence on a subsequence. As both sides }
\end{aligned}
$$ are continuous we obtained that the two process are indistinguishable.

Example 12 (Continuation of Example 10). Let

$$
\zeta_{t}^{s}=\int_{s}^{t} X_{u} \mathrm{~d} W_{u}-\frac{1}{2} \int_{s}^{t} X_{u}^{2} \mathrm{~d} u, \quad \zeta_{t}=\zeta_{t}^{0}
$$

where X_{t} is an adapted process. Then $Z_{t}=e^{\zeta_{t}}$ satisfies the stochastic differential equation

$$
Z_{t}=1+\int_{0}^{t} Z_{s} X_{s} \mathrm{~d} W_{s}
$$

or with a common notation

$$
\mathrm{d} Z_{t}=Z_{t} X_{t} \mathrm{~d} W_{t}, \quad Z_{0}=1
$$

Writing ζ as an Itô process

$$
\zeta_{t}=\int_{0}^{t}-\frac{1}{2} X_{u}^{2} \mathrm{~d} u+\int_{0}^{t} X_{u} \mathrm{~d} W_{u} .
$$

