$$
\begin{array}{ll}
(\Omega, F, P) & X: \Omega \rightarrow R \\
(R, B) & j \subseteq F \\
\uparrow & \text { subo-abeh }
\end{array}
$$

Borel
$E[X \mid \mathcal{Y}]:=\mathcal{Y}$-weas modle randan var.
condiuliond exp. $\quad-E\left[I_{G} E[X \mid g]\right]=E\left[I_{G} X\right]$
$\forall G \in g$

$$
\begin{array}{r}
\int_{G} E[x \mid G] d P=\int_{\sigma} x d P \\
E[x+y \mid \xi](\omega)=E[x \mid \xi]^{(\omega)}+E[y \mid \xi](\omega)
\end{array}
$$

\uparrow
a.s. aluas surely with reped
conditional probe:
ald
$A \in f: P(A \mid \xi) \stackrel{\downarrow}{=} E\left[I_{A} \mid \xi\right]$

- J-meas
$-\forall G \in C_{d} \quad \int_{G} P(A \mid y) d P=\int_{G} I_{A} d P=P(A \cap G)$.

Trop.: $P(A \mid \xi)$

$$
\begin{aligned}
0 & \leqq P(A \mid \mathcal{G}) \leqq 1 \\
\int_{G} \sigma d P & \leqq \int_{G} P(A \mid \mathcal{G}) d P \leqq \int_{G} 1 d P
\end{aligned}
$$

ldets β all $G \in \mathcal{Y} \Rightarrow 0 \leq P(A \mid y) \leqq 1$ a.s.
$A_{1}, A_{2}, \ldots \in A$ disfoint sets

$$
\begin{aligned}
& P\left(\bigcup_{i=1}^{\infty} A_{i} \mid g\right)(\omega)=\sum_{i=1}^{\infty} P\left(A_{i} \mid g\right)(\omega) \text { as. } \\
& P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right) \leftarrow \begin{array}{c}
\text { dese are } \\
\text { numbers }
\end{array}
\end{aligned}
$$

\rightarrow Indeed: - G-weas. N

$$
\begin{aligned}
& -V G \in G: \int_{G} \sum_{i=1}^{\infty} P\left(A_{i} \mid y\right) d P ? \\
& \int_{G}^{\left.\int \sum_{0} P\left(A_{i} \mid \xi\right) d P=\sum_{-1}^{1} \int_{G} \quad \stackrel{?}{=} \int_{G} \mid \xi\right) d P=\sum_{i} \sum_{i} I_{A_{i}} d P}
\end{aligned}
$$

So A_{1}, A_{2}, \ldots dipinit-then:

$$
P\left(U_{i} A_{i} \mid \xi\right)=\sum_{i} P\left(A_{i} \mid \xi\right) \quad \text { ass. }
$$

That is $P(\cdot \mid \xi)$ behaves life a
Problem:

$$
\begin{aligned}
\forall A \in \mathcal{F} & : 0 \leq P(A \mid G) \leq 1 \\
& \Rightarrow \exists N_{A} \in F: P\left(N_{A}\right)=0
\end{aligned}
$$

such that $P(A \mid H)(\omega) \in[0,1]$
for very $\omega \in \Omega \backslash \psi_{A}$
Exceptional set N_{A}
For different A^{\prime} s N_{A} is different
These els together can be loge.
$\{x\}$
$\bigcup_{A \in F} N_{A}$ can be lase

4.1.3 Regular Conditional Probabilities*

Let (Ω, \mathcal{F}, P) be a probability space, $X:(\Omega, \mathcal{F}) \rightarrow(S, \mathcal{S})$ a measurable map, and \mathcal{G} a σ-field $\subset \mathcal{F} . \mu: \Omega \times \mathcal{S} \rightarrow[0,1]$ is said to be a regular conditional distribution for X given \mathcal{G} if
(i) For each $A, \omega \rightarrow \mu(\omega, A)$ is a version of $P(X \in A \mid \mathcal{G}) . P(X \in \notin \mid \mathcal{G})=\mu(\omega, A)$
(ii) For a.e. $\omega, A \rightarrow \mu(\omega, A)$ is a probability measure on (S, \mathcal{S}).

When $S=\Omega$ and X is the identity map, μ is called a regular conditonal probability.
Continuation of Example 4.1.6. Suppose X and Y have a joint density $f(x, y)>0$. If

$$
\mu(y, A)=\int_{A} f(x, y) d x / \int f(x, y) d x
$$

then $\mu(Y(\omega), A)$ is a r.c.d. for X given $\sigma(Y)$.
(i) in the definition follows by taking $h=1_{A}$ in Example 4.1.1. To check (ii) note that the dominated convergence theorem implies that $A \rightarrow \mu(y, A)$ is a probability measure.

Regular conditional distributions are useful because they allow us to simultaneously compute the conditional expectation of all functions of X and to generalize properties of ordinary expectation in a more straightforward way.
Theorem 4.1.16. Let $\mu(\omega, A)$ be a r.c.d. for X given \nmid. $f f:(S, \mathcal{S}) \rightarrow$ $(\mathbf{R}, \mathcal{R})$ has $E|f(X)|<\infty$ then

$\int f(x) \mu\left(\omega_{1} d x\right)$

 $=\mu(\omega, A)$Proof. If $f=1_{A}$ this follows from the definition. Linearity extends the result to simple f and monotone convergence to nonnegative f. Finally we get the result in general by writing $f=f^{+}-f^{-}$.

Unfortunately, r.c.d.'s do not always exist. The first example was due to Dieudonné (1948). See Boob (1953), p. 624, or Faden (1985) for more recent developments. Without going into the details of the example, it is easy to see the source of the problem. If A_{1}, A_{2}, \ldots are disjoint, then (4.1.1) and (4.1.3) imply

$$
P\left(X \in \cup_{n} A_{n} \mid \mathcal{G}\right)=\sum_{n} P\left(X \in A_{n} \mid \mathcal{G}\right) \quad \text { a.s. }
$$

but if \mathcal{S} contains enough countable collections of disjoint sets, the exceptional sets may pile up. Fortunately,

$$
\begin{aligned}
& (\Omega, F, P) \\
& X: \Omega \rightarrow \mathbb{R} \\
& \text { dist. funntion } \\
& \underset{f}{f}(x)=P(X \propto x) \\
& E(X) \stackrel{d f .}{=} X d P=\int_{\Omega} X(w) d P(w) \\
& =\int_{R} x d^{d} d F(x)=\int_{-\infty}^{\infty} x \cdot f(x) d x \text { danity function } \\
& { }_{\text {thevem }}^{7} \mathbb{R} \text { Lebersue-Stielifes integral } \\
& =\sum_{i} x_{i} P\left(X=x_{i}\right) \quad X_{i} \text { dismete } \\
& \left.\mu_{F}(1-\infty x]\right)=F(x)
\end{aligned}
$$

Special cax: $\quad d F(x)=f(x) d x \quad N L$

$$
\begin{aligned}
& E\left(F(x)=I \operatorname{II} P\left(V_{x_{i}}\right) \cdot \delta_{x_{i}}\right. \\
& E(X))=\int_{-\infty}^{\infty} h(x) d F(x) \\
& \left.E[h(x) \mid G]=\int \ln (x)^{\Gamma} \mu(\omega) d x\right)
\end{aligned}
$$

4.1. CONDITIONAL EXPECTATION($\left.\mathbb{R}^{d}, \beta\right)$ is nite

Theorem 4.1.17. r.c.d.'s exist if (S, \mathcal{S}) is nice.
Proof. By definition, there is a 1-1 map $\varphi: S \rightarrow \mathbf{R}$ so that φ and φ^{-1} are measurable. Using monotonicity (4.1.2) and throwing away a countable collection of null sets, we find there is a set Ω_{o} with $P\left(\Omega_{o}\right)=1$ and a family of random variables $G(q, \omega), q \in \mathbf{Q}$ so that $q \rightarrow G(q, \omega)$ is nondecreasing and $\omega \rightarrow G(q, \omega)$ is a version of $P(\varphi(X) \leq q \mid \mathcal{G})$. Let $F(x, \omega)=\inf \{G(q, \omega): q>x\}$. The notation may remind the reader of the proof of Theorem 3.2.12. The argument given there shows F is a distribution function. Since $G\left(q_{n}, \omega\right) \downarrow F(x, \omega)$, the remark after Theorem 4.1.9 implies that $F(x, \omega)$ is a version of $P(\varphi(X) \leq x \mid \mathcal{G})$.

Now, for each $\omega \in \Omega_{o}$, there is a unique measure $\nu(\omega, \cdot)$ on $(\mathbf{R}, \mathcal{R})$ so that $\nu(\omega,(-\infty, x])=F(x, \omega)$. To check that for each $B \in \mathcal{R}, \nu(\omega, B)$ is a version of $P(\varphi(X) \in B \mid \mathcal{G})$, we observe that the class of B for which this statement is true (this includes the measurability of $\omega \rightarrow \nu(\omega, B)$) is a λ-system that contains all sets of the form $\left(a_{1}, b_{1}\right] \cup \cdots\left(a_{k}, b_{k}\right]$ where $-\infty \leq a_{i}<b_{i} \leq \infty$, so the desired result follows from the $\pi-\lambda$ theorem. To extract the desired r.c.d., notice that if $A \in \mathcal{S}$ and $B=\varphi(A)$, then $B=\left(\varphi^{-1}\right)^{-1}(A) \in \mathcal{R}$, and set $\mu(\omega, A)=\nu(\omega, B)$.

The following generalization of Theorem 4.1.17 will be needed in Sec-

nile. dion 6.1.

Theorem 4.1.18. Suppose X and Y take values in a nice space (S, \mathcal{S}) and $\mathcal{G}=\sigma(Y)$. There is a function $\mu: S \times \mathcal{S} \rightarrow[0,1]$ so that
(i) for each $A, \mu(Y(\omega), A)$ is a version of $P(X \in A \mid \mathcal{G})=\mu(X, \mathcal{A})$
(ii) for a.e. $\omega, A \rightarrow \mu(Y(\omega), A)$ is a probability measure on (S, \mathcal{S}).

Proof. As in the proof of Theorem 4.1.17, we find there is a set Ω_{o} with $P\left(\Omega_{o}\right)=1$ and a family of random variables $G(q, \omega), q \in \mathbf{Q}$ so that $q \rightarrow G(q, \omega)$ is nondecreasing and $\omega \rightarrow G(q, \omega)$ is a version of $P(\varphi(X) \leq$ $q \mid \mathcal{G})$. Since $G(q, \omega) \in \sigma(Y)$ we can write $G(q, \omega)=H(q, Y(\omega))$. Let $F(x, y)=\inf \{G(q, y): q>x\}$. The argument given in the proof of Theorem 4.1.17 shows that there is a set A_{0} with $P\left(Y \in A_{0}\right)=1$ so that when $y \in A_{0}, F$ is a distribution function and that $F(x, Y(\omega))$ is a version of $P(\varphi(X) \leq x \mid Y)$.

For each $y \in A_{o}$, there is a unique measure $\nu(y, \cdot)$ on $(\mathbf{R}, \mathcal{R})$ so that $\nu(y,(-\infty, x])=F(x, y))$. To check that for each $B \in \mathcal{R}, \nu(Y(\omega), B)$ is a version of $P(\varphi(X) \in B \mid Y)$, we observe that the class of B for which this statement is true (this includes the measurability of $\omega \rightarrow \nu(Y(\omega), B)$) is a λ-system that contains all sets of the form $\left(a_{1}, b_{1}\right] \cup \cdots\left(a_{k}, b_{k}\right]$ where $-\infty \leq a_{i}<b_{i} \leq \infty$, so the desired result follows from the $\pi-\lambda$ theorem. To extract the desired r.c.d. notice that if $A \in \mathcal{S}$, and $B=\varphi(A)$ then $B=\left(\varphi^{-1}\right)^{-1}(A) \in \mathcal{R}$, and set $\mu(y, A)=\nu(y, B)$.

Proor of Thm.4.1.17. Fo~ $S=\mathbb{R}$

$$
\begin{aligned}
& X: \Omega \rightarrow \mathbb{R} \\
& P(X \leqq x \mid y)
\end{aligned}
$$

corvider $P(X \leq q \mid y) \quad q \in \mathbb{Q}$ convale!!
$\forall g \notin Q: O \leqq P(X \leq \gamma \mid \xi) \leqslant 1$ a.s.
J $N_{q}: P\left(N_{q}\right)=0$ such thet
$\forall i 0 \notin N_{q}: P(X \leq q \mid g)(w) \in[0,1]$
$N=\bigcup_{q \in Q} N_{q} \leftarrow \underset{c}{\text { conwalte wion } / k k_{<}<\text {of }}$ muan. O.

$$
\Rightarrow P(N)=0 .
$$

$\exists N:(\forall \omega \neq N)(\forall q \in Q): P(X \leq q \mid g)(\omega) \in[\{1]$
If $q<r: P(X \leqq q \mid \xi) \leqq P(X \leqq r \mid \xi)$
mavodonity $\rightarrow E[I(X \leq q) \mid \xi] \leqslant E[I(X \leq r) \mid y]$

$$
\begin{aligned}
& \exists N_{q r}: P\left(N_{q, r}\right)=0 \\
& \forall \omega \notin N_{q 1} r: P(X \leq g \mid Y)(\omega) \leq P(X \leq v|y| \omega) \\
& N_{2}=\bigcup_{\substack{q<r \\
q, r \in \mathbb{Q}}} N_{v_{1} v} \quad \text { covirdable!! } \Rightarrow P\left(N_{2}\right)=0_{1}
\end{aligned}
$$

\Rightarrow If $\omega \notin N_{2} U N$ then

$$
P(X \leq q \mid y)(\omega) \in[0,1]
$$

and is monotone wondecreaning in q.
$x \in \mathbb{R}$

$$
G(x, \omega)=\inf \{P(X \leqslant q \mid \xi)(\omega): q>x\}
$$

If $\omega \notin N_{2} \cup N$: $G(x, \omega)$ is roddecreanip in $G(x, N)$ is a $d f_{1}$ in x.

$$
\begin{array}{r}
P(X \leq x \mid y)(w)=G(x, w) \text { a.S. } \\
q_{n} b x=P\left(X \leq q_{m} \mid y\right) 山 P(X \leq x \mid y)
\end{array}
$$

So $G(x, w)$ is a vesion of $P(X \leq x \mid y)$ \downarrow defines a neasme on \mathbb{R}.

- 0 -

$$
E[X \mid Y] \stackrel{\text { of }}{=} E[X \mid \sigma(Y)]
$$

def. mearmathe with eiped
$\sigma_{0} \sigma(y)$

$$
\Rightarrow E[X \mid \sigma(y)]=a_{p}^{a}(y)
$$

a : meanmatle

$$
\begin{aligned}
& P(x \in A \mid y)=P(x \in A \mid y) \\
& a^{\prime \prime}(y)
\end{aligned}
$$

Exercises

4.1.1. Bayes' formula. Let $G \in \mathcal{G}$ and show that

$$
P(G \mid A)=\int_{G} P(A \mid \mathcal{G}) d P / \int_{\Omega} P(A \mid \mathcal{G}) d P
$$

When \mathcal{G} is the σ-field generated by a partition, this reduces to the usual Bayes' formula

$$
P\left(G_{i} \mid A\right)=P\left(A \mid G_{i}\right) P\left(G_{i}\right) / \sum_{j} P\left(A \mid G_{j}\right) P\left(G_{j}\right)
$$

4.1.2. Prove Chebyshev's inequality. If $a>0$ then

$$
P(|X| \geq a \mid \mathcal{F}) \leq a^{-2} E\left(X^{2} \mid \mathcal{F}\right)
$$

4.1.3. Imitate the proof in the remark after Theorem 1.5.2 to prove the conditional Cauchy-Schwarz inequality.

$$
E(X Y \mid \mathcal{G})^{2} \leq E\left(X^{2} \mid \mathcal{G}\right) E\left(Y^{2} \mid \mathcal{G}\right)
$$

4.1.4. Use regular conditional probability to get the conditional Hölder inequality from the unconditional one, i.e., show that if $p, q \in(1, \infty)$ with $1 / p+1 / q=1$ then

$$
E(|X Y| \mid \mathcal{G}) \leq E\left(|X|^{p} \mid \mathcal{G}\right)^{1 / p} E\left(|Y|^{q} \mid \mathcal{G}\right)^{1 / q}
$$

4.1.5. Give an example on $\Omega=\{a, b, c\}$ in which

$$
E\left(E\left(X \mid \mathcal{F}_{1}\right) \mid \mathcal{F}_{2}\right) \neq E\left(E\left(X \mid \mathcal{F}_{2}\right) \mid \mathcal{F}_{1}\right)
$$

4.1.6. Show that if $\mathcal{G} \subset \mathcal{F}$ and $E X^{2}<\infty$ then

$$
E\left(\{X-E(X \mid \mathcal{F})\}^{2}\right)+E\left(\{E(X \mid \mathcal{F})-E(X \mid \mathcal{G})\}^{2}\right)=E\left(\{X-E(X \mid \mathcal{G})\}^{2}\right)
$$

Dropping the second term on the left, we get an inequality that says geometrically, the larger the subspace the closer the projection is, or statistically, more information means a smaller mean square error.
4.1.7. An important special case of the previous result occurs when $\mathcal{G}=$ $\{\emptyset, \Omega\}$. Let $\operatorname{var}(X \mid \mathcal{F})=E\left(X^{2} \mid \mathcal{F}\right)-E(X \mid \mathcal{F})^{2}$. Show that

$$
\operatorname{var}(X)=E(\operatorname{var}(X \mid \mathcal{F}))+\operatorname{var}(E(X \mid \mathcal{F}))
$$

4.1.8. Let Y_{1}, Y_{2}, \ldots be i.i.d. with mean μ and variance σ^{2}, N an independent positive integer valued r.v. with $E N^{2}<\infty$ and $X=Y_{1}+\cdots+Y_{N}$. Show that $\operatorname{var}(X)=\sigma^{2} E N+\mu^{2} \operatorname{var}(N)$. To understand and help remember the formula, think about the two special cases in which N or Y is constant.
4.1.9. Show that if X and Y are random variables with $E(Y \mid \mathcal{G})=X$ and $E Y^{2}=E X^{2}<\infty$, then $X=Y$ a.s.
4.1.10. The result in the last exercise implies that if $E Y^{2}<\infty$ and $E(Y \mid \mathcal{G})$ has the same distribution as Y, then $E(Y \mid \mathcal{G})=Y$ a.s. Prove this under the assumption $E|Y|<\infty$. Hint: The trick is to prove that $\operatorname{sgn}(X)=\operatorname{sgn}(E(X \mid \mathcal{G}))$ a.s., and then take $X=Y-c$ to get the desired result.

4.2 Martingales, Almost Sure Convergence

In this section we will define martingales and their cousins supermartingales and submartingales, and take the first steps in developing their theory. Let \mathcal{F}_{n} be a filtration, i.e., an increasing sequence of σ-fields. A sequence X_{n} is said to be adapted to \mathcal{F}_{n} if $X_{n} \in \mathcal{F}_{n}$ for all n. If X_{n} is sequence with
(i) $E\left|X_{n}\right|<\infty$,
(ii) X_{n} is adapted to \mathcal{F}_{n},
(iii) $E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}$ for all n,

$$
\begin{aligned}
& F_{n} \text { if } X_{n} \in \mathcal{F}_{n} \text { for al } n, \text { If } X_{n} \text { is } \\
& \left.\begin{array}{l}
\left(F_{n}, F_{n}\right.
\end{array}\right), F_{n} \subset F_{n} \subset F_{n+1} \subset \ldots \\
& F_{0} \subset \ldots
\end{aligned}
$$

then X is said to be a martingale (with respect to \mathcal{F}_{n}). If in the last definition, $=$ is replaced by \leq or \geq, then X is said to be a supermartingale or submartingale, respectively.

We begin by describing three examples related to random walk. Let ξ_{1}, ξ_{2}, \ldots be independent and identically distributed. Let $S_{n}=S_{0}+\xi_{1}+$ $\cdots+\xi_{n}$ where S_{0} is a constant. Let $\mathcal{F}_{n}=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$ for $n \geq 1$ and
 take $\mathcal{F}_{0}=\{\emptyset, \Omega\}$.
Example 4.2.1. Linear martingale. If $\mu=E \xi_{i}=0$ then $S_{n}, n \geq 0$, $\left.X_{n}\right)$ is adapts
is a martingale with respect to \mathcal{F}_{n}.
To prove this, we observe that $S_{n} \in \mathcal{F}_{n}, E\left|S_{n}\right|<\infty$, and ξ_{n+1} is independent of \mathcal{F}_{n}, so using the linearity of conditional expectation, (4.1.1), and Example 4.1.4,

$$
E\left(S_{n+1} \mid \mathcal{F}_{n}\right)=E\left(S_{n} \mid \mathcal{F}_{n}\right)+E\left(\xi_{n+1} \mid \mathcal{F}_{n}\right)=S_{n}+E \xi_{n+1}=S_{n}
$$

If $\mu \leq 0$ then the computation just completed shows $E\left(S_{n+1} \mid \mathcal{F}_{n}\right) \leq$
$S w_{n}$, ie. \boldsymbol{N}_{n} is a supermartingale. In this case \boldsymbol{N}_{n} corresponds to betting on an unfavorable game so there is nothing "super" about a supermartingale. The name comes from the fact that if f is superharmonic (i.e., f has continuous derivatives of order ≤ 2 and $\left.\partial^{2} f / \partial x_{1}^{2}+\cdots+\partial^{2} f / \partial x_{d}^{2} \leq 0\right)$, then

$$
\begin{equation*}
f(x) \geq \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y \tag{4.2.1}
\end{equation*}
$$

$$
E\left(S_{n_{1}} \mid F_{n}\right]=E\left[S_{n-3}-\xi_{n+1} \mid F_{n}\right)=E\left(S_{n}\left(F_{n n}\right)+\right.
$$

$$
\begin{gathered}
+E[\}_{n+1}\left(f_{n}\right]=S_{n}+E\left[\xi_{n+1}\right]=S_{n} \\
\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)
\end{gathered}
$$

where $B(x, r)=\{y:|x-y| \leq r\}$ is the ball of radius r, and $|B(x, r)|$ is the volume of the ball.

If $\mu \geq 0$ then S_{n} is a submartingale. Applying the first result to $\xi_{i}^{\prime}=\xi_{i}-\mu$ we see that $S_{n}-n \mu$ is a martingale.

Example 4.2.2. Quadratic martingale. Suppose now that $\mu=E \xi_{i}=$
0 and $\sigma^{2}=\operatorname{var}\left(\xi_{i}\right)<\infty$. In this case $S_{n}^{2}-n \sigma^{2}$ is a martingale.
Since $\left(S_{n}+\xi_{n+1}\right)^{2}=S_{n}^{2}+2 S_{n} \xi_{n+1}+\xi_{n+1}^{2}$ and ξ_{n+1} is independent of \mathcal{F}_{n}, we have
$E\left(S_{n+1}^{2}-(n+1) \sigma^{2} \mid \mathcal{F}_{n}\right)=S_{n}^{2}+2 S_{n} E\left(\dot{\xi}_{n+1} \mid \mathcal{F}_{n}\right)+E\left(\xi_{n+1}^{2} \mid \mathcal{F}_{n}\right)-(n+1) \sigma^{2}$

Example 4.2.3. Exponential martingale. Let Y_{1}, Y_{2}, \ldots be nonnegative i.i.d. random variables with $E Y_{m}=1$. If $\mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$ then $M_{n}=\prod_{m \leq n} Y_{m}$ defines a martingale. To prove this note that

$$
E\left(M_{n+1} \mid \mathcal{F}_{n}\right)=M_{n} E\left(\underset{n+1}{Y} \mid \mathcal{F}_{n}\right)=M_{\boldsymbol{n}}
$$

$\begin{aligned} & \text { Suppose now that } \\ & \text { has mean } 1 \text { so } E Y_{i}=1 \text { and } \\ & M_{n}=\prod_{i=1}^{n} Y_{i}=\exp \left(\theta S_{n}\right) / \phi(\theta)^{n}\end{aligned}$ is a martingale.
We will see many other examples below, so we turn now to deriving properties of martingales. Our first result is an immediate consequence of the definition of a supermartingale. We could take the conclusion of the result as the definition of supermartingale, but then the definition would be harder to check.
Theorem 4.2.4. If X_{n} is a supermartingale then for $n>m, E\left(X_{n} \mid \mathcal{F}_{m}\right) \leq$ X_{m}.
Proof. The definition gives the result for $n=m+1$. Suppose $n=m+k$ with $k \geq 2$. By Theorem 4.1.2,

$$
\begin{aligned}
& \qquad E\left(X_{m+k} \mid \mathcal{F}_{m}\right)=E\left(E\left(X_{m+k} \mid \mathcal{F}_{m+k-1}\right) \mid \mathcal{F}_{m}\right) \leq E\left(X_{m+k-1} \mid \mathcal{F}_{m}\right) \\
& \text { by the definition and (4.1.2). The desired result now follows by index induction. } E\left[\cdot \mid \hat{f}_{m}\right]
\end{aligned}
$$

Theorem 4.2.5. (i) If X_{n} is a submartingale then for $n>m, E\left(X_{n} \mid \mathcal{F}_{m}\right) \geq$ X_{m}.
(ii) If X_{n} is a martingale then for $n>m, E\left(X_{n} \mid \mathcal{F}_{m}\right)=X_{m}$.

Proof. To prove (i), note that $-X_{n}$ is a supermartingale and use (4.1.1). For (ii), observe that X_{n} is a supermartingale and a submartingale.

