Strong Renewal Theorem and Local Limit Theorem in the Abscence of Regular Variation

Péter Kevei

University of Szeged

Semistable SRT

University of Szeged

Joint work with Dalia Terhesiu (Leiden).

Outline

Renewal theory

Finite mean Infinite mean

Semistable laws

Definition and properties Possible limits

Results

Renewal theorems Local limit theorems

Outline

Renewal theory Finite mean

Semistable laws

Definition and properties Possible limits

Results

Renewal theorems Local limit theorems

Renewal theory	Semistable laws	Results
○●○○	00000000	000000
○○○○○○○	0000	000

Setup

$$X, X_1, X_2, \dots$$
 nonnegative, iid random variables,
 $F(x) = \mathbf{P}(X \le x), \overline{F}(x) = 1 - F(x)$
 $S_n = X_1 + \dots + X_n$.
Renewal function: $U(x) = \sum_{n=0}^{\infty} F^{*n}(x) = \sum_{n=0}^{\infty} \mathbf{P}(S_n \le x)$.

Renewal theory	Semistable laws	Results
oo●o	ooooooooo	000000
ooooooo	oooo	000

If $X \in a + h\mathbb{Z}$, then X is lattice. If a = 0 then X is arithmetic (centered lattice).

Renewal theory	Semistable laws	Results
○○○●	00000000	000000
○○○○○○○	0000	000

Renewal theorems

Elementary renewal theorem:

$$\lim_{x\to\infty}\frac{U(x)}{x}=\frac{1}{\mathbf{E}X}.$$

Renewal theory	Semistable laws	Results
○○○●	00000000	000000
○○○○○○	0000	000

Renewal theorems

Elementary renewal theorem:

$$\lim_{x\to\infty}\frac{U(x)}{x}=\frac{1}{\mathbf{E}X}.$$

Blackwell theorem/ Strong renewal theorem:

$$\lim_{x\to\infty} U(x+h) - U(x) = \frac{h}{\mathsf{E}X},$$

for any h > 0 if X is nonarithmetic, for $h = \delta$, if X is arithmetic with span δ .

Outline

Renewal theory Finite mean Infinite mean

Semistable laws

Definition and properties Possible limits

Results

Renewal theorems Local limit theorems

Renewal theory ○○○○ ○●○○○○○	Semistable laws oooooooooooooooooooooooooooooooooooo	Results 000000 000

F

Infinite mean

$$\lim_{x\to\infty}\frac{U(x)}{x}=\frac{1}{\mathbf{E}X}=0.$$

Better?

Renewal theory	Semistable laws	Results
0000	00000000 0000	000000

Infinite mean

$$\lim_{x\to\infty}\frac{U(x)}{x}=\frac{1}{\mathbf{E}X}=0.$$

Better?

$$\widehat{U}(s) = \int_0^\infty e^{-sx} U(\mathrm{d}x) = \sum_{n=0}^\infty \int_0^\infty e^{-sx} F^{*n}(\mathrm{d}x) = \frac{1}{1 - \widehat{F}(s)}.$$

If $\overline{F}(x) = \ell(x) x^{-\alpha} \Gamma(1 - \alpha)^{-1}, \, \alpha \in (0, 1)$, then
 $\overline{F}(x) \cdot U(x) \longrightarrow \frac{\sin \pi \alpha}{\pi \alpha}.$

Renewal theory	Semistable laws	Results
0000	00000000 0000	000000

Regular variation

 $\ell:(0,\infty)
ightarrow (0,\infty)$ is slowly varying if for every $\lambda>0$

$$\lim_{x\to\infty}\frac{\ell(\lambda x)}{\ell(x)}=1.$$

Semistable SRT

Renewal theory	Semistable laws	Results
0000	00000000 0000	000000

Regular variation

 $\ell:(0,\infty)\to(0,\infty)$ is slowly varying if for every $\lambda>0$

$$\lim_{x\to\infty}\frac{\ell(\lambda x)}{\ell(x)}=1.$$

f is regularly varying with parameter $-\alpha$, $f \in \mathcal{RV}_{-\alpha}$ if $f(x) = \ell(x)x^{-\alpha}$.

Dynkin–Lamperti problem

$\lim_{x \to \infty} \overline{F}(x) \cdot U(x) = c \quad \Rightarrow \quad \overline{F} \in \mathcal{RV}?? \text{ OPEN}$

Renewal theory	Semistable laws	Results
○○○○	00000000	000000
○○○○●○○	0000	000

Infinite mean SRT Assume $\overline{F}(x) \in \mathcal{RV}(-\alpha)$,

$$m(x) = \int_0^x \overline{F}(y) \mathrm{d}y.$$

Renewal theory ○○○○ ○○○○●○○	Semistable laws oooooooooooooooooooooooooooooooooooo	Results 000000 000

Infinite mean SRT Assume $\overline{F}(x) \in \mathcal{RV}(-\alpha)$,

$$m(x) = \int_0^x \overline{F}(y) \mathrm{d}y.$$

Infinite mean analogue of SRT

$$\lim_{x\to\infty} m(x)[U(x+h)-U(x)]=hC_{\alpha},\quad\forall h>0.$$

Semistable SRT

Renewal theory	Semistable laws	Results
0000	00000000 0000	000000

Infinite mean SRT Assume $\overline{F}(x) \in \mathcal{RV}(-\alpha)$,

$$m(x) = \int_0^x \overline{F}(y) \mathrm{d}y.$$

Infinite mean analogue of SRT

$$\lim_{x\to\infty}m(x)[U(x+h)-U(x)]=hC_{\alpha},\quad\forall h>0.$$

- ▶ Garsia & Lamperti (1963), arithmetic case, $\alpha \in (1/2, 1]$
- Erickson (1970), nonarithmetic, $\alpha \in (1/2, 1]$.

Renewal theory ○○○○ ○○○○○●○	Semistable laws oooooooooooooooooooooooooooooooooooo	Results 000000 000
Infinite mean		

NASC

NASC for nonnegative random variables was given independently by Caravenna (2015+) and Doney (2015+) (Caravenna–Doney 2019, EJP):

$$\lim_{\delta\to 0}\limsup_{x\to\infty} x\overline{F}(x)\int_1^{\delta x}\frac{1}{y\overline{F}(y)^2}F(x-\mathrm{d} y)=0.$$

Renewal theory	Semistable laws	Results
○○○○	00000000	000000
○○○○○○●	0000	000
Infinite mean		

Aim

Without regular variation?

Semistable SRT

University of Szeged

Outline

Renewal theory Finite mean

Semistable laws Definition and properties

Possible limits

Results

Renewal theorems Local limit theorems

Stable laws, domain of attraction

V is *stable*, if there exist $X, X_1, X_2, ...$ iid, $a_n > 0, c_n \in \mathbb{R}$, such that

$$\frac{1}{a_n}\left(\sum_{i=1}^n X_i - c_n\right) \stackrel{\mathcal{D}}{\longrightarrow} V.$$

 $F \in D(\alpha)$ iff $1 - F(x) = \ell(x)x^{-\alpha}$.

Renewal theory ০০০০ ০০০০০০০০	Semistable laws ooeoooooooooooooooooooooooooooooooooo	Results 000000 000
Definition and properties		

Semistable laws

V is *stable*, if there exist X, X_1, X_2, \ldots iid, $a_n > 0$, c_n such that

$$\frac{1}{a_n}\left(\sum_{i=1}^n X_i - c_n\right) \stackrel{\mathcal{D}}{\longrightarrow} V.$$

W is *semistable*, if there exist *X*, *X*₁, *X*₂,... iid, $a_n > 0$, c_n , n_k geometrically increasing (= c^k), such that

$$\frac{1}{a_{n_k}}\left(\sum_{i=1}^{n_k}X_i-c_{n_k}\right)\xrightarrow{\mathcal{D}}W.$$

Semistable laws

Paul Lévy 1935 (István Berkes: Some forgotten results of Paul Lévy) Kruglov, Mejzler, Pillai, Shimizu, Grinevich, Khokhlov Martin-Löf, Sándor Csörgő, Dodunekova, Berkes, Csáki, Megyesi, Györfi, K Meerschaert, Scheffler, Kern, Wedrich Sato, Watanabe, Yamamuro

Characteristic function

Characteristic function of a nonnegative semistable random variable V:

$$\mathbf{E} e^{\mathrm{i}tV} = \exp\left\{\mathrm{i}ta + \int_0^\infty (e^{\mathrm{i}tx} - 1)\mathrm{d}R(x)\right\},\,$$

where $a \ge 0$ $M : (0, \infty) \to (0, \infty)$ logarithmically periodic $M(c^{1/\alpha}x) = M(x)$ $-R(x) := M(x)/x^{\alpha}$ is nonincreasing for x > 0, $\alpha \in (0, 1)$.

Results

Definition and properties

Domain of geometric partial attraction

Grinevich, Khokhlov (1995); Megyesi (2000) X, X_1, X_2, \dots iid $F(x) = \mathbf{P}(X \le x)$. V = V(R) semistable $\mathbf{E}e^{itV} = \exp\left\{\int_{0}^{\infty} (e^{itx} - 1) dR(x)\right\}, \quad -R(x) = \frac{M(x)}{x^{\alpha}}.$

 $X \in D_g(V)$ if $\exists k_n, A_n$

$$\frac{\sum_{i=1}^{k_n} X_i}{A_{k_n}} \stackrel{\mathcal{D}}{\longrightarrow} V.$$

Results

Definition and properties

Domain of geometric partial attraction

Grinevich, Khokhlov (1995); Megyesi (2000) X, X_1, X_2, \dots iid $F(x) = \mathbf{P}(X \le x)$. V = V(R) semistable $\mathbf{E}e^{itV} = \exp\left\{\int_0^\infty (e^{itx} - 1)\mathrm{d}R(x)\right\}, \quad -R(x) = \frac{M(x)}{x^\alpha}.$

 $X \in D_g(V)$ if $\exists k_n, A_n$

$$\frac{\sum_{i=1}^{k_n} X_i}{A_{k_n}} \stackrel{\mathcal{D}}{\longrightarrow} V.$$

 $F \in D_g(V)$ iff $1 - F(x) = \ell(x)M(x)x^{-\alpha}$.

Renewal theory
0000
0000000

St. Petersburg distribution

Nicolaus Bernoulli (1713): $\mathbf{P}(X = 2^k) = 2^{-k}, k = 1, 2, ...$

$$\mathsf{E} X = \sum_{k=1}^{\infty} 2^k 2^{-k} = \infty.$$

St. Petersburg paradox

Renewal theory
0000
0000000

St. Petersburg distribution

Nicolaus Bernoulli (1713): $\mathbf{P}(X = 2^k) = 2^{-k}, k = 1, 2, ...$

$$\mathsf{E} X = \sum_{k=1}^{\infty} 2^k 2^{-k} = \infty.$$

St. Petersburg paradox

$$1 - F(x) = \mathbf{P}(X > x) = \frac{2^{\{\log_2 x\}}}{x}.$$

X is not in the domain of attraction of any stable law

St. Petersburg distribution

Martin-Löf (1985): Resolution of the St. Petersburg paradox

$$\frac{S_{2^n}}{2^n} - n \stackrel{\mathcal{D}}{\longrightarrow} V$$

In fact

$$\frac{S_n}{n} - \log_2 n$$

has infinitely many different limits along subsequences.

Regularly log-periodic functions

 $x^{\beta}\ell(x)p(x),$

where for some r > 0, p(rx) = p(x), for all x > 0. Appear naturally in

- semistable laws
- fixed points of smoothing transforms
- supercritical branching processes

Regularly log-periodic functions

 $x^{\beta}\ell(x)p(x),$

where for some r > 0, p(rx) = p(x), for all x > 0. Appear naturally in

- semistable laws
- fixed points of smoothing transforms
- supercritical branching processes

Buldygin, Pavlenkov (2013): Karamata theorem Buldygin, Indlekofer, Klesov, Steinebach: Pseudo Regularly Varying Functions (2018) K (2020): Tauberian and Karamata theorems, and applications

Outline

Renewal theory

Finite mean Infinite mean

Semistable laws

Definition and properties Possible limits

Results

Renewal theorems Local limit theorems

Circular convergence

For x > 0 (large) we define the position parameter as

$$\gamma_x = \gamma(x) = rac{x}{c^n}$$
, where $c^{n-1} < x \le c^n$.
 $c^{-1} = \liminf_{x \to \infty} \gamma_x < \limsup_{x \to \infty} \gamma_x = 1$.

Renewal	theory	
0000		
000000	0	

Limits on subsequences

$$\mathbf{E}e^{\mathrm{i}tV} = \exp\left\{\int_0^\infty (e^{\mathrm{i}tx} - 1)\mathrm{d}R(x)\right\}, \quad -R(x) = \frac{M(x)}{x^\alpha}$$

Renewal theory		
0000		

Limits on subsequences

$$\mathbf{E}e^{\mathrm{i}tV} = \exp\left\{\int_0^\infty (e^{\mathrm{i}tx} - 1)\mathrm{d}R(x)\right\}, \quad -R(x) = \frac{M(x)}{x^\alpha}$$

Theorem (Csörgő & Megyesi (2002))

$$\frac{\sum_{i=1}^{n_r} X_i}{n_r^{1/\alpha} \ell_1(n_r)} \xrightarrow{\mathcal{D}} V_\lambda \quad \text{as } r \to \infty,$$

whenever $\gamma_{n_r} \stackrel{cir}{\rightarrow} \lambda$. Here

$$\mathbf{E} e^{\mathrm{i}tV_{\lambda}} = \exp\left\{\int_{0}^{\infty} (e^{\mathrm{i}tx} - 1)\mathrm{d}R_{\lambda}(x)\right\}, \quad R_{\lambda}(x) = -\frac{M(\lambda^{1/\alpha}x)}{x^{\alpha}}.$$

Renewal theory	
0000	
0000000	

Merging

$$\begin{split} \mathbf{E} \boldsymbol{e}^{\mathrm{i}tV} &= \exp\left\{\int_0^\infty (\boldsymbol{e}^{\mathrm{i}tx} - 1)\mathrm{d}\boldsymbol{R}(x)\right\}, \quad -\boldsymbol{R}(x) = \frac{\boldsymbol{M}(x)}{x^\alpha}\\ \mathbf{E} \boldsymbol{e}^{\mathrm{i}tV_\lambda} &= \exp\left\{\int_0^\infty (\boldsymbol{e}^{\mathrm{i}tx} - 1)\mathrm{d}\boldsymbol{R}_\lambda(x)\right\}, \quad \boldsymbol{R}_\lambda(x) = -\frac{\boldsymbol{M}(\lambda^{1/\alpha}x)}{x^\alpha}.\\ \gamma_x &= \gamma(x) = \frac{x}{c^n}, \quad \text{where } \boldsymbol{c}^{n-1} < x \leq \boldsymbol{c}^n. \end{split}$$

Theorem (Csörgő & Megyesi (2002))

$$\lim_{n\to\infty}\sup_{x\in\mathbb{R}}\left|\mathbf{P}\left(\frac{S_n}{n^{1/\alpha}\ell_1(n)}\leq x\right)-\mathbf{P}(V_{\gamma_n}\leq x)\right|=0.$$

Renewal theorems

Outline

Renewal theory

Finite mean Infinite mean

Semistable laws

Definition and properties Possible limits

Results

Renewal theorems

Local limit theorems

Renewal theory	Semistable laws ooooooooo oooo	Results ○●○○○○

Renewal theorems

$$\widehat{U}(s) = rac{1}{1-\widehat{F}(s)}.$$

lf

$$\overline{F}(x) = \ell(x)x^{-\alpha} p_0(x), \quad ext{ with } p_0 \in \mathcal{P}_r,$$

then

$$\lim_{n\to\infty}\frac{U(r^nz)\ell(r^n)}{(r^nz)^{\alpha}}=p_1(z),$$

where p_1 can be determined explicitly.

Renewal theory	Semistable laws 00000000 0000	Results ○○●○○○ ○○○
Renewal theorems		

 G_{λ} df of the possible limits

 $\gamma(x)$ positional parameter

 ℓ slowly varying from the domain of attraction condition

Theorem (K-Terhesiu (2021))

X is nonnegative from the domain of attraction of a semistable with $\alpha \in (0, 1)$. Set $B(x) = x^{\alpha} \ell(x)^{-1}$. Then

$$\lim_{y\to\infty}\left|y^{-\alpha}\ell(y)U(y)-\alpha\int_0^\infty G_{\gamma(B(y)x^{-\alpha})}(x)x^{-\alpha-1}\,\mathrm{d}x\right|=0.$$

Renewal theory	Semistable laws	Results
0000	00000000 0000	000000 000

Renewal theorems

Arithmetic setup

Assume that X is integer valued,

$$u_n=\sum_{k=0}^{\infty}\mathbf{P}(S_k=n).$$

Theorem (K-Terhesiu (2021))

Assume that X is a nonnegative integer valued from the domain of attraction of a semistable with $\alpha \in (1/2, 1)$. Set $B(x) = x^{\alpha} \ell(x)^{-1}$. Then

$$\lim_{n\to\infty}\left|n^{1-\alpha}\ell(n)u_n-\alpha\int_0^\infty g_{\gamma(B(n)x^{-\alpha})}(x)\,x^{-\alpha}\,\mathrm{d}x\right|=0.$$

Renewal theory
0000
0000000

Renewal theorems

Nonarithmetic setup

Theorem (K-Terhesiu (2021))

Assume that X is a nonnegative from the domain of attraction of a semistable with $\alpha \in (1/2, 1)$. Set $B(x) = x^{\alpha} \ell(x)^{-1}$. Then for any h > 0,

$$\lim_{y\to\infty} \left| \frac{y^{1-\alpha}\ell(y)}{2h} \left(U(y+h) - U(y-h) \right) - \alpha \int_0^\infty g_{\gamma(B(y)x^{-\alpha})}(x) \, x^{-\alpha} \, \mathrm{d}x \right| = 0.$$

Renewal theorems	0000	000
Renewal theory	Semistable laws	Results

 $\alpha = \mathbf{1}$

Uchiyama (2020: A renewal theorem for relatively stable variables): If

$$m(x) = \int_0^x \overline{F}(y) \mathrm{d}y$$

is slowly varying then

$$m(x)(U(x+h)-U(x)) \rightarrow h.$$

Berger (2019): Cauchy domain of attraction.

Local limit theorems

Outline

Renewal theory

Finite mean Infinite mean

Semistable laws

Definition and properties Possible limits

Results

Renewal theorems Local limit theorems

Renewal theory	Semistable laws	Results
০০০০	oooooooo	○○○○○○
০০০০০০০	oooo	○●○
Local limit theorems		

Lattice

Extension of Gnedenko's local limit theorem:

Theorem (K-Terhesiu (2021))

Let X, X_1, \ldots be integer valued iid random variables with span 1 from the domain of attraction of a semistable. Then

$$\lim_{n\to\infty}\sup_{k}|A_{n}\mathbf{P}(S_{n}=k)-g_{\gamma_{n}}((k-C_{n})/A_{n})|=0.$$

Fourier analytic proof, inversion formula

$$\mathbf{P}(S_n=k)=\frac{1}{2\pi}\int_{-\pi}^{\pi}e^{-\mathrm{i}tk}\varphi(t)^n\,\mathrm{d}t,$$

merging, asymptotics of the characteristic function.

Semistable SRT

Local limit theorems

Nonlattice

Extension of Stone's local limit theorem.

Theorem (K-Terhesiu (2021))

Let $X, X_1, ...$ be iid nonlattice random variables from the domain of attraction of a semistable. Then for any h > 0

$$\lim_{n\to\infty}\sup_{x}\left|\frac{A_n}{2h}\mathbf{P}(S_n\in(x-h,x+h])-g_{\gamma_n}((x-C_n)/A_n)\right|=0.$$