Introduction	Fix t, x	Growth rate	Parabolic Anderson model
00000	000	000000000 000 000000	000 000000000

On the solution to the stochastic heat equation with Lévy noise

Péter Kevei

University of Szeged

Budapest - Vienna Probability Seminar

Introduction	Fix t, x	Growth rate	Parabolic Anderson model
00000	000 0000	000000000 000 000000	000 000000000

Outline Introduction Setup Motivation Fix t, x Existence Tail Growth rate Continuous sampling Discrete sampling

Spatial growth rate

- Parabolic Anderson model Existence
 - Growth

00000 000 00000000 000 00000 0000 000 0	Introduction	Fix t, x	Growth rate	Parabolic Anderson model
			000	

Joint work with Carsten Chong (Columbia University).

Introduction	Fix t, x	Growth rate	Parabolic Anderson model
• 0000 00000	000	000000000 000 000000	000 000000000

Outline Introduction Setup Motivation Fix t, x Spatial growth rate

Setup

Growth

A.s. properties of SHE with Lévy noise

Introduction ○●○○○ ○○○○○	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model
Setup			

Heat equation - deterministic case

$$\partial_t Y(t,x) = \Delta Y(t,x) + h(t,x), \quad (t,x) \in (0,\infty) \times \mathbb{R}^d,$$

 $Y(0,\cdot) = f$

Δ Laplace operator, *h* external heating/cooling

Introduction	Fix t, x	Growth rate	Parabolic Anderson model
0000	000	000000000 000 000000	000 000000000

Heat equation - deterministic case

$$\partial_t Y(t,x) = \Delta Y(t,x) + h(t,x), \quad (t,x) \in (0,\infty) \times \mathbb{R}^d,$$

 $Y(0,\cdot) = f$

 Δ Laplace operator, *h* external heating/cooling Solution:

$$Y(t,x) = \int_{\mathbb{R}^d} g(t,x-y)f(y) \mathrm{d}y + \int_0^t \int_{\mathbb{R}^d} g(t-s,x-y)h(s,y) \mathrm{d}y \mathrm{d}s,$$

where

Setup

$$g(t,x) = \frac{1}{(4\pi t)^{d/2}} e^{-\frac{|x|^2}{4t}}.$$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model

Setup

Stochastic heat equation

$$\partial_t Y(t,x) = \Delta Y(t,x) + \xi(t,x), \quad (t,x) \in (0,\infty) \times \mathbb{R},$$

 $Y(0,\cdot) = f$

 ξ is a space-time Lévy noise.

	Introduction	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model
--	--------------	--	---	--------------------------

Setup

Consider the heat equation ($f \equiv 0$)

$$\partial_t Y(t,x) = \Delta Y(t,x) + \dot{\Lambda}(t,x),$$

where

$$\Lambda(\mathrm{d} t,\mathrm{d} x) = m\,\mathrm{d} t \mathrm{d} x + \int_{(1,\infty)} z\,\mu(\mathrm{d} t,\mathrm{d} x,\mathrm{d} z) + \int_{(0,1]} z\,(\mu-\nu)(\mathrm{d} t,\mathrm{d} x,\mathrm{d} z),$$

 μ Poisson random measure on $(0, \infty) \times \mathbb{R}^d \times (0, \infty)$, intensity $\nu(dt, dx, dz) = dt dx \lambda(dz)$. Solution:

$$Y(t,x) = \int_0^t \int_{\mathbb{R}^d} g(t-s,x-y) \Lambda(\mathrm{d}s,\mathrm{d}y) = \sum_{\tau_i \leq t} g(t-\tau_i,x-\eta_i)\zeta_i.$$
$$g(t,x) = \frac{1}{(4\pi t)^{d/2}} e^{-\frac{|x|^2}{4t}}$$

A.s. properties of SHE with Lévy noise

Introduction	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model
Setup			

Gaussian noise

 ξ space-time white noise - d = 1Khoshnevisan, Kim, Xiao, Conus, Foondun, Joseph, ..., 2010-Khoshnevisan, *Analyis of Stochastic Partial Differential Equations*, 2014, AMS

Introduction ○○○○○ ●○○○○	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model

Motivation

Outline Introduction Setup Motivation

Fix t, x

lail

Growth rate

Continuous sampling Discrete sampling Spatial growth rate

Parabolic Anderson mode

- Existence
- Growth

Introduction	Fix <i>t</i> , <i>x</i>	Growth rate	Parabolic Anderson model
○○○○	000	0000000000	ooo
○●○○○	0000	000	oooooooooo
Motivation		000000	

Moments

$$\mathbf{E}[Y(t,x)] = \int_0^t \int_{\mathbb{R}^d} g(t-s,x-y) \, \mathrm{d}y \, \mathrm{d}s$$

= $\int_0^t 1 \, \mathrm{d}s = t, \quad (t,x) \in [0,\infty) \times \mathbb{R}^d.$

Introduction 0000 0000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 0000000000 000 000000	Parabolic Anderson model
Motivation			

Moments

$$\begin{split} \mathbf{E}[Y(t,x)] &= \int_0^t \int_{\mathbb{R}^d} g(t-s,x-y) \, \mathrm{d}y \, \mathrm{d}s \\ &= \int_0^t 1 \, \mathrm{d}s = t, \quad (t,x) \in [0,\infty) \times \mathbb{R}^d. \\ &\operatorname{Var} Y(t,x) = \begin{cases} \frac{1}{4\sqrt{2\pi}} \sqrt{t}, & \text{for } d = 1, \\ \infty, & \text{otherwise.} \end{cases} \end{split}$$

University of Szeged

Introduction ○○○○ ○○●○○	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model
Motivation			

Proposition Let t_n be a sequence increasing to infinity. Then

$$\lim_{n\to\infty}\frac{Y_0(t_n)}{t_n}=1 \quad a.s.$$

holds, if for some $\varepsilon > 0$

$$\begin{cases} \sum_{n=1}^{\infty} t_n^{\varepsilon - 9/4} < \infty, & \text{ for } d = 1, \\ \sum_{n=1}^{\infty} t_n^{\varepsilon - (1+2/d)} < \infty, & \text{ for } d \ge 2. \end{cases}$$

Introduction	Fix <i>t</i> , <i>x</i>	Growth rate	Parabolic Anderson model
0000	0000	000 000000	000000000
Motivation			

Proposition Let t_n be a sequence increasing to infinity. Then

$$\lim_{n\to\infty}\frac{Y_0(t_n)}{t_n}=1 \quad a.s.$$

holds, if for some $\varepsilon > 0$

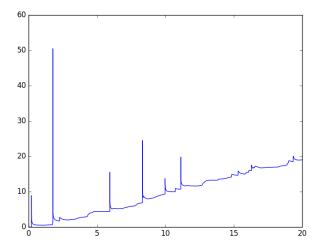
4

$$\begin{cases} \sum_{n=1}^{\infty} t_n^{\varepsilon - 9/4} < \infty, & \text{ for } d = 1, \\ \sum_{n=1}^{\infty} t_n^{\varepsilon - (1+2/d)} < \infty, & \text{ for } d \ge 2. \end{cases}$$

In any dimension $Y_0(n)/n \rightarrow 1$ a.s.

	Introduction	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model
--	--------------	--	---	--------------------------

Motivation



A.s. properties of SHE with Lévy noise

University of Szeged

Introduction ○○○○ ○○○○●	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model
Motivation			

It turns out that

$$\limsup_{t\to\infty}\frac{Y_0(t)}{t}=\infty \text{ a.s.}$$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> ●○○ ○○○○	Growth rate 000000000 000 000000	Parabolic Anderson model

Existence

Outline

ntroduction Setup Motivation

Fix t, x Existence

Tail

Growth rate

Continuous sampling Discrete sampling Spatial growth rate

Parabolic Anderson mode

- Existence
- Growth

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> ⊙●⊙ ○○○○	Growth rate 000000000 000 000000	Parabolic Anderson model

Existence

$$Y(t,x) = \int_0^t \int_{\mathbb{R}^d} g(t-s,x-y) \Lambda(\mathrm{d} s,\mathrm{d} y) = \sum_{\tau_i \leq t} g(t-\tau_i,x-\eta_i)\zeta_i.$$

$$g(t,x) = rac{1}{(4\pi t)^{d/2}} e^{-rac{|x|^2}{4t}}$$
 $\eta(B) =
u \Big(\{ (s,y,z) : s \le t, g(s,y)z \in B \} \Big)$

	Introduction 00000 00000	Fix <i>t</i> , <i>x</i> ⊙⊙● ○○○○	Growth rate 000000000 000 000000	Parabolic Anderson model
--	--------------------------------	--	---	--------------------------

Existence

Theorem Y(t, x) exists iff

$$\int_{(1,\infty)} (\log z)^{d/2} \lambda(\mathrm{d} z) < \infty, \begin{cases} \int_{(0,1]} z^2 \lambda(\mathrm{d} z) < \infty & d = 1, \\ \int_{(0,1]} z^2 |\log z| \lambda(\mathrm{d} z) < \infty & d = 2, \\ \int_{(0,1]} z^{1+2/d} \lambda(\mathrm{d} z) < \infty & d \ge 3. \end{cases}$$

 η is a Lévy measure and

$$\mathbf{E}[e^{\mathrm{i}\theta Y(t,x)}] = \exp\left\{\mathrm{i}\theta A + \int_{(0,\infty)} \left(e^{\mathrm{i}\theta u} - 1 - \mathrm{i}\theta u\mathbb{1}(u \leq 1)\right)\eta(\mathrm{d}u)\right\}$$

Application of Rajput & Rosinski 1989

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> ○○○ ●○○○	Growth rate 000000000 000 000000	Parabolic Anderson model

Tail

Outline

ntroduction

Motivation

Fix *t*, *x*

Existence

Tail

Growth rate

Continuous sampling Discrete sampling Spatial growth rate

Parabolic Anderson mode

- Existence
- Growth

Introduction	Fix <i>t</i> , <i>x</i> 000	Growth rate	Parabolic Anderson model
00000	0000	000 000000	000000000

Tail

$$\eta({m{B}})=
u\Big(\{({m{s}},{m{y}},{m{z}}):\,{m{s}}\leq{m{t}},\,{m{g}}({m{s}},{m{y}}){m{z}}\in{m{B}}\}\Big),\,
u={
m Leb} imes\lambda$$

Lemma (i) If $m_{1+2/d}(\lambda) < \infty$

$$\overline{\eta}(r) \sim r^{-1-2/d} rac{d^{d/2}}{2\pi (d+2)^{d/2+1}} m_{1+2/d}(\lambda), \qquad r o \infty.$$

(ii) If $\overline{\lambda}(r) = \ell(r)r^{-\alpha}$ for $\alpha \in (0, 1 + \frac{2}{d}]$,

$$\overline{\eta}(r) \sim \begin{cases} \ell(r)r^{-\alpha} \frac{D^{1+2/d-\alpha}}{2d\pi\alpha^{d/2}(1+\frac{2}{d}-\alpha)} & \text{if } \alpha < 1+\frac{2}{d}, \\ L(r)r^{-1-2/d}(2d\pi(1+\frac{2}{d})^{d/2})^{-1} & \text{if } \alpha = 1+\frac{2}{d}, \end{cases}$$

where $L(r) = \int_1^r \ell(u) u^{-1} du$, $D = (4\pi t)^{d/2}$.

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> ○○○ ○○●○	Growth rate 000000000 000 000000	Parabolic Anderson model
Tail			

Lemma (iii) If $\overline{\lambda}(x) = \ell(x)$, then

$$\overline{\eta}(r) \sim L_0(r) rac{D^{1+2/d}}{4\pi\Gamma(rac{d}{2}+1)(1+rac{2}{d})},$$

where

$$L_0(r) := \int_1^\infty \ell(ry) y^{-1} (\log y)^{d/2 - 1} \, \mathrm{d} y$$

is slowly varying and $L_0(r)/\ell(r) \to \infty$ as $r \to \infty.$

University of Szeged

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> ○○○ ○○○●	Growth rate 000000000 000 000000	Parabolic Anderson model
Tail			

$$\overline{Y}(t) = \sup_{\tau_i \leq t} g(t - \tau_i, \eta_i) \zeta_i$$

Theorem (*i*) $\overline{\eta}$ is subexponential. (*ii*) As $r \to \infty$,

$$\mathbf{P}(\mathbf{Y}(t, \mathbf{x}) > \mathbf{r}) \sim \mathbf{P}(\overline{\mathbf{Y}}(t) > \mathbf{r}) \sim \overline{\eta}(\mathbf{r}).$$

(iii) For
$$\alpha \in [0, 1 + \frac{2}{d})$$
, $\overline{\eta} \in \mathcal{RV}_{-\alpha}$ iff $\overline{\lambda} \in \mathcal{RV}_{-\alpha}$.
Embrechts, Goldie, Veraverbeke ('79), Pakes ('04)

	Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate ••••••••• •••• •••••••	Parabolic Anderson model
--	--------------------------------	--	---	--------------------------

Continuous sampling

Outline

Introduction

Setup Motivatio

Motivation

Fix *t*, *x*

Existence Tail

Growth rate

Continuous sampling

Discrete sampling Spatial growth rate

Parabolic Anderson mode

- Existence
- Growth

Introduction	Fix <i>t</i> , <i>x</i>	Growth rate	Parabolic Anderson model
00000	000	○●○○○○○○○○	
00000	0000	○○○○○○○	
Continuous sampling			

Simplification

Assume that $\lambda = \delta_1$, $\Lambda = N$ standard Poisson point process.

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model

Continuous sampling

Theorem Let $f:[0,\infty)\to [0,\infty)$ be a nondecreasing function. If

$$\int_1^\infty \frac{1}{f(t)} \mathrm{d}t = \infty,$$

then

$$\limsup_{t\to\infty}\frac{Y_0(t)}{f(t)}=\infty \quad a.s.$$

Conversely, if the integral above is finite then

$$\limsup_{t\to\infty}\frac{Y_0(t)}{f(t)}=0 \quad a.s.$$

Furthermore, $\liminf_{t\to\infty} Y_0(t)/t = 1$ a.s.

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model

Continuous sampling

Remarks

$$\begin{split} \limsup_{t\to\infty} \frac{Y_0(t)}{t} = \limsup_{t\to\infty} \frac{Y_0(t)}{t\log(t)} = \infty, \quad \text{a.s.} \end{split}$$
 but
$$\limsup_{t\to\infty} \frac{Y_0(t)}{t(\log(t))^{1.1}} = 0 \quad \text{a.s.} \end{split}$$

A.s. properties of SHE with Lévy noise

University of Szeged

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model
Continuous sampling			

Gaussian case

Solution is locally a fractional Brownian motion with Hurst index 1/4. (Lei, Nualart 2009)

Theorem

Suppose that $\dot{\Lambda}$ is a Gaussian space-time white noise in one spatial dimension. Then, a.s.

$$\limsup_{t \to \infty} \frac{Y_0(t)}{(2t/\pi)^{1/4}\sqrt{\log \log t}} = -\liminf_{t \to \infty} \frac{Y_0(t)}{(2t/\pi)^{1/4}\sqrt{\log \log t}} = 1.$$

In particular, the SLLN holds: $\lim_{t\to\infty} \frac{Y_0(t)}{t} = 0$ a.s. Follows from Watanabe (1970).

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 0000000000 000 000000	Parabolic Anderson model
Continuous sampling			

Theorem Let $f:[0,\infty) \to [0,\infty)$ be a nondecreasing function. If

$$\int_1^\infty \frac{1}{f(t)} \mathrm{d}t = \infty,$$

then

$$\limsup_{t\to\infty}\frac{Y_0(t)}{f(t)}=\infty \quad a.s.$$

Conversely, if the integral above is finite then

$$\limsup_{t\to\infty}\frac{Y_0(t)}{f(t)}=0 \quad a.s.$$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate	Parabolic Anderson model ooo oooooooooo
Continuous sampling			

For $x \in \mathbb{R}^d$, g(t, x) is increasing on $[0, |x|^2/(2d)]$, decreasing on $[|x|^2/(2d), \infty)$, and its maximum is

$$g(|x|^2/(2d),x) = \left(rac{d}{2\pi e}
ight)^{d/2} |x|^{-d}.$$

Jump at *x* causes a peak of size $|x|^{-d}$.

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model
Continuous sampling			

Assume first $\int_{1}^{\infty} 1/f(t) dt = \infty$. Let K > 0 be fix large.

$$A_n = \left\{N\left([n, n+1] \times B([Kf(n+2)]^{-1/d})\right) \ge 1\right\}, \ n \ge 0.$$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Parabolic Anderson model
Continuous sampling			

Assume first $\int_{1}^{\infty} 1/f(t) dt = \infty$. Let K > 0 be fix large.

$$A_n = \left\{N\left([n, n+1] \times B([Kf(n+2)]^{-1/d})\right) \ge 1\right\}, \ n \ge 0.$$

Since N is a homogeneous Poisson process, we have

$$\mathbf{P}(A_n) = 1 - e^{-v_d/[Kf(n+2)]} \sim \frac{v_d}{Kf(n+2)},$$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Parabolic Anderson model
Continuous sampling			

Assume first $\int_{1}^{\infty} 1/f(t) dt = \infty$. Let K > 0 be fix large.

$$A_n = \left\{N\left([n, n+1] \times B([Kf(n+2)]^{-1/d})\right) \ge 1\right\}, \ n \ge 0.$$

Since N is a homogeneous Poisson process, we have

$$\mathbf{P}(A_n) = 1 - e^{-v_d/[Kf(n+2)]} \sim \frac{v_d}{Kf(n+2)},$$

and thus $\sum_{n=1}^{\infty} \mathbf{P}(A_n) = \infty$. A_n 's are independent, by Borel–Cantelli A_n occurs infinitely many times.

	Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Parabolic Anderson model
--	--------------------------------	--	---	--------------------------

Continuous sampling

Proof I

$$A_n = \left\{ N\left([n, n+1] \times B([Kf(n+2)]^{-1/d}) \right) \ge 1 \right\}, \ n \ge 0.$$

On A_n ,

$$\sup_{t\in[n,n+2]} Y_0(t) \ge (2\pi e/d)^{-d/2} K f(n+2),$$

|--|

Continuous sampling

Proof I

$$A_n = \left\{N\left([n, n+1] \times B([Kf(n+2)]^{-1/d})\right) \ge 1\right\}, \ n \ge 0.$$

On A_n ,

$$\sup_{t\in[n,n+2]}Y_0(t)\geq (2\pi e/d)^{-d/2}Kf(n+2),$$

that is

$$\sup_{t\in [n,n+2]}\frac{Y_0(t)}{f(t)} > (2\pi e/d)^{-1/2}K.$$

Since A_n occurs infinitely often, and K is arbitrary large, the result follows.

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Parabolic Anderson model		
Continuous sampling					
Proof II					

Now assume $\int_{1}^{\infty} 1/f(t) dt < \infty$. Let K > 0 be fix large.

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate	Parabolic Anderson model
Continuous sampling			

Proof II

Now assume $\int_{1}^{\infty} 1/f(t)dt < \infty$. Let K > 0 be fix large. Let us fix $t \in [n, n + 1]$. Introduce the events (recent close jumps)

$$\begin{split} &A_n = \left\{ N([n, n+1] \times B([K/f(n)]^{1/d}) \ge 1 \right\} \\ &B_n = \left\{ N([n, n+1] \times B([K/f(n)]^{1/d}, [(K \log n)/n]^{1/d})) \ge 2 \right\} \\ &C_n = \left\{ N([n, n+1] \times B([(K \log n)/n]^{1/d}, 1) \ge 6 \log n \right\} \end{split}$$

Almost surely only finitely many of these events occur.

Introduction 00000 00000	Fix <i>t, x</i> 000 0000	Growth rate ○○○○○○○○○○ ●○○ ○○○○○○	Parabolic Anderson model
Discrete sampling			
Outline Introduction Setup Motivation			
Fix <i>t</i> , <i>x</i> Existence Tail			
Growth rate	s sampling		

Discrete sampling

Spatial growth rate

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate ○○○○○○○○○ ○●○ ○○○○○○	Parabolic Anderson model 000 000000000

Discrete sampling

At which sequence we don't see the superlinear part?

Theorem Let $t_n \uparrow \infty$. Then

$$\lim_{n\to\infty}\frac{Y_0(t_n)}{t_n}=1 \quad a.s.$$

holds, if

$$\sum_{n=1}^{\infty} \frac{t_n^{-2/d} \wedge \Delta t_n}{t_n} < \infty.$$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate ○○○○○○○○○ ○○● ○○○○○○	Parabolic Anderson model

Discrete sampling

Special case $t_n = n^p$

If $t_n = n^p$ for some p > d/(d+2), we have

$$\lim_{n\to\infty}\frac{Y_0(t_n)}{t_n}=1 \quad \text{a.s.},$$

while for 0 , we have

$$\limsup_{n\to\infty}\frac{Y_0(t_n)}{t_n}=\infty,\quad \liminf_{n\to\infty}\frac{Y_0(t_n)}{t_n}=1 \quad \text{a.s.}$$

Introduction	Fix t, x	Growth rate	Parabolic Anderson model
00000	000	000000000 000 00000	000 000000000

Outline

Introduction

Setup Motivatio

Motivation

Fix *t*, *x*

Existence Tail

Growth rate

Continuous sampling Discrete sampling Spatial growth rate

Parabolic Anderson model Existence Growth

A.s. properties of SHE with Lévy noise

Introduction	Fix <i>t</i> , <i>x</i>	Growth rate	Parabolic Anderson model
00000	000	○○○○○○○○○	
00000	0000	○●○○○○	
Spatial growth rate			

Fix *t*, and consider the behavior in *x*.

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate	Parabolic Anderson model

Theorem Almost surely

$$\limsup_{x\to\infty}\frac{\sup_{|y|\leq x}Y(t,y)}{f(x)}=\infty \qquad \text{or}\qquad \limsup_{x\to\infty}\frac{\sup_{|y|\leq x}Y(t,y)}{f(x)}=0,$$

according to whether the following integral diverges or converges:

٠

$$\int_1^\infty r^{d-1}\overline{\tau}(f(r))\,\mathrm{d} r,$$

where $\tau(B) = (\text{Leb} \times \lambda) \left(\{ (s, z) : (4\pi s)^{-d/2} z \in B, s \leq t \} \right).$

Introduction	Fix <i>t</i> , <i>x</i>	Growth rate	Parabolic Anderson model
00000	000	○○○○○○○○	
00000	0000	○○○	

$$\tau(\boldsymbol{B}) = (\text{Leb} \times \lambda) \left(\{ (\boldsymbol{s}, \boldsymbol{z}) : (4\pi \boldsymbol{s})^{-d/2} \boldsymbol{z} \in \boldsymbol{B}, \ \boldsymbol{s} \leq t \} \right)$$

Lemma

(i) If $m_{2/d}(\lambda) < \infty$, then $\overline{\tau}(r) \sim (4\pi)^{-1} m_{2/d}(\lambda) r^{-2/d}$ as $r \to \infty$. (ii) Assume that $\overline{\lambda}(r) = \ell(r) r^{-\alpha}$ for $\alpha \in [0, \frac{2}{d}]$, and further assume $\int_{1}^{\infty} \ell(u) u^{-1} du = \infty$ if $\alpha = \frac{2}{d}$. Then as $r \to \infty$

$$\overline{\tau}(r) \sim \begin{cases} \frac{2tD^{-\alpha}}{2-d\alpha}\ell(r)r^{-\alpha} & \text{if } \alpha < \frac{2}{d}, \\ \frac{1}{2\pi d}L(r)r^{-2/d} & \text{if } \alpha = \frac{2}{d}. \end{cases}$$

Introduction	Fix t, x	Growth rate	Parabolic Anderson model
00000	000	00000000 000 000000	000 000000000

Special case

$$f(r) = r^p$$

$$\limsup_{x\to\infty}\frac{\sup_{|y|\leq x}Y(t,y)}{x^p}=\infty \qquad \text{or } 0,$$

if m_{2/d}(λ) < ∞: p ≤ d²/2 or p > d²/2
if
$$\overline{\lambda}(r) = r^{-\alpha}$$
, $\alpha \in (0, 2/d)$: p ≤ d/ α or p > d/ α .

University of Szeged

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate ○○○○○○○○○ ○○○ ○○○○○●	Parabolic Anderson model
Spatial growth rate			

Gaussian case (Khoshnevisan, Kim, Xiao 2017):

$$\limsup_{|\mathbf{x}|\to\infty} \frac{Y(t,\mathbf{x})}{(\log|\mathbf{x}|)^{1/2}} = \left(\frac{2t}{\pi}\right)^{1/4}$$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model ●oo ○○○○○○○○
Existence			
Outline			

Introduction

Setup Motivation

Fix *t*, *x*

Existence

Tail

Growth rate

Continuous sampling Discrete sampling Spatial growth rate

Parabolic Anderson model Existence

Growth

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model ○●○ ○○○○○○○○○
Existence			

$$\partial_t Y(t,x) = \Delta Y(t,x) + Y(t,x)\dot{\Lambda}(t,x), \quad (t,x) \in (0,\infty) \times \mathbb{R}^d,$$

 $Y(0,\cdot) \equiv 1,$

Solution:

$$Y(t,x) = 1 + \int_0^t \int_{\mathbb{R}^d} g(t-s,x-y) Y(s,y) \Lambda(\mathrm{d} s,\mathrm{d} y)$$

A.s. properties of SHE with Lévy noise

University of Szeged

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model oo● ooooooooooo
Existence			

Existence

$$Y(t,x) = 1 + \int_0^t \int_{\mathbb{R}^d} g(t-s,x-y) Y(s,y) \Lambda(\mathrm{d} s,\mathrm{d} y)$$

Berger & Chong & Lacoin 2022: Solution exists if

$$\begin{split} &\int_{(1,\infty)} (\log z)^{d/2} \lambda(\mathrm{d} z) < \infty \quad \text{and} \\ &\begin{cases} \int_{(0,1)} z^2 \lambda(\mathrm{d} z) < \infty, & d = 1, \text{ (same as additive)} \\ \int_{(0,1)} z^2 |\log z| \lambda(\mathrm{d} z) < \infty, & d = 2, \text{ (same as additive)} \\ \int_{(0,1)} z^{1+2/d} |\log z| \lambda(\mathrm{d} z) < \infty, & d \geq 3, \text{ (log stronger than additive)} \end{split}$$

Fix <i>t</i> , <i>x</i> 000 0000	Growth rate	Parabolic Anderson model
1		0000 000

Outline

Introduction

Setup

Motivation

Fix t, x

Existence

Tail

Growth rate

Continuous sampling Discrete sampling Spatial growth rate

Parabolic Anderson model

Existence

A.s. properties of SHE with Lévy noise

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model ○○○ ○●○○○○○○○
Growth			

Gaussian case

Conus & Khoshnevisan 2012, Khoshnevisan & Kim & Xiao 2017

$$\begin{split} \limsup_{|x|\to\infty} \frac{Y(t,x)}{(\log|x|)^{1/2}} &= \left(\frac{4t}{\pi}\right)^{\frac{1}{4}} \quad \text{additive,} \\ \limsup_{|x|\to\infty} \frac{\log Y(t,x)}{(\log|x|)^{2/3}} &= \left(\frac{9t}{32}\right)^{\frac{1}{3}} \quad \text{multiplicative} \end{split}$$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model ○○○ ○○●○○○○○○

Assume
$$\overline{\lambda}(x) = x^{-\alpha}$$
, $x > 1$, $\lambda((0, 1)) = 0$.

Growth

Suppose $\alpha > \frac{2}{d}$. Let f be nondecreasing. Then for both additive and multiplicative noise

$$\limsup_{x\to\infty}\frac{\sup_{|y|\leq x}Y(t,y)}{f(x)}=\infty \ or \ 0,$$

according to whether the integral

.

$$\int_1^\infty x^{d-1} f(x)^{-\frac{2}{d}} \,\mathrm{d} x$$

diverges or converges.

Introduction	Fix t, x	Growth rate	Parabolic Anderson model
00000	000	000000000 000 000000	000 00000000
Growth			

Theorem Suppose $\alpha < \frac{2}{d}$.

additive noise:

$$\limsup_{x\to\infty}\frac{\sup_{|y|\leq x}Y(t,y)}{f(x)}=\infty \ or \ 0,$$

depending on whether the following integral diverges or converges:

$$\int_1^\infty x^{d-1} f(x)^{-\alpha} \,\mathrm{d} x.$$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model ○○○ ○○○○●○○○○○
Growth			

 multiplicative noise: there are 0 < L_{*} ≤ L^{*} < ∞ such that for all L > L^{*},

$$\limsup_{x\to\infty}\frac{\sup_{|y|\leq x}Y(t,y)}{x^{d/\alpha}e^{L(\log x)^{1/(1+\theta_\alpha)}}}=0 \qquad a.s.,$$

while for all $L < L_*$,

$$\limsup_{x\to\infty}\frac{\sup_{|y|\leq x}Y(t,y)}{x^{d/\alpha}e^{L(\log x)^{1/(1+\theta_\alpha)}}}=\infty \qquad a.s.$$

where
$$\theta_{\alpha} = 1 - \frac{d}{2}(\alpha - 1)$$
.

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model ○○○ ○○○○●○○○○
Growth			

• If $\alpha > \frac{2}{d}$, in the additive case almost surely

$$\limsup_{x\to\infty}\frac{\sup_{y\in\mathbb{Z}^d,|y|\leq x}Y(t,y)}{f(x)}=\infty \quad or \ 0,$$

according to whether

$$\int_1^\infty x^{d-1} f(x)^{-[(1+2/d)\wedge\alpha]} \,\mathrm{d}x.$$

diverges or converges.

A.s. properties of SHE with Lévy noise

University of Szeged

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model ○○○ ○○○○○●●○○○
Growth			

If α ∈ (²/_d, 1 + ²/_d) in the multiplicative case there are 0 < M_{*} ≤ M^{*} < ∞ such that for all M > M^{*},

$$\limsup_{x\to\infty}\frac{\sup_{y\in\mathbb{Z}^d,|y|\leq x}Y(t,y)}{x^{d/\alpha}e^{M(\log x)^{1/(1+\theta_\alpha)}}}=0 \quad a.s.,$$

while for $M < M_*$,

$$\limsup_{x\to\infty}\frac{\sup_{y\in\mathbb{Z}^d,|y|\leq x}Y(t,y)}{x^{d/\alpha}e^{M(\log x)^{1/(1+\theta_\alpha)}}}=\infty \quad a.s.$$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model ○○○ ○○○○○○●○○
Growth			

 If α ≥ 1 + ²/_d in the multiplicative case there are 0 < M_{*} ≤ M^{*} < ∞ such that for M > M^{*},

$$\limsup_{x\to\infty} \frac{\sup_{y\in\mathbb{Z}^d,|y|\leq x}Y(t,y)}{x^{d^2/(2+d)}e^{M(\log x)(\log\log\log x)/\log\log x}}=0 \qquad a.s.$$

while for $M < M_*$,

$$\limsup_{x\to\infty} \frac{\sup_{y\in\mathbb{Z}^d,|y|\leq x} Y(t,y)}{x^{d^2/(2+d)} e^{M(\log x)(\log\log\log x)/\log\log x}} = \infty \qquad a.s.$$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model ○○○ ○○○○○○○●○
Growth			

If α < ²/_d, then in both cases sup_{y∈Z^d,|y|≤x} Y(t, y) has the same asymptotic as sup_{y∈Z^d,|y|≤x} Y(t, y)

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 0000	Growth rate 000000000 000 000000	Parabolic Anderson model ○○○ ○○○○○○○○○●
Growth			

References

- Chong, C. and Kevei, P. The almost-sure asymptotic behavior of the solution to the stochastic heat equation with Lévy noise. AoP, 2020.
- Chong, C. and Kevei, P. Extremes of the stochastic heat equation with additive Lévy noise. EJP, 2022.
- Chong, C. and Kevei, P. A landscape of peaks: the intermittency islands of the stochastic heat equation with Lévy noise. AoP, to appear.
- Khoshnevisan, D. Analysis of Stochastic Partial Differential Equations, AMS, 2014