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4.1.3 Regular Conditional Probabilities*

Let (Ω,F , P ) be a probability space, X : (Ω,F) → (S,S) a measurable
map, and G a σ-field ⊂ F . µ : Ω × S → [0, 1] is said to be a regular
conditional distribution for X given G if

(i) For each A, ω → µ(ω, A) is a version of P (X ∈ A|G).

(ii) For a.e. ω, A → µ(ω, A) is a probability measure on (S,S).

When S = Ω and X is the identity map, µ is called a regular condi-
tional probability.

Continuation of Example 4.1.6. Suppose X and Y have a joint
density f(x, y) > 0. If

µ(y,A) =

�

A

f(x, y) dx

� �
f(x, y) dx

then µ(Y (ω), A) is a r.c.d. for X given σ(Y ).

(i) in the definition follows by taking h = 1A in Example 4.1.1. To
check (ii) note that the dominated convergence theorem implies that
A → µ(y,A) is a probability measure.

Regular conditional distributions are useful because they allow us to
simultaneously compute the conditional expectation of all functions of X
and to generalize properties of ordinary expectation in a more straight-
forward way.

Theorem 4.1.16. Let µ(ω, A) be a r.c.d. for X given F . If f : (S,S) →
(R,R) has E|f(X)| < ∞ then

E(f(X)|F) =

�
µ(ω, dx)f(x) a.s.

Proof. If f = 1A this follows from the definition. Linearity extends the
result to simple f and monotone convergence to nonnegative f . Finally
we get the result in general by writing f = f + − f−.

Unfortunately, r.c.d.’s do not always exist. The first example was due
to Dieudonné (1948). See Doob (1953), p. 624, or Faden (1985) for more
recent developments. Without going into the details of the example, it
is easy to see the source of the problem. If A1, A2, . . . are disjoint, then
(4.1.1) and (4.1.3) imply

P (X ∈ ∪nAn|G) =
�

n

P (X ∈ An|G) a.s.

but if S contains enough countable collections of disjoint sets, the excep-
tional sets may pile up. Fortunately,
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Theorem 4.1.17. r.c.d.’s exist if (S,S) is nice.

Proof. By definition, there is a 1-1 map ϕ : S → R so that ϕ and ϕ−1 are
measurable. Using monotonicity (4.1.2) and throwing away a countable
collection of null sets, we find there is a set Ωo with P (Ωo) = 1 and
a family of random variables G(q,ω), q ∈ Q so that q → G(q,ω) is
nondecreasing and ω → G(q,ω) is a version of P (ϕ(X) ≤ q|G). Let
F (x,ω) = inf{G(q,ω) : q > x}. The notation may remind the reader
of the proof of Theorem 3.2.12. The argument given there shows F
is a distribution function. Since G(qn,ω) ↓ F (x,ω), the remark after
Theorem 4.1.9 implies that F (x,ω) is a version of P (ϕ(X) ≤ x|G).

Now, for each ω ∈ Ωo, there is a unique measure ν(ω, ·) on (R,R) so
that ν(ω, (−∞, x]) = F (x,ω). To check that for each B ∈ R , ν(ω, B)
is a version of P (ϕ(X) ∈ B|G), we observe that the class of B for which
this statement is true (this includes the measurability of ω → ν(ω, B))
is a λ-system that contains all sets of the form (a1, b1]∪ · · · (ak, bk] where
−∞ ≤ ai < bi ≤ ∞, so the desired result follows from the π−λ theorem.
To extract the desired r.c.d., notice that if A ∈ S and B = ϕ(A), then
B = (ϕ−1)−1(A) ∈ R, and set µ(ω, A) = ν(ω, B).

The following generalization of Theorem 4.1.17 will be needed in Sec-
tion 6.1.

Theorem 4.1.18. Suppose X and Y take values in a nice space (S,S)
and G = σ(Y ). There is a function µ : S × S → [0, 1] so that

(i) for each A, µ(Y (ω), A) is a version of P (X ∈ A|G)

(ii) for a.e. ω, A → µ(Y (ω), A) is a probability measure on (S,S).

Proof. As in the proof of Theorem 4.1.17, we find there is a set Ωo with
P (Ωo) = 1 and a family of random variables G(q,ω), q ∈ Q so that
q → G(q,ω) is nondecreasing and ω → G(q,ω) is a version of P (ϕ(X) ≤
q|G). Since G(q,ω) ∈ σ(Y ) we can write G(q,ω) = H(q, Y (ω)). Let
F (x, y) = inf{G(q, y) : q > x}. The argument given in the proof of
Theorem 4.1.17 shows that there is a set A0 with P (Y ∈ A0) = 1 so
that when y ∈ A0, F is a distribution function and that F (x, Y (ω)) is a
version of P (ϕ(X) ≤ x|Y ).

For each y ∈ Ao, there is a unique measure ν(y, ·) on (R,R) so that
ν(y, (−∞, x]) = F (x, y)). To check that for each B ∈ R , ν(Y (ω), B) is a
version of P (ϕ(X) ∈ B|Y ), we observe that the class of B for which this
statement is true (this includes the measurability of ω → ν(Y (ω), B)) is
a λ-system that contains all sets of the form (a1, b1] ∪ · · · (ak, bk] where
−∞ ≤ ai < bi ≤ ∞, so the desired result follows from the π−λ theorem.
To extract the desired r.c.d. notice that if A ∈ S, and B = ϕ(A) then
B = (ϕ−1)−1(A) ∈ R, and set µ(y,A) = ν(y,B).
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Exercises

4.1.1. Bayes’ formula. Let G ∈ G and show that

P (G|A) =

�

G

P (A|G) dP

��

Ω

P (A|G) dP

When G is the σ-field generated by a partition, this reduces to the usual
Bayes’ formula

P (Gi|A) = P (A|Gi)P (Gi)

��

j

P (A|Gj)P (Gj)

4.1.2. Prove Chebyshev’s inequality. If a > 0 then

P (|X| ≥ a|F) ≤ a−2E(X2|F)

4.1.3. Imitate the proof in the remark after Theorem 1.5.2 to prove the
conditional Cauchy-Schwarz inequality.

E(XY |G)2 ≤ E(X2|G)E(Y 2|G)

4.1.4. Use regular conditional probability to get the conditional Hölder
inequality from the unconditional one, i.e., show that if p, q ∈ (1,∞)
with 1/p + 1/q = 1 then

E(|XY ||G) ≤ E(|X|p|G)1/pE(|Y |q|G)1/q

4.1.5. Give an example on Ω = {a, b, c} in which

E(E(X|F1)|F2) �= E(E(X|F2)|F1)

4.1.6. Show that if G ⊂ F and EX 2 < ∞ then

E({X − E(X|F)}2) + E({E(X|F)− E(X|G)}2) = E({X − E(X|G)}2)

Dropping the second term on the left, we get an inequality that says
geometrically, the larger the subspace the closer the projection is, or
statistically, more information means a smaller mean square error.

4.1.7. An important special case of the previous result occurs when G =
{∅, Ω}. Let var (X|F) = E(X 2|F)− E(X|F)2. Show that

var (X) = E( var (X|F)) + var (E(X|F))

4.1.8. Let Y1, Y2, . . . be i.i.d. with mean µ and variance σ2, N an indepen-
dent positive integer valued r.v. with EN 2 < ∞ and X = Y1 + · · ·+ YN .
Show that var (X) = σ2 EN + µ2 var (N). To understand and help re-
member the formula, think about the two special cases in which N or Y
is constant.
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4.1.9. Show that if X and Y are random variables with E(Y |G) = X
and EY 2 = EX2 < ∞, then X = Y a.s.

4.1.10. The result in the last exercise implies that if EY 2 < ∞ and
E(Y |G) has the same distribution as Y , then E(Y |G) = Y a.s. Prove
this under the assumption E|Y | < ∞. Hint: The trick is to prove that
sgn (X) = sgn (E(X|G)) a.s., and then take X = Y −c to get the desired
result.

4.2 Martingales, Almost Sure Convergence

In this section we will define martingales and their cousins supermartin-
gales and submartingales, and take the first steps in developing their
theory. Let Fn be a filtration, i.e., an increasing sequence of σ-fields. A
sequence Xn is said to be adapted to Fn if Xn ∈ Fn for all n. If Xn is
sequence with

(i) E|Xn| < ∞,

(ii) Xn is adapted to Fn,

(iii) E(Xn+1|Fn) = Xn for all n,

then X is said to be a martingale (with respect to Fn). If in the last def-
inition, = is replaced by ≤ or ≥, then X is said to be a supermartingale
or submartingale, respectively.

We begin by describing three examples related to random walk. Let
ξ1, ξ2, . . . be independent and identically distributed. Let Sn = S0 + ξ1 +
· · · + ξn where S0 is a constant. Let Fn = σ(ξ1, . . . , ξn) for n ≥ 1 and
take F0 = {∅, Ω}.
Example 4.2.1. Linear martingale. If µ = Eξi = 0 then Sn, n ≥ 0,
is a martingale with respect to Fn.

To prove this, we observe that Sn ∈ Fn, E|Sn| < ∞, and ξn+1 is inde-
pendent of Fn, so using the linearity of conditional expectation, (4.1.1),
and Example 4.1.4,

E(Sn+1|Fn) = E(Sn|Fn) + E(ξn+1|Fn) = Sn + Eξn+1 = Sn

If µ ≤ 0 then the computation just completed shows E(Xn+1|Fn) ≤
Xn, i.e., Xn is a supermartingale. In this case, Xn corresponds to betting
on an unfavorable game so there is nothing “super” about a supermartin-
gale. The name comes from the fact that if f is superharmonic (i.e., f has
continuous derivatives of order ≤ 2 and ∂2f/∂x2

1 + · · · + ∂2f/∂x2
d ≤ 0),

then

f(x) ≥ 1

|B(x, r)|

�

B(x,r)

f(y) dy (4.2.1)
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where B(x, r) = {y : |x− y| ≤ r} is the ball of radius r, and |B(x, r)| is
the volume of the ball.

If µ ≥ 0 then Sn is a submartingale. Applying the first result to
ξ�i = ξi − µ we see that Sn − nµ is a martingale.

Example 4.2.2. Quadratic martingale. Suppose now that µ = Eξi =
0 and σ2 = var (ξi) < ∞. In this case S2

n − nσ2 is a martingale.

Since (Sn + ξn+1)
2 = S2

n + 2Snξn+1 + ξ2
n+1 and ξn+1 is independent of Fn,

we have

E(S2
n+1 − (n + 1)σ2|Fn) = S2

n + 2SnE(ξn+1|Fn) + E(ξ2
n+1|Fn)− (n + 1)σ2

= S2
n + 0 + σ2 − (n + 1)σ2 = S2

n − nσ2

Example 4.2.3. Exponential martingale. Let Y1, Y2, . . . be nonneg-
ative i.i.d. random variables with EYm = 1. If Fn = σ(Y1, . . . , Yn) then
Mn =

�
m≤n Ym defines a martingale. To prove this note that

E(Mn+1|Fn) = MnE(Xn+1|Fn) = Yn

Suppose now that Yi = eθξi and φ(θ) = Eeθξi < ∞. Yi = exp(θξ)/φ(θ)
has mean 1 so EYi = 1 and

Mn =
n�

i=1

Yi = exp(θSn)/φ(θ)n is a martingale.

We will see many other examples below, so we turn now to deriving
properties of martingales. Our first result is an immediate consequence
of the definition of a supermartingale. We could take the conclusion of
the result as the definition of supermartingale, but then the definition
would be harder to check.

Theorem 4.2.4. If Xn is a supermartingale then for n > m, E(Xn|Fm) ≤
Xm.

Proof. The definition gives the result for n = m + 1. Suppose n = m + k
with k ≥ 2. By Theorem 4.1.2,

E(Xm+k|Fm) = E(E(Xm+k|Fm+k−1)|Fm) ≤ E(Xm+k−1|Fm)

by the definition and (4.1.2). The desired result now follows by induction.

Theorem 4.2.5. (i) If Xn is a submartingale then for n > m, E(Xn|Fm) ≥
Xm.
(ii) If Xn is a martingale then for n > m, E(Xn|Fm) = Xm.

Proof. To prove (i), note that −Xn is a supermartingale and use (4.1.1).
For (ii), observe that Xn is a supermartingale and a submartingale.


