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Next we prove (9). Since

Wi, + W, 1
€Wti+1 + <1 - <€)VVti - % * (5 - 5) (Wti+1 - Wti) )
we have to determine the limits
n—1 n—1
> W =W > (W, =)
i=0 i=0

The first is exactly the quadratic variation of SBM, therefore converges to ¢
in L?, while the second is a telescopic sum, giving W2.

{example:exp}
Example 10. Let X be simple process and W SBM. Let

t 1 t
GO = [ Xaw, - [ Xiaw o=

We show that (Y; = e%) is martingale. ’\{ﬁ pLt AJ[ e >/M = Q
Since X is simple, we have — | ~
- aw - Lo

t t 2

M, - *inﬂé)

n—1
Xi = Eolop(t) + Y &, (1),
i=0

where §; is F;,-measurable. Thus if s € (tg, tx11], t € (tym, tme1], then (@

& (S & wd
G =Wy, — W) — Ek(tk+1 —s)+ Z [&(th - W) — ?l(ti—&-l - tz):| '
v i=k+1
+ {Ian“_’_gm(Wt_th)—én(t—m \f_—T/
0‘ — q:.k - (10) {eq:zeta-felbontas

A
Since ( is Fs-measurable we obtain

E[e“|F,] = e“El[e“ | Fy]. = > N &
W ly h h h - jé jé 55
e only have to show that
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This can be done hgy a repeated application of the tower rule. In (10) all ‘:F ‘¥
terms but the last are F;_-measurable and R 4
tm ™ #.t M/Lﬂ/\ h/\

2 / wr :
[ [exp{ﬁm( W) — gjlt—t )}U:t ]
(1t VE [exp{&m (W, f?V::)}\ftm b ~ HCO) NEJ{“’”)

<
In the exponent of the RHS &, is ]-"tm—mgé\lsurabﬂlé‘ and W, — W, is indepen-
dent of F; , therefore (by the next exercise) &, can be handled as a constant.

We have 2
[EeAZ_e§7 gl‘-’ U{p]/l>
therefore . W, A >
B [exp {60 (Wi — Wi, )}, ] = 500, [@ZWA v Lj?tj
Summarizing

o fd 2
B expln( - W) - 20—tz -1 2E[E [:Q X
A
Applying repeatedly the tower rule first to the o-algebra F; _,, thento F;, .,
., we obtain that each factor equals 1.

—‘ A @
Using the It6 formula we show that Y is martingale for more general ? ey f i
processes and it satisfies a certain stochastic differential equation. ?

RN

Exercise 27. Let X,Y be random variables, X is G-measurable, and Y is
independent of G. Then

E[h(X,Y)|0] = / WX, y)dF(y).

where F(y) = P(Y < y) is the distribution function of Y.

4.3 Ito’s formula

Let (Q, F,P) be a probability space, (F;) a filtration, and (W;) SBM for this
filtration. Then (X;) is Itd process if

t t
X, =Xy +/ K,ds —|—/ H.dW,, (11) {eq:ito-proc}
0 0

4 e
bowxu-w‘ V\«fk% '

T D

where



e X, Fyp-measurable;

e K, H are Fi-adapted processes;

. fOT | K, |du < oo, fOT H2ds < o0 a.s.

The part fot K.ds is the bounded variation part of the process, while
fot H,dW, is the martingale part.

. . {lemma:korlatosval
Lemma 6. If M, = fo Kds is a continuous martingale and fo | K|ds < o0
almost surely then M; = 0. _

Proof. Assume that fOT |Ks|ds < C for some C' < oo. Then for a sequence
of partitions (I, = {0 =ty <t <...<t,=T}) of [0,7T]

n—1 ) S M Mg \
EZ(Mt¢+1 - Mtz) < 0<§1<1£)_1 |Mti+1 - |K |d 1 [‘) b\,
=0 SIS
/7 <CE sup |M,,, — Mti — 0,
0<i<n—1

as ||I1,,|| — 0. We used that continuous function is uniformly continuous on
compacts and Lebesgue’s dominated convergence can be used because of the
boundedness.

<
Furthermore, E_( MT { MSZ — ?/M‘E Mg 4 é’é
M, — = EM;? + EM? — 2E (E[M, M| F]
E£ _EME—EME, N m’t \’\éj > M

T
for s < t, thus
f\_5>0b n—1 l? ©
) F—— EY (M, - M,)* = E(M? — M) = EM?.
e |
(Tl 9" (Bt~ (v )>
Therefore EM QO— 0 for all ¢, and the;s_:étemenE}llowz “ >
T o =
Corollary 7. Representation (11) is unique.

H <0

Proof. Indeed, if

/OtKSds+/0tHdeS:/OtLSds+/OthdWS, v L O
\,Lé[O‘T
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then t t :> ZDL
= pods= [ G~ myaw, Coy

The RHS is a continuous martingale, therefore by the previous lemma it has
to be contant 0.

]
In what follows we use the notation Y{j = /(y + y,o% i/gﬂfq F ?4 NQ({/%
20
dXt = tht + thWt.

Theorem 26 (Ito formula (1944)). Let X, = Xo + [; K.ds + [ HdW, be
an Ité process and f € C*. Then 4 \/
L.LJI_S;* e ¢

t [ 1 [t
f(Xy) :f(Xo)+/ f’(XS)dXS+§/ f"(X,)H?ds.

That is (f(X})) is an It6 process too, with representation (11) W% P“"'d\ .

t 1 3 ¢ .

F06) = 106 & [ (PR + 5 0m? fds+ [ o) maw:
0

Example 11. We already calculated the%é@%ig ai)r\l)cﬂe{gargl f W,dW, in
Example 9. Now we determine it again.

The SBM as an It6é process can be represented with K, =0, H, = 1. Let
f(x) = 2% Then

t 1 t
W2 =Wg +/ 2W,dW, + 5/ 2ds.
0 0

From this we obtain

2

We see immediately that W72 — ¢ is martingale.

t 2 _
/ WdW, = Wi t.
0

Proof. We only prove under the following extra assumptions: f is compactly
supported; sup, , | K (w)| < K, sup, , |Hs(w)| < K for some K < oco. (This

. . . . —_——
is not an essential restriction.)
J
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Take [I = {0 =ty <t; <...<t, =T} Using the Taylor formula q?

NE

f(X1) = f(Xo) [f(Xe) = F(Xey)]

B
Il

1

1 m
f/(th71)(th - th 1 5 Z 77k: th th,l)Q
ki

tg
f/(th'—l)/ Kqds + Zf/(th"l)/ H,dW;
th—1 k=1 th—1

Z f”(nk)(th - th71>2
k=1

=5+ 1)+ I3,

NE

[\

k=1

NE

o~
Il
_

_|_

DO | —

where 7, (w) is between X;, | (w) and Xy, (w).
It is easy to handle I;. As f’ and X; are continuous

th t

L= f(X,,) Kds — [ f(X)Kds as., (12) {eq:it}

il oo ,l\f|(>(5>

Rewrite I5 as

m th r"—ﬂ
I = Zf/(th1)/ HydW, _/ Zf th 1 I(tk ltk< )H dWs.

0 k=1

ATl =0 fanl brlyys L —> g g(}(> q( W
)E/ /( Zf (Xt )Xy () Hy | ds — 0.

Indeed, for any w € € fix the integrand is bounded and by continuity goes to
0, therefore the dominated Lebesgue convergence theorem applies. Theorem
25 (ii) implies

I = Z F( X Moy () H dW@ f(Xs)HAW,.  (13) {eq:i2-konv}

0 k=1
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Next comes I3, the difficult part. We have to show that

I — l/t F(X,)H2ds. J y

2.Jo | st o Q)O( -

Write ,1:3 ngi/ % YL ﬁ
Cw | I/Z:_/_j)Q

(Xip — Xy )2 = ( | Ras [ ma,
X, - >/%§NH§QM :</t:k1de>2+2/ K.ds- / H W,
K@ﬁ) </ HdW) .

—
We show that the contribution of the first two terms is neghglble to the whole |
For the fi
sum. For the first c ]J éﬂ({'@z qu I\>
2
m tk m
> 1) ( / sts) <Moo K23 (b —tir)®* =0 as. (14) {eq:id-1}
k=1 te—1 k=1
To handle the second introducte M; = fo H,dW,. Then
nﬁ) mx— ’
m th th
So ) [ ks [T Haw,
k=1 th—1 th—1
1 :13-2
<N K sup My, =My, _,| St — i) (15) {eq:13-2)
k=1
= I/ - Kf sup |Mtk M,, 1]%0 a.s.,
. ((6\/\«,\)1_) (ﬂ\/\(&
since M; = fo H,dW, is a continuous martingale.

We have to deal with the sum

j if”(m) ( / Hsdws>2.




First we change n;, to X;, ,. Taking the difference

NE

[f,/(nk) - f//(thA)](Mtk - Mtk71>2 _F
(¥ 1 m v she

< sup () = f(Xe )| - > (M, — My, ) Bt

1<k<m

=~
Il

By the Cauchy-Schwarz inequality O\MA\ X)

m

EZ[f”(ﬁk) - f”(th—l)](Mtk - Mtk71)2

k=1

(16) {eq:i3-3}

< \/E sup (.f”(nk) - f/,(th71>)2 E <Z(Mtk - Mtk1)2> y
1<k<m \_/' k=1

The first term tends to 0 because (X;) is continuous and f” is bounded. The

second is bounded by the following lemma.
{lemma:Ito-aux}

Lemma 7. Let (M,) be a continuos bounded martingale on [0,t], that is
sup, , |M(w)| < K, and let Il = {0 =ty < t; < ... <ty =t} be a partition.
Then

Proof. Expanding the square

E <zm:(Mtz - Mtil)2>

i=1
= Z E(Mtz - Mtz‘—l)4 + Z E(Mtz - Mti—1>2(Mtj - Mtj—1)2'
i=1 i#j

Using several times that

E[(M, — M,)*|F,] = E[M? — M?|F,], s<t,

52



we obtain

ZE(Mt’ - Mti_l)Q(Mtj - Mt]‘—1>2

i#]
m—1 m
=2 > B(OMy — M, ) (M,, — M)
i=1 j=i+1
m—1 m
=2 Z Z E [E[(Mtz - Mti—l)Z(Mtj - Mtj,1>2|ftj,1]i|
i=1 j=i+1
m—1 m
=2> > E(M, — M,_,)*(M} — M} )
i=1 j=i+1
m—1
- 2 E(Mtl - Mti71>2(Mt2 - Mi)
i=1
m—1
< 2K* Z E(Mtz - Mti—1)2
i=1

m—1
=2K° Y B(M] — M} ) <2K*.

=1

While, for the sum of 4th powers

ZE<Mtz o Mti—1)4 < 4K2E Z E(Mtz - Mti—1)2
i=1 =1

= 4AK’E(M? — M) < 4K*.

Summarizing from I3 we have the sum
Z f”<th71)(Mtk - Mtk71>2'
k=1

We claim that

Z f”<th71><Mtk - Mtk—1>2 il) /: f//(XS)HSQdS'

L
— )

33

(17)

{eq:i3-negyzetesva



Since X and f” are continuous

m L Tﬁ t
Zf”(thl)/ H3d3—>/0 fﬂ(XS)HSQ(E a.s. 4

= tp—1
e T
Thus it is enough to show that }/l% - V( H< ﬂ{ V(é
m £ , ®
bé%) Z (X ) ((Mtk - Mtk_l)Q - / Hfds) £ 0.

o . =
Theorem 25 (ii) implies E (MJ: ) h
N
- ,
/ H AW, | |F, .
te—1
- £
| omasiz, |
|V th—1
SO 1n 9
tg
Zf// th 1 Mtk - Mtk—1>2 - Hfds)) -—"”'_B O

tp—1

the expectat of the mixed term is 0. Thus this equals

2
m tr
=K Z (X ) ((Mtk - My, ,)? - t Hfds)]
k:l k—1

<[fI2 B S (M, — My, )" +2B3 (M, — M, , / s
k=1 k=1
m tk 2
+E) Hds ]
k=1 tk—1
<1115 [E D (Myy = Mo ) 2P sup (My, = My ) + K4tHHII] .
k=1 SRksm

— 4 J
0 0

@5 ”O/@ ) (M*% /\4@] - fq e di)

2
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The second and third term tend to 0, and for the first

EZ (M, — M, )'<E

Z My, — Mtk 1)+ Sup ’Mtk - Mtk1|2]
k=1

1 1<k<m
m 2
< E Z(Mtk _Mtkfl)Z \/E sup |Mtk - Mtk71|4
1 1<k<m
< \/6K2\/E sup |M,, — M, |* — 0.
1<k<m

Summarizing we obtained L', L? and almost sure convegence in (12)-
(17). Since everthing is bounded, L! convergence follows in each case, that
is

FOX0) = f(Xo) =D [f(X0,) = F(Xe, )]
M k=1
N f QX+ 5 /f” X,)H2ds.
0
u ¢ N Ms

Convergence in L! implies a.s. convergen e on'a subsequence. As both sides
are continuous we obtained that the two process are indistinguishable.  [J
e

Y+ g

{example:exp-2}
Example 12 (Continuation of Example 10). Let

t 1 t
:/ Xuqu—E/ X2du, ¢ =C¢,

where X; is an adapted process. Then Z, = ¢ satisfies the stochastic differ-
ential equation

t
Zy =1 +/ Zs X dW,
0
or with a common notation
dZt - ZtXtthu ZO - 1

Writing ¢ as an Itd process

t 1 t
Ct:/ ——Xidu+/ X, dW,,.
0 2 0

%)



