Introduction	Nearly critical processes	Conditioning – Yaglom-type results 000 00000000	Immigration	Functional limit theorems

Nearly critical Galton–Watson processes

Péter Kevei

University of Szeged

ELTE Probability Seminar

Nearly criticial GW processes

University of Szeged

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems

Outline

Introduction Classical Galton–Watson Varying environment

- Nearly critical processes
- Conditioning Yaglom-type results Results Proofs

Immigration

Results Proof

Functional limit theorems

Introduction	Nearly critical processes	Conditioning – Yaglom-type results 000 00000000	Immigration	Functional limit theorems

Ongoing joint work with Kata Kubatovics (Szeged).

Introduction	Nearly critical processes	Conditioning – Yaglom-type results 000 00000000	Immigration	Functional limit theorems

Outline

Introduction Classical Galton–Watson

Varying environment

Nearly critical processes

Conditioning – Yaglom-type results Results Proofs

Immigration

Results Proof

Functional limit theorems

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
0000	000	000 0000000	00000	00000

Galton – Watson process

 $\xi =$ number of offsprings

$$\mathbf{P}(\xi = k) = f[k], \quad k = 0, 1, 2, \dots$$

$$X_0 = 1$$
, and

$$X_{n+1}=\sum_{i=1}^{n}\xi_{n,i},$$

v

where $\xi_{n,i}$ are iid ξ . The generating function:

$$f(s) = \sum_{k=0}^{\infty} f[k] s^k.$$

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
				/

Extinction theorem

Theorem (Galton, Watson) If $m = f'(1) \le 1$ then q = 1, while for m > 1 q is the smallest root of f(s) = s.

Introduction	Nearly critical processes	Conditioning – Yaglom-type results 000 00000000	Immigration 00000 0000	Functional limit theorems

Extinction theorem

Theorem (Galton, Watson)

If $m = f'(1) \le 1$ then q = 1, while for m > 1 q is the smallest root of f(s) = s.

m < 1 subcritical, m = 1 critical, m > 1 supercritical case

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
000	000	000 00000000	00000	00000

Immigration

$$Y_n = \sum_{i=1}^{Y_{n-1}} \xi_{n,i} + \varepsilon_n$$

where $\xi_{n,i}$ are iid, ε_n are iid, and independent.

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
000	000	000 00000000	00000	00000

Immigration

$$Y_n = \sum_{i=1}^{Y_{n-1}} \xi_{n,i} + \varepsilon_n$$

where $\xi_{n,i}$ are iid, ε_n are iid, and independent.

Theorem (Heathcote (1965), Foster (1969))

(i) If
$$m > 1$$
, or $m = 1$ and $f''(1) < \infty$, then $\lim_{n \to \infty} \mathbf{P}(X_n = k) = 0$ for $k = 1, 2, ...$

(ii) If $0 < h'(1) < \infty$, and m < 1, then $\lim_{n\to\infty} \mathbf{P}(X_n = k) = p_k$ exists, and $\{p_k\}$ probability distribution.

Introduction	Nearly critical processes	Conditioning – Yaglom-type results 000 00000000	Immigration	Functional limit theorems

Varying environment

Outline

Introduction Classical Galton–Watson Varying environment

- Nearly critical processes
- Conditioning Yaglom-type results Results Proofs

Immigration

Results Proof

Functional limit theorems

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
0000	000	000 0000000	00000 0000	00000

Varying environment

Varying environment $X_0 = 1$, and

 $X_n=\sum_{j=1}^{X_{n-1}}\xi_{n,j},$

where $\{\xi_{n,j}\}_{n,j\in\mathbb{N}}$ are independent random variables, such that for each n, $\{\xi_n, \xi_{n,j}\}_{j\in\mathbb{N}}$ are identically distributed.

- 1970's: Church, Fearn, Jagers, Agresti
- 2017 Kersting, 2020 Kersting & Vatutin monograph (BPV/RE)
- 2020s: Bhattacharya & Perlman, Dolgopyat et al., Cardona-Tobón & Palau, González & Minuesa & del Puerto, ...

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
0000 000	000	000 00000000	00000	00000

Varying environment

Varying environment- immigration

Inhomogeneous Galton–Watson process with immigration: $Y_0 = 0$,

$$Y_n = \sum_{j=1}^{\gamma_{n-1}} \xi_{n,j} + \varepsilon_n$$

where $\{\xi_{n,j}, \varepsilon_n : n, j \in \mathbb{N}\}$ are independent nonnegative integer valued random variables, $\{\xi_{n,j} : j \in \mathbb{N}\}$ are iid.

	Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
--	--------------	---------------------------	------------------------------------	-------------	---------------------------

Nearly critical process

$$\bar{f}_n = f'_n(1) = \mathbf{E}\xi_n. \text{ We assume the following conditions:}$$
(C1) $\bar{f}_n < 1, \lim_{n \to \infty} \bar{f}_n = 1, \sum_{n=1}^{\infty} (1 - \bar{f}_n) = \infty,$
(C2) $\lim_{n \to \infty} \frac{f''_n(1)}{1 - \bar{f}_n} = \nu \in [0, \infty),$
(C3) $\lim_{n \to \infty} \frac{f''_n(1)}{1 - \bar{f}_n} = 0, \text{ if } \nu > 0.$

Introduction Nearly critical processes Conditioning – Yaglom-type results Immigration Functional limit 0000 0●0 000 0000 000000 000	theorems
---	----------

C1

$$ar{f}_n < 1$$
, $\lim_{n \to \infty} ar{f}_n = 1$, $\sum_{n=1}^{\infty} (1 - ar{f}_n) = \infty$
 $X_n = \sum_{j=1}^{X_{n-1}} \xi_{n,j}$,
 $\mathbf{E} X_n = \mathbf{E} \xi_1 \mathbf{E} \xi_2 \dots \mathbf{E} \xi_n = \prod_{i=1}^n ar{f}_i \to 0$,

so (X_n) dies out a.s.

• conditioning on $X_n > 0$, Yaglom-type limit results

i=1

adding immigration

000 0000000 0000	Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
------------------	--------------	---------------------------	------------------------------------	-------------	---------------------------

INAR(1)

If the offspring distribution is Bernoulli(ρ_n): integer-valued autoregressive (INAR(1)) time series:

$$X_n = \rho_n \circ X_{n-1} + \varepsilon_n,$$

where $\rho \circ X$ is a Bernoulli thinning of X, \circ is the *Steutel and van Harn operator*.

- introduced by Laci Györfi, Márton Ispány, Gyula Pap and Katalin Varga (2007)
- ► K (2011), weaking the Bernoulli offsrping assumption
- Györfi, Ispány, K, Pap (2014): multitype setup

Introduction	Nearly critical processes	Conditioning – Yaglom-type results ●০০ ০০০০০০০০	Immigration	Functional limit theorems

Outline

Introduction Classical Galton–Watson Varying environment

Nearly critical processes

Conditioning – Yaglom-type results Results

Proofs

Immigration

Results

Proof

Functional limit theorems

Introduction	Nearly critical processes	Conditioning – Yaglom-type results ○●○ ○○○○○○○	Immigration	Functional limit theorems

Yaglom's theorem in the classical setup

Theorem (Yaglom)

If m < 1 then $\mathcal{L}(X_n | X_n > 0)$ converges in distribution.

Theorem (Yaglom)

If m = 1 then $\mathcal{L}(X_n/n|X_n > 0)$ converges to the exponential distribution.

Introduction	Nearly critical processes	Conditioning – Yaglom-type results ○○● ○○○○○○○○	Immigration	Functional limit theorems

Yaglom-type results

Theorem (K & Kubatovics (2022)) (C1) $\overline{f}_n \rightarrow 1$, $\overline{f}_n < 1$, $\sum_n (1 - \overline{f}_n) = \infty$ (C2) $\lim_{n\to\infty} \frac{f_n''(1)}{1 - \overline{f}_n} = \nu \in [0, \infty)$, (C3) $\lim_{n\to\infty} \frac{f_n'''(1)}{1 - \overline{f}_n} = 0$, if $\nu > 0$. Then

$$\mathcal{L}(X_n|X_n>0) \stackrel{\mathcal{D}}{\longrightarrow} \operatorname{Geom}\left(rac{2}{2+
u}
ight) \quad as \ n o \infty,$$

Consequence: $\mathbf{P}(X_n > 0) \sim \frac{2}{2+\nu} \overline{f}_{0,n}$.

Introduction	Nearly critical processes	Conditioning – Yaglom-type results ○○○ ●○○○○○○○	Immigration	Functional limit theorems

Outline

ntroduction Classical Galton–Watson Varying environment

Nearly critical processes

Conditioning – Yaglom-type results

Proofs

Immigration

Results Proof

Functional limit theorems

Introduction	Nearly critical processes	Conditioning – Yaglom-type results ○○○ ○●○○○○○○	Immigration	Functional limit theorems
Proofs				

Notation

 $f_n(s) = \mathbf{E}s^{\xi_n}$ g.f. in generation *n*. For the composite g.f. $f_{n,n}(s) = s$, and for j < n

$$f_{j,n}(s) = f_{j+1} \circ \ldots \circ f_n(s),$$

and for the corresponding means $\overline{f}_{n,n} = 1$,

$$\overline{f}_{j,n} = \overline{f}_{j+1} \dots \overline{f}_n, \quad j < n.$$

Then $\mathbf{E}s^{\chi_n} = f_{0,n}(s)$ and $\mathbf{E}\chi_n = \overline{f}_{0,n}$.

	Introduction	Nearly critical processes	Conditioning – Yaglom-type results ○○○ ○○●○○○○○	Immigration	Functional limit theorems
--	--------------	---------------------------	---	-------------	---------------------------

Shape function

Proofs

For a g.f. f, with mean \overline{f} , define the *shape function* (Kersting 2017)

$$arphi(s) = rac{1}{1-f(s)} - rac{1}{ar{f}(1-s)}, \; 0 \leq s < 1, \quad arphi(1) = rac{f''(1)}{2f'(1)^2}.$$

Introduction	Nearly critical processes	Conditioning – Yaglom-type results ○○○ ○○●○○○○○	Immigration	Functional limit theorems

Shape function

Proofs

For a g.f. f, with mean \overline{f} , define the *shape function* (Kersting 2017)

$$arphi(s) = rac{1}{1-f(s)} - rac{1}{ar{f}(1-s)}, \ 0 \le s < 1, \quad arphi(1) = rac{f''(1)}{2f'(1)^2}. \ rac{1}{1-f_{0,n}(s)} = rac{1}{ar{f}_1(1-f_{1,n}(s))} + arphi_1(f_{1,n}(s)),$$

therefore

$$\frac{1}{1-f_{0,n}(s)} = \frac{1}{\bar{f}_{0,n}(1-s)} + \varphi_{0,n}(s),$$

where

$$\varphi_{0,n}(s) = \sum_{k=1}^{n} \frac{\varphi_k(f_{k,n}(s))}{\overline{f}_{0,k-1}}.$$

Nearly criticial GW processes

University of Szeged

Introduction	Nearly critical processes	Conditioning – Yaglom-type results ○○○ ○○○●○○○○	Immigration 00000 0000	Functional limit theorems
Proofs				

Example

Linear fractional g.f.:

$$f(s) = 1 - a \frac{1-s}{1-qs}, \quad f[k] = a(1-q)q^{k-1}, k > 0.$$

Then
$$f = \frac{a}{1-q}$$
,
$$\frac{1}{1-f(s)} = \frac{1}{\overline{f} \cdot (1-s)} + \frac{q}{a}.$$
That is $\varphi(s) = \frac{q}{a}$.

Introduction	Nearly critical processes	Conditioning – Yaglom-type results ○○○ ○○○○●○○○	Immigration	Functional limit theorems
Proofs				

Lemma (Kersting)

Assume $0 < \overline{f} < \infty$, $f''(1) < \infty$ and let $\varphi(s)$ be the shape function of f. Then, for $0 \le s \le 1$,

$$rac{1}{2} arphi(\mathbf{0}) \leq arphi(oldsymbol{s}) \leq 2 arphi(\mathbf{1}).$$

Introduction	Nearly critical processes	Conditioning – Yaglom-type results ○○○ ○○○○○●○○	Immigration 00000 0000	Functional limit theorems

Lemma

$$\lim_{n \to \infty} \frac{\bar{f}_{0,n}}{1 - f_{0,n}(s)} = \frac{1}{1 - s} + \frac{\nu}{2}.$$

Consequence:

$$\mathbf{P}(X_n > 0) = 1 - f_{0,n}(0) \sim \overline{f}_{0,n} \frac{2}{2+\nu}$$

Introduction	Nearly critical processes	Conditioning – Yaglom-type results ○○○ ○○○○○○●○	Immigration	Functional limit theorems

Proof

$$\frac{1}{1-f_{0,n}(s)} = \frac{1}{\overline{f}_{0,n}(1-s)} + \varphi_{0,n}(s), \quad \varphi_{0,n}(s) = \sum_{k=1}^{n} \frac{\varphi_k(f_{k,n}(s))}{\overline{f}_{0,k-1}}$$

We have to show that

$$\overline{f}_{0,n}\varphi_{0,n}(\boldsymbol{s}) = \sum_{j=1}^{n} \overline{f}_{j-1,n}\varphi_{j}(f_{j,n}(\boldsymbol{s})) \rightarrow rac{
u}{2}.$$

Introduction	Nearly critical processes	Conditioning – Yaglom-type results ○○○ ○○○○○○●○	Immigration	Functional limit theorems

Proof

$$\frac{1}{1-f_{0,n}(s)} = \frac{1}{\overline{f}_{0,n}(1-s)} + \varphi_{0,n}(s), \quad \varphi_{0,n}(s) = \sum_{k=1}^{n} \frac{\varphi_k(f_{k,n}(s))}{\overline{f}_{0,k-1}}$$

We have to show that

$$\overline{f}_{0,n}\varphi_{0,n}(s) = \sum_{j=1}^{n} \overline{f}_{j-1,n}\varphi_j(f_{j,n}(s)) \rightarrow \frac{\nu}{2}.$$

$$\begin{split} &\sum_{j=1}^{n} \overline{f}_{j-1,n} \varphi_j(f_{j,n}(\boldsymbol{s})) \approx \sum_{j=1}^{n} \overline{f}_{j-1,n} \varphi_j(1) \\ &= \sum_{j=1}^{n} (1 - \overline{f}_j) \overline{f}_{j-1,n} \frac{f_j''(1)}{2f_j'(1)^2(1 - \overline{f}_j)} \to \frac{\nu}{2} \quad \text{(Toeplitz-lemma)} \end{split}$$

Nearly criticial GW processes

University of Szeged

Introduction	Nearly critical processes	Conditioning – Yaglom-type results ○○○ ○○○○○○○●	Immigration 00000 0000	Functional limit theorems

Proof of the Yaglom type theorem

Convergence of the conditional g.f.:

$$\begin{split} \mathbf{E}[s^{X_n}|X_n>0] &= \frac{f_{0,n}(s)-f_{0,n}(0)}{1-f_{0,n}(0)} \\ &= 1 - \frac{1-f_{0,n}(s)}{1-f_{0,n}(0)} \to \frac{2}{2+\nu} \frac{s}{1-\frac{\nu}{\nu+2}s}, \end{split}$$

Introduction	Nearly critical processes	Conditioning – Yaglom-type results 000 00000000	Immigration •••••	Functional limit theorems

Outline

ntroduction Classical Galton–Watson Varying environment

Nearly critical processes

Conditioning – Yaglom-type results Results Proofs

Immigration Results

Functional limit theorems

Introduction	Nearly critical processes	Conditioning – Yaglom-type results 000 00000000	Immigration	Functional limit theorems

Bernoulli immigration

Theorem (Györfi, Ispány, Pap, Varga (2007)) Let $(Y_n)_{n \in \mathbb{N}}$ be an inhomogeneous INAR(1) process, with $\varepsilon_n \sim$ Bernoulli $(m_{n,1})$. Assume that

(i)
$$f_n \to 1$$
, $f_n < 1$, $\sum_n (1 - f_n) = \infty$,
(ii) $\lim_{n \to \infty} \frac{m_{n,1}}{1 - \overline{f}_n} = \lambda$.
Then

$$Y_n \xrightarrow{\mathcal{D}} \text{Poisson}(\lambda).$$

000 000000 0000	Introduction	Nearly critical processes	Conditioning – Yaglom-type results 000 00000000	Immigration	Functional limit theorems
-----------------	--------------	---------------------------	---	-------------	---------------------------

Negative binomial rv

X is negative binomial with parameters r > 0 and $p \in (0, 1)$, NB(r, p), if $\mathbf{P}(X = k) = \binom{k+r-1}{r-1}(1-p)^r p^k$, k = 0, 1, 2, ...,where $\binom{k+r-1}{r-1} = \frac{(k+r-1)(k+r-2)\cdots r}{k!}$. The generating function is

$$\mathbf{E}s^{X} = \left(\frac{1-p}{1-ps}\right)^{\prime}.$$

Introduction	Nearly critical processes	Conditioning – Yaglom-type results 000 00000000	Immigration	Functional limit theorems
Results				

Theorem (K 2011) (Y_n) GW process with immigration, such that: (i) $\overline{f}_n < 1, \overline{f}_n \rightarrow 1, \sum_{n=1}^{\infty} (1 - \overline{f}_n) = \infty$, (ii) $\frac{t_n''(1)}{1-\overline{t}} \to \nu \in (0,\infty)$, (iii) $\frac{f_n^{(s)}(1)}{1-\overline{f}_-} \rightarrow 0$, for all $s \ge 3$, (iv) $\frac{m_{n,1}}{1-\overline{t}} \to \lambda$ and $\frac{m_{n,2}}{1-\overline{t}} \to 0$. Then $Y_n \xrightarrow{\mathcal{D}} \text{NB}(2\lambda/\nu, \nu/(2+\nu)).$

Introduction	Nearly critical processes	Conditioning – Yaglom-type results ೦೦೦ ೦೦೦೦೦೦೦	Immigration ○○○○● ○○○○	Functional limit theorems
Results				

Theorem (K - Kubatovics (2022)) Assume that (C1)–(C3) are satisfied and (C4) $\lim_{n\to\infty} \frac{m_{n,k}}{k!(1-\bar{t}_n)} = \lambda_k$, k = 1, 2, ..., K and $\lambda_K = 0$. $Y_n \xrightarrow{\mathcal{D}} Y$ as $n \to \infty$,

where Y is compound-Poisson with g.f.

$$\exp\left\{-\sum_{k=1}^{K-1}\frac{2^{k}\lambda_{k}}{\nu^{k}}\left(\log\left(1+\frac{\nu}{2}(1-s)\right)+\sum_{i=1}^{k-1}(-1)^{i}\frac{\nu^{i}}{i2^{i}}(1-s)^{i}\right)\right\}.$$

Introduction	Nearly critical processes	Conditioning – Yaglom-type results 000 00000000	Immigration ●○○○○ ●○○○	Functional limit theorems

Outline

ntroduction Classical Galton–Watson Varying environment

- Nearly critical processes
- Conditioning Yaglom-type results Results Proofs

Immigration

Results

Proof

Functional limit theorems

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
0000	000	000 00000000	00000	00000

Generating function

$$f_n(s) = \mathsf{E} s^{\xi_n}, \, h_n(s) = \mathsf{E} s^{arepsilon_n}, \, g_n(s) = \mathsf{E} s^{Y_n}$$

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
0000	000	000 0000000	00000	00000

Generating function

$$f_n(s) = \mathsf{E}s^{\xi_n}, \ h_n(s) = \mathsf{E}s^{\varepsilon_n}, \ g_n(s) = \mathsf{E}s^{Y_n}$$

Using the branching property we obtain the recursion

$$g_n(s) = \mathbf{E}\left[s^{\sum_{i=1}^{\gamma_{n-1}}\xi_{n,i}+\varepsilon_n}\right] = \mathbf{E}\left[\mathbf{E}\left(s^{\sum_{i=1}^{\gamma_{n-1}}\xi_{n,i}+\varepsilon_n}\middle|Y_{n-1}\right)\right]$$
$$= \mathbf{E}\left[f_n(s)^{\gamma_{n-1}}\right]h_n(s) = g_{n-1}(f_n(x))h_n(s).$$

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
0000	000	000 00000000	00000	00000

Generating function

$$f_n(s) = \mathbf{E}s^{\xi_n}, h_n(s) = \mathbf{E}s^{\varepsilon_n}, g_n(s) = \mathbf{E}s^{Y_n}$$

Using the branching property we obtain the recursion

$$g_n(s) = \mathbf{E}\left[s^{\sum_{i=1}^{Y_{n-1}}\xi_{n,i}+\varepsilon_n}\right] = \mathbf{E}\left[\mathbf{E}\left(s^{\sum_{i=1}^{Y_{n-1}}\xi_{n,i}+\varepsilon_n}\middle|Y_{n-1}\right)\right]$$
$$= \mathbf{E}\left[f_n(s)^{Y_{n-1}}\right]h_n(s) = g_{n-1}(f_n(x))h_n(s).$$

$$g_n(s)=\prod_{j=1}^n h_j(f_{j,n}(s)).$$

Introduction	Nearly critical processes	Conditioning – Yaglom-type results 000 00000000	Immigration	Functional limit theorems
Proof				

$$g_n(s) = \prod_{j=1}^n h_j(f_{j,n}(s)).$$

Need to show that:

$$\lim_{n\to\infty}g_n(s)=f_Y(s),\quad s\in[0,1].$$

Introduce the accompanying law

$$\widehat{g}_n(s) = \prod_{j=1}^n e^{h_j(f_{j,n}(s))-1} = \exp \sum_{j=1}^n (h_j(f_{j,n}(s))-1).$$

	Introduction	Nearly critical processes	Conditioning – Yaglom-type results 000 00000000	Immigration	Functional limit theorems
--	--------------	---------------------------	---	-------------	---------------------------

$$\widehat{g}_n(s) = \prod_{j=1}^n e^{h_j(f_{j,n}(s))-1} = \exp \sum_{j=1}^n (h_j(f_{j,n}(s)) - 1).$$

►
$$g_n(s) - \widehat{g}_n(s) \rightarrow 0;$$

$$\blacktriangleright \widehat{g}_n(s) \to f_Y(s)$$

• g_n is a compound Poisson g.f., therefore f_Y too.

	Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
--	--------------	---------------------------	------------------------------------	-------------	---------------------------

Work in progress

$$U_n(t) = X_{[nt]}$$

We showed that

$$\mathcal{L}(U_n(1)|U_n(1)>0) \to \operatorname{Geom}\left(\frac{\nu}{2+\nu}\right).$$

Aim:

$$\mathcal{L}((U_n(t))_t|U_n(1)>0)\to (U(t))_t.$$

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
0000	000	000 0000000	00000	0000

Lemma Assume (i) $\overline{f}_n = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$, (ii) $\lim_{n\to\infty} \frac{f_n''(1)}{1-\overline{f}_n} = \nu$, (iii) $\lim_{n\to\infty} \frac{f_n'''(1)}{1-\overline{f}_n} = 0$. Then

$$\mathbf{E}\left[s^{X_{[nt]}}|X_{[nu]}=1\right] \to 1-\left(\frac{u}{t}\right)^{\alpha}\left(\frac{1}{1-s}+\frac{\nu}{2}\left(1-\left(\frac{u}{t}\right)^{\alpha}\right)\right)^{-1}$$

University of Szeged

4

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
0000	000	000 0000000	00000	00000

For
$$1 = t_0 < t_1 < \ldots < t_k$$

$$\mathbf{P}(X_{[nt_1]} = x_1, \ldots, X_{[nt_k]} = x_k | X_n = x_0)$$

$$= \prod_{i=1}^k \mathbf{P}(X_{[nt_i]} = x_i | X_{[nt_{i-1}]} = x_{i-1}),$$

thus the finite dimensional distributions converge.

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
0000	000	000 0000000	00000	00000

The limit

$$\mathbf{E}\left[s^{U(t)}|U(u)=x_0\right] = \left(1-\left(\frac{u}{t}\right)^{\alpha}\left(\frac{1}{1-s}+\frac{\nu}{2}\left(1-\left(\frac{u}{t}\right)^{\alpha}\right)\right)^{-1}\right)^{x_0}$$

Then $Z(t) = U(e^t)$ is time-homogeneous Markov process, a simple birth–death process, which dies out a.s.

Introduction	Nearly critical processes	Conditioning – Yaglom-type results	Immigration	Functional limit theorems
0000	000	000 0000000	00000	00000

Questions

► The limit

$$\lim_{n \to \infty} \mathbf{P}(X_{[nt_1]} = x_1, \dots, X_{[nt_k]} = x_k | X_n = x_0)$$
exists for $0 < t_1 < \ldots < t_k < 1$.
tightness

Appendix	
•	

References

- P. Kevei, K. Kubatovics, Nearly critical Galton–Watson processes. Arxiv.
- L. Györfi, M. Ispány, G. Pap and K. Varga, Poisson limit of an inhomogeneous nearly critical INAR(1) model. *Acta Sci. Math. (Szeged)* 73(3–4), (2007), 789–815.
- G. Kersting, A unifying approach to branching processes in a varying environment. *J. Appl. Probab.*, 57(1):196–220, 2020.
- G. Kersting and V. Vatutin, *Discrete Time Branching Processes in Random Environment*, 2017.