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Classical Galton–Watson

Galton – Watson process
ξ = number of offsprings

P(ξ = k) = f [k ], k = 0,1,2, . . .

X0 = 1, and

Xn+1 =
Xn∑
i=1

ξn,i ,

where ξn,i are iid ξ. The generating function:

f (s) =
∞∑

k=0

f [k ]sk .
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Classical Galton–Watson

Extinction theorem

Theorem (Galton, Watson)
If m = f ′(1) ≤ 1 then q = 1, while for m > 1 q is the smallest
root of f (s) = s.

m < 1 subcritical, m = 1 critical, m > 1 supercritical case
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Classical Galton–Watson

Immigration

Yn =

Yn−1∑
i=1

ξn,i + εn

where ξn,i are iid, εn are iid, and independent.

Theorem (Heathcote (1965), Foster (1969))

(i) If m > 1, or m = 1 and f ′′(1) <∞, then
limn→∞ P(Xn = k) = 0 for k = 1,2, . . ..

(ii) If 0 < h′(1) <∞, and m < 1, then limn→∞ P(Xn = k) = pk
exists, and {pk} probability distribution.
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Varying environment

Varying environment
X0 = 1, and

Xn =

Xn−1∑
j=1

ξn,j ,

where {ξn,j}n,j∈N are independent random variables, such that
for each n, {ξn, ξn,j}j∈N are identically distributed.

I 1970’s: Church, Fearn, Jagers, Agresti
I 2017 Kersting, 2020 Kersting & Vatutin monograph

(BPV/RE)
I 2020s: Bhattacharya & Perlman, Dolgopyat et al.,

Cardona-Tobón & Palau, González & Minuesa & del
Puerto, . . .
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Varying environment

Varying environment- immigration

Inhomogeneous Galton–Watson process with immigration:
Y0 = 0,

Yn =

Yn−1∑
j=1

ξn,j + εn

where {ξn,j , εn : n, j ∈ N} are independent nonnegative integer
valued random variables, {ξn,j : j ∈ N} are iid.
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Nearly critical process

f n = f ′n(1) = Eξn. We assume the following conditions:
(C1) f n < 1, limn→∞ f n = 1,

∑∞
n=1(1− f n) =∞,

(C2) limn→∞
f ′′n (1)
1−f n

= ν ∈ [0,∞),

(C3) limn→∞
f ′′′n (1)
1−f n

= 0, if ν > 0.
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C1
f n < 1, limn→∞ f n = 1,

∑∞
n=1(1− f n) =∞

Xn =

Xn−1∑
j=1

ξn,j ,

EXn = Eξ1Eξ2 . . .Eξn =
n∏

i=1

f i → 0,

so (Xn) dies out a.s.

I conditioning on Xn > 0, Yaglom-type limit results
I adding immigration
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INAR(1)

If the offspring distribution is Bernoulli(ρn): integer-valued
autoregressive (INAR(1)) time series:

Xn = ρn ◦ Xn−1 + εn,

where ρ ◦ X is a Bernoulli thinning of X , ◦ is the Steutel and van
Harn operator.

I introduced by Laci Györfi, Márton Ispány, Gyula Pap and
Katalin Varga (2007)

I K (2011), weaking the Bernoulli offsrping assumption
I Györfi, Ispány, K, Pap (2014): multitype setup
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Results

Yaglom’s theorem in the classical setup

Theorem (Yaglom)
If m < 1 then L(Xn|Xn > 0) converges in distribution.

Theorem (Yaglom)
If m = 1 then L(Xn/n|Xn > 0) converges to the exponential
distribution.
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Results

Yaglom-type results

Theorem (K & Kubatovics (2022))

(C1) f n → 1, f n < 1,
∑

n(1− f n) =∞

(C2) limn→∞
f ′′n (1)
1−f n

= ν ∈ [0,∞),

(C3) limn→∞
f ′′′n (1)
1−f n

= 0, if ν > 0.

Then

L(Xn|Xn > 0) D−→ Geom
(

2
2 + ν

)
as n→∞,

Consequence: P(Xn > 0) ∼ 2
2+ν f 0,n.
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Proofs

Notation

fn(s) = Esξn g.f. in generation n.
For the composite g.f. fn,n(s) = s, and for j < n

fj,n(s) = fj+1 ◦ . . . ◦ fn(s),

and for the corresponding means f n,n = 1,

f j,n = f j+1 . . . f n, j < n.

Then EsXn = f0,n(s) and EXn = f 0,n.

Nearly criticial GW processes University of Szeged



Introduction Nearly critical processes Conditioning – Yaglom-type results Immigration Functional limit theorems

Proofs

Shape function
For a g.f. f , with mean f , define the shape function (Kersting
2017)

ϕ(s) =
1

1− f (s)
− 1

f (1− s)
, 0 ≤ s < 1, ϕ(1) =

f ′′(1)
2f ′(1)2 .

1
1− f0,n(s)

=
1

f 1(1− f1,n(s))
+ ϕ1(f1,n(s)),

therefore
1

1− f0,n(s)
=

1
f 0,n(1− s)

+ ϕ0,n(s),

where

ϕ0,n(s) =
n∑

k=1

ϕk (fk ,n(s))
f 0,k−1

.
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Proofs

Example

Linear fractional g.f.:

f (s) = 1− a
1− s

1− qs
, f [k ] = a(1− q)qk−1, k > 0.

Then f = a
1−q ,

1
1− f (s)

=
1

f · (1− s)
+

q
a
.

That is ϕ(s) = q
a .
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Proofs

Lemma (Kersting)
Assume 0 < f <∞, f ′′(1) <∞ and let ϕ(s) be the shape
function of f . Then, for 0 ≤ s ≤ 1,

1
2
ϕ(0) ≤ ϕ(s) ≤ 2ϕ(1).

Nearly criticial GW processes University of Szeged



Introduction Nearly critical processes Conditioning – Yaglom-type results Immigration Functional limit theorems

Proofs

Lemma

lim
n→∞

f 0,n

1− f0,n(s)
=

1
1− s

+
ν

2
.

Consequence:

P(Xn > 0) = 1− f0,n(0) ∼ f 0,n
2

2 + ν
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Proofs

Proof

1
1− f0,n(s)

=
1

f 0,n(1− s)
+ ϕ0,n(s), ϕ0,n(s) =

n∑
k=1

ϕk (fk ,n(s))
f 0,k−1

We have to show that

f 0,nϕ0,n(s) =
n∑

j=1

f j−1,nϕj(fj,n(s))→
ν

2
.

n∑
j=1

f j−1,nϕj(fj,n(s)) ≈
n∑

j=1

f j−1,nϕj(1)

=
n∑

j=1

(1− f j)f j−1,n
f ′′j (1)

2f ′j (1)
2(1− f j)

→ ν

2
(Toeplitz-lemma)
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Proofs

Proof of the Yaglom type theorem

Convergence of the conditional g.f.:

E[sXn |Xn > 0] =
f0,n(s)− f0,n(0)

1− f0,n(0)

= 1−
1− f0,n(s)
1− f0,n(0)

→ 2
2 + ν

s
1− ν

ν+2s
,
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Results

Bernoulli immigration

Theorem (Györfi, Ispány, Pap, Varga (2007))
Let (Yn)n∈N be an inhomogeneous INAR(1) process, with
εn ∼ Bernoulli(mn,1). Assume that

(i) f n → 1, f n < 1,
∑

n(1− f n) =∞,
(ii) limn→∞

mn,1

1−f n
= λ.

Then
Yn

D−→ Poisson(λ).
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Results

Negative binomial rv

X is negative binomial with parameters r > 0 and p ∈ (0,1),
NB(r ,p), if P(X = k) =

(k+r−1
r−1

)
(1− p)r pk , k = 0,1,2, . . .,

where
(k+r−1

r−1

)
= (k+r−1)(k+r−2)···r

k! . The generating function is

EsX =

(
1− p
1− ps

)r

.
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Results

Theorem (K 2011)
(Yn) GW process with immigration, such that:

(i) f n < 1, f n → 1,
∑∞

n=1(1− f n) =∞,

(ii) f ′′n (1)
1−f n

→ ν ∈ (0,∞),

(iii) f (s)n (1)
1−f n

→ 0, for all s ≥ 3,

(iv) mn,1

1−f n
→ λ and mn,2

1−f n
→ 0.

Then
Yn

D−→ NB(2λ/ν, ν/(2 + ν)).
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Results

Theorem (K - Kubatovics (2022))
Assume that (C1)–(C3) are satisfied and

(C4) limn→∞
mn,k

k!(1−f n)
= λk , k = 1,2, . . . ,K and λK = 0.

Yn
D−→ Y as n→∞,

where Y is compound-Poisson with g.f.

exp

{
−

K−1∑
k=1

2kλk

νk

(
log
(

1 +
ν

2
(1− s)

)
+

k−1∑
i=1

(−1)i ν
i

i2i (1− s)i

)}
.
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Proof

Generating function

fn(s) = Esξn , hn(s) = Esεn , gn(s) = EsYn

Using the branching property we obtain the recursion

gn(s) = E
[
s
∑Yn−1

i=1 ξn,i+εn

]
= E

[
E
(

s
∑Yn−1

i=1 ξn,i+εn

∣∣∣∣Yn−1

)]
= E

[
fn(s)Yn−1

]
hn(s) = gn−1(fn(x))hn(s).

gn(s) =
n∏

j=1

hj(fj,n(s)).
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Proof

gn(s) =
n∏

j=1

hj(fj,n(s)).

Need to show that:

lim
n→∞

gn(s) = fY (s), s ∈ [0,1].

Introduce the accompanying law

ĝn(s) =
n∏

j=1

ehj (fj,n(s))−1 = exp
n∑

j=1

(
hj(fj,n(s))− 1

)
.
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Proof

ĝn(s) =
n∏

j=1

ehj (fj,n(s))−1 = exp
n∑

j=1

(
hj(fj,n(s))− 1

)
.

I gn(s)− ĝn(s)→ 0;
I ĝn(s)→ fY (s)
I gn is a compound Poisson g.f., therefore fY too.
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Work in progress

Un(t) = X[nt]

We showed that

L(Un(1)|Un(1) > 0)→ Geom
(

ν

2 + ν

)
.

Aim:
L((Un(t))t |Un(1) > 0)→ (U(t))t .
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Lemma
Assume

(i) f n = 1− α
n + o

(1
n

)
,

(ii) limn→∞
f ′′n (1)
1−f n

= ν,

(iii) limn→∞
f ′′′n (1)
1−f n

= 0.

Then

E
[
sX[nt] |X[nu] = 1

]
→ 1−

(u
t

)α( 1
1− s

+
ν

2

(
1−

(u
t

)α))−1
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For 1 = t0 < t1 < . . . < tk

P(X[nt1] = x1, . . . ,X[ntk ] = xk |Xn = x0)

=
k∏

i=1

P(X[nti ] = xi |X[nti−1] = xi−1),

thus the finite dimensional distributions converge.
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The limit

E
[
sU(t)|U(u) = x0

]
=

(
1−

(u
t

)α( 1
1− s

+
ν

2

(
1−

(u
t

)α))−1
)x0

.

Then Z (t) = U(et) is time-homogeneous Markov process, a
simple birth–death process, which dies out a.s.
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Questions

I The limit

lim
n→∞

P(X[nt1] = x1, . . . ,X[ntk ] = xk |Xn = x0)

exists for 0 < t1 < . . . < tk < 1.
I tightness
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