we may choose $\varepsilon > 0$ small enough such that

$$q'_i = q_i - \varepsilon y_i > 0$$
 for all *i*. $\gamma = \gamma - \varepsilon \cdot \gamma$

As both q and y are orthogonal to \mathcal{V}_0 , q' is also orthogonal. Define the measure

$$\mathbf{Q}'(\{\omega_i\}) = \frac{q'_i}{\sum_{i=1}^k q'_i}.$$

Exactly as in the previous proof we can show that \mathbf{Q}' is EMM. The uniqueness of the EMM implies

$$\frac{q_i'}{\sum_{i=1}^k q_i'} = \frac{q_i}{\sum_{i=1}^k q_i},$$

that is, using also the definition of q',

tion of
$$q'$$
,
 $q = \alpha q' = \alpha q - \alpha \varepsilon y$, $\boldsymbol{\alpha} = \frac{\boldsymbol{\beta} \cdot \boldsymbol{\beta}}{\boldsymbol{\delta} \cdot \boldsymbol{\beta}}$

with $\alpha = \sum q_i / \sum q'_i$. Thus

$$(1-\alpha)q = -\alpha\varepsilon y.$$

But y and q are orthogonal, which is a contradiction. The proof is complete.

4 Girsanov's theorem in discrete time

4.1 Second proof of the difficult part of Theorem 3

Assume that d = 1 and first consider the one-step model with $B_0 = B_1 = 1$. The stock price S_0 is known, and the only randomness here is S_1 .

Exercise 9. The no arbitrage assumption (in this simple market) is equivalent to

$$\mathbf{P}(\Delta S_1 > 0) \mathbf{P}(\Delta S_1 < 0) > 0. \qquad \mathbf{A}_{\mathbf{S}_1} = \mathbf{S}_1 - \mathbf{S}_0$$

Furthermore, (S_n) is martingale if

$$\begin{bmatrix} S_n \\ HS_n \end{bmatrix}_n \quad \text{mark} \quad \& F_Q S_1 = S_0. \qquad E_Q \begin{bmatrix} S_1 \\ HS_n \end{bmatrix} = E_Q \begin{bmatrix} S_n \\ HS_n \end{bmatrix}$$

Therefore we have to construct a measure **Q** such that $\mathbf{E}_{\mathbf{Q}}\Delta S_1 = 0$. This is done in the following lemma.

X = 15,

Lemma 6. Let X be a random variable on $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbf{P})$ such that $\mathbf{P}(X > \mathbf{P})$ 0)**P**(X < 0) > 0. Then there exists a probability measure **Q** ~ **P** such that $\mathbf{E}_{\mathbf{Q}}X = 0$. Furthermore, for any $a \in \mathbb{R}$

$$\mathbf{E}_{\mathbf{Q}}e^{aX} < \infty.$$
 $(\mathcal{N}, \mathcal{F}, \mathcal{P}) = (\mathcal{R}, \mathcal{B}(\mathcal{R}), \mathcal{P})$

Proof. Define the probability measure

$$P_{1}(\mathrm{d}x) = ce^{-x^{2}}F(\mathrm{d}x), \quad \mathbf{F} \text{ ablel induitable L-S unleft}$$
where $F(x) = \mathbf{P}(X \le x)$ and $c^{-1} = \int_{\mathbb{R}} e^{-x^{2}}F(\mathrm{d}x)$. That is
$$P_{1}(A) = \int_{A} ce^{-x^{2}}F(\mathrm{d}x).$$

$$P_{1}(A) = \int_{A} ce^{-x^{2}}F(\mathrm{d}x).$$

Then P_1 is equivalent to F. (Recall that μ is absolute continuous with respect to $\nu, \mu \ll \nu$ if $\mu(A) = 0$ whenever $\nu(A) = 0$. And μ and ν are equivalent, $\mu \sim \nu$, if $\mu \ll \nu$ and $\nu \ll \mu$.) Let

$$\varphi(a) = \mathbf{E}_{\underline{P_1}} e^{aX} = \int_{\mathbb{R}} e^{ax} P_1(\mathrm{d}x) = c \int_{\mathbb{R}} e^{ax-x^2} F(\mathrm{d}x). \qquad \mathbf{e}^{\mathbf{a}x-\mathbf{x}^2} \cdot \mathbf{R} \to \mathbf{R}$$

Clearly, $\varphi(a) < \infty$ for any a as the function e^{ax-x^2} is bounded on \mathbb{R} . Note that φ is convex, because $\varphi'' > 0$. Put

$$Z_{a}(x) = \frac{e^{ax}}{\varphi(a)}.$$

$$\varphi^{1}(a) = \mathcal{F}_{p_{4}} \times e^{aX}$$

$$\varphi^{11}(a) = \mathcal{F}_{p_{4}} \times e^{aX} \times e^{aX}$$

$$\varphi^{11}(a) = \mathcal{F}_{p_{4}} \times e^{aX} \times e^{aX}$$

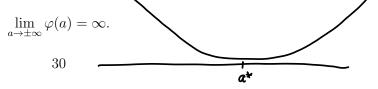
Then

$$Q_a(\mathrm{d}x) = Z_a(x)P_1(\mathrm{d}x)$$

is a probability measure for any a, and $Q_a \sim P_1 \sim F$. Again, this means



Since $P_1(X > 0) > 0$ and $P_1(X < 0) > 0$ we obtain that



Therefore, the infimum is attained, i.e. there is a_* such that $\varphi(a_*) = \varphi_*$. Then $\varphi'(a_*) = 0$, thus

$$0 = \varphi'(a_*) = \mathbf{E}_{P_1} X e^{a_* X} = \varphi(a_*) \mathbf{E}_{P_1} X \frac{e^{a_* X}}{\varphi(a_*)} = \varphi(a_*) \mathbf{E}_{Q_{a_*}} X.$$

Thus the measure Q_{a_*} works.

Exercise 10. Prove rigorously that

$$\lim_{a \to \pm \infty} \varphi(a) = \infty.$$

Exercise 11. Let $X \sim N(\mu, \sigma^2)$. Determine the measure constructed above explicitly.

Next we extend the previous lemma for a general N-step market.

B=B,=.=E,=1 **Exercise 12.** The no arbitrage assumption implies that for any n a.s.

$$\mathbf{P}(\Delta S_n > 0 | \mathcal{F}_{n-1}) \mathbf{P}(\Delta S_n < 0 | \mathcal{F}_{n-1}) > 0.$$

As a preliminary result we have to understand how to compute conditional expectation under different measures.

{lemma:condexp-mea

Lemma 7. Let $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n=0,1,\dots,N}, \mathbf{P})$ a filtered probability space, and Z a nonnegative random variable $\mathbf{E}_{\mathbf{P}}Z = 1$. Define the new probability measure (S2, 7, 9), G ET - 40 5-04. [=[X|4] = - G - mh. Q - SE[X|4] dP = SX P G & G & G & Q H Geg. G & Q \mathbf{Q} as $\mathrm{d}\mathbf{Q} = Z\mathrm{d}\mathbf{P},$

that is

$$\mathbf{Q}(A) = \int_{A} Z \mathrm{d} \mathbf{P}.$$

Put $Z_n = \mathbf{E}_{\mathbf{P}}[Z|\mathcal{F}_n]$. For any adapted process (X_n)

$$Z_{n-1}\mathbf{E}_{\mathbf{Q}}[X_n|\mathcal{F}_{n-1}] = \mathbf{E}_{\mathbf{P}}[X_nZ_n|\mathcal{F}_{n-1}].$$

Proof. Both sides are \mathcal{F}_{n-1} -measurable. We have to prove that for any $A \in$ \mathcal{F}_{n-1}

$$\int_{A} Z_{n-1} \underbrace{\mathbf{E}_{\mathbf{Q}}[X_{n}|\mathcal{F}_{n-1}]}_{\mathbf{z} \mathbf{\vee}} \mathrm{d}\mathbf{P} = \int_{A} X_{n} Z_{n} \mathrm{d}\mathbf{P}.$$
(8) {eq:cemlemma-0}

(Xn) Q-udy (> (Xn Zn) Runty 31

Lemma: Zn-1 Eq[Xn | Fn-1] = Ep[Xn Zn [Fn-1] Pg-mb. Kov: (Xn) Q-mtg (=) (XnZn) Runtz Dia: =>: Tph.: (Xn) Q-undy: $\mathbb{E}_{Q}\left[X_{n}\left[\overline{T}_{n-1}\right]=X_{n-1}\right]$ Lame Zn-1: Eg[Xn | Fn-1] > Xn-1; Zn-1 = Ep[Xn 2n | Fn-1 (Xizi) P-into < =: WZ. 4

First note that

$$\mathbf{E}_{\mathbf{P}}[ZX_n|\mathcal{F}_n] = X_n \mathbf{E}_{\mathbf{P}}[Z|\mathcal{F}_n] = X_n Z_n.$$
(9) {eq:cemlemma-1}

Therefore, for an \mathcal{F}_{n-1} -measurable Y

$$\mathbf{E}_{\mathbf{P}}[Z_{n-1}Y|\mathcal{F}_{n-1}] = Y \mathbf{E}_{\mathbf{P}}[Z|\mathcal{F}_{n-1}],$$

implying for any $A \in \mathcal{F}_{n-1}$ that

$$\int_{A} Z_{n-1} Y d\mathbf{P} = \int_{A} \underbrace{Y \mathbf{E}_{\mathbf{P}}[Z|\mathcal{F}_{n-1}]}_{\mathbf{A}} d\mathbf{P}$$
$$= \int_{A} \mathbf{E}_{\mathbf{P}}[ZY|\mathcal{F}_{n-1}] d\mathbf{P} = \int_{A} Y Z d\mathbf{P}.$$

Choosing $Y = \mathbf{E}_{\mathbf{Q}}[X_n | \mathcal{F}_{n-1}]$ we obtain

$$\int_{A} Z_{n-1} \mathbf{E}_{\mathbf{Q}} [X_{n} | \mathcal{F}_{n-1}] d\mathbf{P} = \int_{A} \mathbf{E}_{\mathbf{Q}} [X_{n} | \mathcal{F}_{n-1}] Z d\mathbf{P}$$

$$= \int_{A} \mathbf{E}_{\mathbf{Q}} [X_{n} | \mathcal{F}_{n-1}] d\mathbf{Q} \qquad \text{definition of } \mathbf{Q}$$

$$= \int_{A} X_{n} d\mathbf{Q} \qquad \text{conditional exp.}$$

$$= \int_{A} X_{n} Z d\mathbf{P} \qquad \text{definition of } \mathbf{Q}$$

$$= \int_{A} X_{n} Z d\mathbf{P}, \qquad \text{by (9)}$$

which is (8).

As a simple but useful corollary we obtain the following.

Corollary 1. The adapted process (X_n) is **Q**-martingale if and only if (X_nZ_n) is **P**-martingale.

Lemma 8. Let $(X_n)_{n=1}^N$ be an adapted process, and assume that

$$\mathbf{P}(X_n > 0 | \mathcal{F}_{n-1}) \mathbf{P}(X_n < 0 | \mathcal{F}_{n-1}) > 0.$$

Then there exists a probability measure $\mathbf{Q} \sim \mathbf{P}$ such that (X_n) is a \mathbf{Q} -martingale difference.

$$E_{\mathcal{A}}\left[X_{n}\right]_{\mathcal{A}_{n-1}}^{32} = 0$$

{cor:p-q-mtg}

{lemma:existence-e

$$(\mathcal{L},\mathcal{I},\mathcal{P})(X_{u}),(\mathcal{I}_{u})$$

Proof. First let

$$P_{1}(\mathrm{d}\omega) = c \exp\left\{-\sum_{i=0}^{N} X_{i}^{2}(\omega)\right\} \mathbf{P}(\mathrm{d}\omega), \qquad \mathbf{z}$$

where c is the normalizing factor, i.e.

$$c^{-1} = \int_{\Omega} \exp\left\{-\sum_{i=0}^{N} X_i^2\right\} d\mathbf{P} = \mathbf{E} \exp\left\{-\sum_{i=0}^{N} X_i^2\right\}.$$

This means that for $A \in \mathcal{F}$

$$P_1(A) = c \int_A \exp\left\{-\sum_{i=0}^N X_i^2\right\} d\mathbf{P}.$$

Let

$$\varphi_n(a) = \mathbf{E}[e^{aX_n} | \mathcal{F}_{n-1}].$$

Note that this is an \mathcal{F}_{n-1} -measurable random variable. As in the proof of the previous lemma there is a unique finite a_n (random!) such that the infimum of φ_n is attained at a_n . Since φ_n is \mathcal{F}_{n-1} -measurable so is a_n .

Let $Z_0 = 1$, and recursively

$$Z_n = Z_{n-1} \frac{e^{a_n X_n}}{\mathbf{E}_{P_1}[e^{a_n X_n} | \mathcal{F}_{n-1}]}$$

$$\begin{array}{c} \mathbf{E} \\ \mathbf$$

$$\mathbf{E}_{P_1}[Z_n|\mathcal{F}_{n-1}] = Z_{n-1}.$$

Then the probability measure

$$\mathbf{Q}(\mathrm{d}\omega) = Z_N(\omega)P_1(\mathrm{d}\omega)$$

works. Indeed,

 $Z = Z_{N}$ udebri elem $Z_{n} = E[Z_{N} | Z_{n}]$

a_۲

Exercise 13. Show that a_n is \mathcal{F}_{n-1} -measurable.

Now we can return to the proof of Theorem 3. The existence of the martingale measure follows from the previous lemma applied to $X_n = \Delta S_n$.

4.2 ARCH processes

Autoregressive conditional heteroscedasticity (ARCH) models were introduced by Robert Engle in 1982 to model log-returns. In 2003 he obtained Nobel prize in economics for this model. The novelty in these models is the stochastic volatility term.

Let

$$R_n = \log \frac{S_n}{S_{n-1}}$$
 by return

denote the log-return of the stock, and assume that

$$R_n = \mu_n + \sqrt{\beta + \lambda R_{n-1}^2} Z_n,$$

where Z_n 's are iid N(0,1) random variables. Then (R_n) is an ARCH(1) process. That is conditionally on \mathcal{F}_{n-1} the log-return R_n is Gaussian with mean μ_n , and variance $\beta + \lambda R_{n-1}^2$. Write $\sigma_n^2 = \beta + \lambda R_{n-1}^2$. Then for S_n we obtain

$$S_{n} = S_{n-1}e^{R_{n}} = S_{0} \exp\left\{\sum_{k=1}^{n} \left(\mu_{k} + \sqrt{\beta + \lambda R_{k-1}^{2}}Z_{k}\right)\right\}$$
$$= S_{0} \exp\left\{\sum_{k=1}^{n} \left(\mu_{k} + \sigma_{k}Z_{k}\right)\right\}.$$

In what follows we only assume that μ_n and σ_n are \mathcal{F}_{n-1} -measurable, i.e. the sequence $(\mu_n, \sigma_n)_n$ is predictable, and (Z_n) is adapted, Z_n is independent of \mathcal{F}_{n-1} , and N(0, 1) distributed. Put $h_n = \mu_n + \sigma_n Z_n$. For simplicity we assume that $B_n \equiv 1$.

We construct a measure **Q** such that (S_n) is a **Q**-martingale. Let

0

$$E_{p}\left[\left[z_{n}\right] + T_{n} \right] = E_{p}\left[\left[z_{1} \cdots z_{n} z_{n+1} \cdots z_{n}\right] + T_{n} \right]$$

$$= z_{1} \cdots z_{n} E_{p}\left[z_{n+1} \cdots z_{n} + T_{n} \right]$$

$$= \frac{1}{2} \int z_{n} \cdots z_{n} \sum_{n=1}^{\infty} z_{n+1} \cdots z_{n} + \frac{1}{2} \int z_{n} + \frac{1}{2} \int z_{n} \cdots z_{n}$$

where

(10) {eq:disc-girs-0}

Introduce the new measure ${\bf Q}$ as

$$\mathrm{d}\mathbf{Q}=Z_{N}\mathrm{d}\mathbf{P},$$

 $a_n = -\frac{\mu_n}{\sigma_n^2} - \frac{1}{2}.$

and let $Z_n = \mathbf{E}_{\mathbf{P}}[Z_N | \mathcal{F}_n] = \prod_{i=1}^n z_i$. By Corollary 1, to show that S_n is **Q**-martingale we have to show that $S_n Z_n$ is a **P**-martingale. We have

$$S_n Z_n \text{ is a } \mathbf{P}\text{-martingale. We have} \\ \mathbf{E}_{\mathbf{P}}[S_n Z_n | \mathcal{F}_{n-1}] = S_{n-1} Z_n \left[\underbrace{\mathbf{E}_{\mathbf{P}}[e^{h_n(1+a_n)} | \mathcal{F}_{n-1}]}_{\mathbf{E}_{\mathbf{P}}[e^{a_n h_n} | \mathcal{F}_{n-1}]} \right] \\ \text{for all } \mathbf{F}_{\mathbf{P}}[e^{a_n h_n} | \mathcal{F}_{n-1}] \\ \text{for all } \mathbf{F}_{\mathbf{P}}[e^{a_n h_n}$$

$$\mathbf{E}_{\mathbf{P}}[e^{h_n(1+a_n)}|\mathcal{F}_{n-1}] = \mathbf{E}_{\mathbf{P}}[e^{a_nh_n}|\mathcal{F}_{n-1}].$$
 (11) {eq:disc-girs-1}

Recall that for a standard normal ${\cal Z}$

$$\mathbf{E}e^{tZ} = e^{\frac{t^2}{2}},$$

thus

$$\mathbf{E}e^{\mu+\sigma Z} = e^{\mu+\frac{\sigma^2}{2}}$$

Since a_n in (11) is \mathcal{F}_{n-1} -measurable and given \mathcal{F}_{n-1} the variable h_n is Gaussian $N(\mu_n, \sigma_n^2)$, we obtain $h_{u}(1+a_{n})=(\mu_{u}+c_{n}z_{n})(1+a_{n})$

$$\mathbf{E}_{\mathbf{P}}[e^{h_n(1+a_n)}|\mathcal{F}_{n-1}] = e^{\mu_n(1+a_n) + \frac{\sigma_n^2(1+a_n)^2}{2}},$$

and

$$\mathbf{E}_{\mathbf{P}}[e^{h_n a_n} | \mathcal{F}_{n-1}] = e^{\mu_n a_n + \frac{\sigma_n^2 a_n^2}{2}},$$

$$= \mu_{u}(1+a_{n}) + G_{u}(1+q_{u}) \cdot Z_{u}$$

= $M = G$

By the choice of a_n in (10)

$$\mu_n(1+a_n) + \frac{\sigma_n^2(1+a_n)^2}{2} = \mu_n a_n + \frac{\sigma_n^2 a_n^2}{2}.$$

Indeed, by (10)

$$\mu_n + \sigma_n^2 \left(\frac{1}{2} + a_n\right) = 0.$$

$$\chi_{n} = -\frac{1}{2} - \frac{\chi_{n}}{6n}$$

That is, (11) holds.

We proved the following.

Theorem 8 (Discrete Girsanov's theorem). Let $(\mu_n, \sigma_n)_n$ be a predictable sequence and assume that the stock prices are given by

$$S_n = e^{\sum_{k=1}^n (\mu_k + \sigma_k Z_k)},$$

where $(Z_n)_n$ is a adapted sequence of N(0,1) random variables, Z_n is independent of \mathcal{F}_{n-1} . Further, let $B_n \equiv 1$. Then, under the new measure

$$\mathrm{d}\mathbf{Q} = Z_N \mathrm{d}\mathbf{P}$$

 (S_n) is a martingale.

5 Pricing and hedging European options

In this section we summarize our findings on pricing and hedging, and consider some special cases in detail.

5.1 Complete markets

Consider an arbitrage-free complete market. The *fair price* of the contingent claim f_N is

$$C(f_N) = \inf\{x : \exists \pi, X_0^{\pi} = x, X_N^{\pi} = f_N\}.$$

Then, by Theorems 3 and 7 there exists a unique EMM **Q**. Since (X_n^{π}/B_n) is **Q**-martingale

$$\mathbf{E}_{\mathbf{Q}}\frac{f_N}{B_N} = \mathbf{E}_{\mathbf{Q}}\frac{X_N^n}{B_N} = \mathbf{E}_{\mathbf{Q}}\frac{x}{B_0} = \frac{x}{B_0},$$

therefore

$$C(f_N) = x = \frac{B_0}{B_N} \mathbf{E}_{\mathbf{Q}} f_N.$$

Note that x is independent of the hedge π itself, that is for different hedges the initial value is the same.

For a hedge we need to know not only the fair price C, but also the strategy π itself. For the given claim f_N consider the martingale

$$M_n = \mathbf{E}_{\mathbf{Q}} \left[\frac{f_N}{B_N} \middle| \mathcal{F}_n \right].$$