Trimmed Lévy processes

Péter Kevei

University of Szeged
Lévy processes and time series: in honour of Peter Brockwell and Ross Maller

Outline

Jump - jump ratios

Introduction
Results
Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

Outline

Jump - jump ratios

Introduction
Results
Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

Outline

Jump - jump ratios
Introduction
Results
Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

Outline

Jump - jump ratios
Introduction
Results
Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

Outline

Jump - jump ratios
Introduction
Results
Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

Outline

Jump - jump ratios
Introduction
Results
Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

Outline

Jump - jump ratios
Introduction
Results
Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

Outline

Jump - jump ratios
Introduction
Results
Process - jump ratios
Results
Proof - main idea
St. Petersburg game Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

Outline

Jump - jump ratios
Introduction
Results
Process - jump ratios
Results
Proof - main idea
St. Petersburg game Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

Outline

Jump - jump ratios
Introduction
Results
Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

Outline

Jump - jump ratios
Introduction
Results
Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

Outline

Jump - jump ratios
Introduction
Results
Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

Outline

Jump - jump ratios Introduction

Results

Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

V_{t} subordinator with Lévy measure \wedge and drift 0, i.e.

$$
E e^{-\lambda V_{t}}=\exp \left\{-t \int_{0}^{\infty}\left(1-e^{-\lambda v}\right) \wedge(\mathrm{d} v)\right\},
$$

where $\int_{0}^{\infty} \min \{1, x\} \wedge(\mathrm{d} x)<\infty$
Assume $\bar{\Lambda}(0+)=\infty$, then there is an infinite number of jumps up to time t :

the ordered jumps of V_{s} up to time t.

trimmed subordinator
V_{t} subordinator with Lévy measure \wedge and drift 0, i.e.

$$
E e^{-\lambda V_{t}}=\exp \left\{-t \int_{0}^{\infty}\left(1-e^{-\lambda v}\right) \wedge(\mathrm{d} v)\right\},
$$

where $\int_{0}^{\infty} \min \{1, x\} \wedge(\mathrm{d} x)<\infty$
Assume $\bar{\Lambda}(0+)=\infty$, then there is an infinite number of jumps up to time t :

$$
\Delta_{t}^{(1)} \geq \Delta_{t}^{(2)} \geq \ldots
$$

the ordered jumps of V_{s} up to time t.

$$
V_{t}^{(k)}=V_{t}-\sum_{j=1}^{k} \Delta_{t}^{(j)} \quad \text { trimmed subordinator }
$$

V_{t} subordinator with Lévy measure Λ and drift 0, i.e.

$$
E e^{-\lambda V_{t}}=\exp \left\{-t \int_{0}^{\infty}\left(1-e^{-\lambda v}\right) \Lambda(\mathrm{d} v)\right\}
$$

where $\int_{0}^{\infty} \min \{1, x\} \wedge(\mathrm{d} x)<\infty$
Assume $\bar{\Lambda}(0+)=\infty$, then there is an infinite number of jumps up to time t :

$$
\Delta_{t}^{(1)} \geq \Delta_{t}^{(2)} \geq \ldots
$$

the ordered jumps of V_{s} up to time t.

$$
V_{t}^{(k)}=V_{t}-\sum_{j=1}^{k} \Delta_{t}^{(j)} \quad \text { trimmed subordinator }
$$

$V_{t}^{(0)}=V_{t}$ is the subordinator, and $\Delta_{t}^{(1)}$ is the largest jump.

$$
\begin{aligned}
& \qquad \Delta_{t}^{(1)} \geq \Delta_{t}^{(2)} \geq \ldots, \quad v_{t}^{(k)}=v_{t}-\sum_{j=1}^{k} \Delta_{t}^{(j)} \\
& \text { Problem: } V_{t}^{(k)} / \Delta_{t}^{(k+1)} \text {, and } \Delta_{t}^{(k+1)} / \Delta_{t}^{(k)} \text { as } t \downarrow 0 \text { and } t \rightarrow \infty .
\end{aligned}
$$

$$
\Delta_{t}^{(1)} \geq \Delta_{t}^{(2)} \geq \ldots, \quad V_{t}^{(k)}=V_{t}-\sum_{j=1}^{k} \Delta_{t}^{(j)}
$$

Problem: $V_{t}^{(k)} / \Delta_{t}^{(k+1)}$, and $\Delta_{t}^{(k+1)} / \Delta_{t}^{(k)}$ as $t \downarrow 0$ and $t \rightarrow \infty$.

Outline

Jump - jump ratios

Introduction

Results

Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction Conditional limit results

Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

Ratio of the consecutive jumps

Theorem (K-Mason)
$\Delta_{t}^{(k+1)} / \Delta_{t}^{(k)}$ converges in distribution as $t \downarrow 0$ to Y_{k} iff one of the following holds:
(i) $\bar{\Lambda}$ is regularly varying at 0 with parameter $-\alpha \in[-1,0)$, in which case Y_{k} has beta $(k \alpha, 1)$ distribution, i.e.

$$
G_{k}(x)=\mathbf{P}\left\{Y_{k} \leq x\right\}=x^{k \alpha}, \quad x \in[0,1]
$$

(ii) $\bar{\Lambda}$ is slowly varying at 0 , in which case $Y_{k}=0$ a.s.

Poisson-Dirichlet laws

If S_{t} is a driftless α-stable subordinator, $\alpha \in(0,1)$, with jumps $J_{1}^{(1)}>J_{1}^{(2)}>\ldots$. Then $\left(J_{1}^{(1)} / S_{1}, J_{1}^{(2)} / S_{1}, \ldots\right)$ has Poisson-Dirichlet law with parameter $\alpha\left(\mathrm{PD}_{\alpha}\right)$.

Poisson-Dirichlet laws

If S_{t} is a driftless α-stable subordinator, $\alpha \in(0,1)$, with jumps
$J_{1}^{(1)}>J_{1}^{(2)}>\ldots$. Then $\left(J_{1}^{(1)} / S_{1}, J_{1}^{(2)} / S_{1}, \ldots\right)$ has
Poisson-Dirichlet law with parameter $\alpha\left(\mathrm{PD}_{\alpha}\right)$.
PD laws: Poisson-Kingman partitions; fragmentation; sized
biased reordering; ... Pitman, Yor;
Bertoin: Random fragmentation and coagulation processes.
PD_{α} law has beta $(k \alpha, 1)$ distribution.

Poisson-Dirichlet laws

If S_{t} is a driftless α-stable subordinator, $\alpha \in(0,1)$, with jumps
$J_{1}^{(1)}>J_{1}^{(2)}>\ldots$. Then $\left(J_{1}^{(1)} / S_{1}, J_{1}^{(2)} / S_{1}, \ldots\right)$ has
Poisson-Dirichlet law with parameter $\alpha\left(\mathrm{PD}_{\alpha}\right)$.
PD laws: Poisson-Kingman partitions; fragmentation; sized biased reordering; ... Pitman, Yor;
Bertoin: Random fragmentation and coagulation processes. The ratio of the $(k+1)^{\text {st }}$ and $k^{\text {th }}$ element of a vector which has
PD_{α} law has beta $(k \alpha, 1)$ distribution.

Generalized Poisson-Dirichlet laws

S_{t} driftless α-stable subordinator $\alpha \in(0,1), r \geq 1$:
$\left(J_{1}^{(r+1)} / S_{1}^{(r)}, J_{1}^{(r+2)} / S_{1}^{(r)}, \ldots\right)$ has $\mathrm{PD}_{\alpha}^{(r)}$ distribution. (Ipsen, Maller (2017+)) Point process approach:

Palm distribution, explicit formula for joint distribution of the size biased reordering,

Generalized Poisson-Dirichlet laws

S_{t} driftless α-stable subordinator $\alpha \in(0,1), r \geq 1$:
$\left(J_{1}^{(r+1)} / S_{1}^{(r)}, J_{1}^{(r+2)} / S_{1}^{(r)}, \ldots\right)$ has $\mathrm{PD}_{\alpha}^{(r)}$ distribution. (Ipsen,
Maller (2017+)) Point process approach:

$$
\mathbb{B}^{(r)}=\sum_{i=1}^{\infty} \delta_{R_{r}(i)}, \quad R_{r}(i)=J_{1}^{(r+i)} / J_{1}^{(r)}
$$

Palm distribution, explicit formula for joint distribution of the size biased reordering,

Generalized Poisson-Dirichlet laws

S_{t} driftless α-stable subordinator $\alpha \in(0,1), r \geq 1$:
$\left(J_{1}^{(r+1)} / S_{1}^{(r)}, J_{1}^{(r+2)} / S_{1}^{(r)}, \ldots\right)$ has $\mathrm{PD}_{\alpha}^{(r)}$ distribution. (Ipsen,
Maller (2017+)) Point process approach:

$$
\mathbb{B}^{(r)}=\sum_{i=1}^{\infty} \delta_{R_{r}(i)}, \quad R_{r}(i)=J_{1}^{(r+i)} / J_{1}^{(r)}
$$

Theorem (Ipsen, Maller (2017+))

$$
\mathrm{E} \exp \left\{-\int_{0}^{1} f \mathrm{~dB} \mathbb{B}^{(r)}\right\}=\left(1+\int_{0}^{1}\left(1-e^{-f(x)}\right) \alpha x^{-\alpha-1} \mathrm{~d} x\right)^{-r}
$$

Palm distribution, explicit formula for joint distribution of the size biased reordering, ...

Convergence of point processes

S_{t} driftless α-stable subordinator (jumps up to time 1)

$$
\mathbb{B}^{(r)}=\sum_{i=1}^{\infty} \delta_{R_{r}(i)}, \quad R_{r}(i)=J_{1}^{(r+i)} / J_{1}^{(r)}
$$

V_{t} is a subordinator with Lévy measure Λ,

$$
\mathbb{D}_{t}^{(r, r+n)}=\sum_{i=r+1}^{\infty} \delta_{Q_{r}(i)}, \quad Q_{r}(i)=\Delta_{t}^{(i)} / \Delta_{t}^{(r+n)}
$$

Theorem (Ipsen, Maller, Resnick (2017+))
If $\bar{\Lambda} \in \mathcal{R} \mathcal{V}_{-\alpha}$, then

in the space of point measures with the vague traoology. ㅋ.

Convergence of point processes

S_{t} driftless α-stable subordinator (jumps up to time 1)

$$
\mathbb{B}^{(r)}=\sum_{i=1}^{\infty} \delta_{R_{r}(i)}, \quad R_{r}(i)=J_{1}^{(r+i)} / J_{1}^{(r)}
$$

V_{t} is a subordinator with Lévy measure Λ,

$$
\mathbb{D}_{t}^{(r, r+n)}=\sum_{i=r+1}^{\infty} \delta_{Q_{r}(i)}, \quad Q_{r}(i)=\Delta_{t}^{(i)} / \Delta_{t}^{(r+n)}
$$

Theorem (Ipsen, Maller, Resnick (2017+))
If $\bar{\Lambda} \in \mathcal{R} \mathcal{V}_{-\alpha}$, then

$$
\mathbb{D}_{t}^{(r, r+n)} \xrightarrow{\mathcal{D}} \sum_{i=1}^{\infty} \delta_{R_{r}(i)}, \quad R_{r}(i)=J_{1}^{(r+i)} / J_{1}^{(r+n)}
$$

in the space of point measures with the vague topology.

Theorem (Ipsen, Maller, Resnick (2017+))
Whenever $\bar{\Lambda}$ is regularly varying with parameter $-\alpha \in(-1,0)$,

$$
\left(\frac{\Delta_{t}^{(r+1)}}{\Delta_{t}^{(r)}}, \ldots, \frac{\Delta_{t}^{(r+n)}}{\Delta_{t}^{(r+n-1)}}\right) \xrightarrow{\mathcal{D}}\left(Y_{r}, \ldots, Y_{r+n-1}\right)
$$

where Y_{r}, \ldots, Y_{r+n-1} are independent, Y_{s} has beta($k \alpha, 1$) distribution.

Converse

Theorem (Ipsen, Maller, Resnick (2017+)) $\Delta_{t}^{(k+r)} / \Delta_{t}^{(k)}$ converges in distribution as $t \downarrow 0$ to Y_{k} iff one of the following holds:
(i) $\bar{\Lambda}$ is regularly varying at 0 with parameter $-\alpha \in[-1,0)$, in which case $Y_{k, r} \in(0,1)$;
(ii) $\bar{\Lambda}$ is slowly varying at 0 , in which case $Y_{k, r}=0$ a.s.

Outline

Jump - jump ratios Introduction Results

Process - jump ratios Results
Proof - main idea
St. Petersburg game Introduction Conditional limit results

Trimmed limits Trimmed limit theorem
Properties of the r-trimmed limit

Trimmed process / jumps

Theorem (K-Mason 2014)
$V_{t}^{(k)} / \Delta_{t}^{(k+1)}$ converges in distribution to W_{k} as $t \downarrow 0$ iff one of the following holds:
(i) $\bar{\Lambda}$ is regularly varying at 0 with parameter $-\alpha, \alpha \in(0,1)$, in which case $W_{k} \in(1, \infty)$;
(ii) $\bar{\Lambda}$ is slowly varying at 0 , in which case $W_{k}=1$ a.s.;
(iii) condition

$$
\frac{x \bar{\Lambda}(x)}{\int_{0}^{x} u \Lambda(\mathrm{~d} u)}=0 \quad \text { as } x \downarrow 0
$$

holds, in which case $W_{k}=\infty$ a.s.

Remark

- Buchmann, Fan and Maller (2016): (ii) and (iii) for Lévy processes without a normal components.
- Ipsen, Maller (2017+): more general limit theorems for Lévy processes in the domain of attraction of a stable law.

Remark

- Buchmann, Fan and Maller (2016): (ii) and (iii) for Lévy processes without a normal components.
- Ipsen, Maller (2017+): more general limit theorems for Lévy processes in the domain of attraction of a stable law.

IID counterpart

limit of order statistics:

- Arov, Bobrov (1960) sufficiency
- Smid, Stam (1975), Bingham, Teugels (1979) necessity sum / max:
- $k=0$ (no trimming): Darling (1952) sufficiency part, and Breiman (1965) necessity part
- Teugels (1982): sufficiency part with general k

IID counterpart

limit of order statistics:

- Arov, Bobrov (1960) sufficiency
- Smid, Stam (1975), Bingham, Teugels (1979) necessity sum / max:
- $k=0$ (no trimming): Darling (1952) sufficiency part, and Breiman (1965) necessity part
- Teugels (1982): sufficiency part with general k

IID counterpart

limit of order statistics:

- Arov, Bobrov (1960) sufficiency
- Smid, Stam (1975), Bingham, Teugels (1979) necessity sum / max:
- $k=0$ (no trimming): Darling (1952) sufficiency part, and Breiman (1965) necessity part
- Teugels (1982): sufficiency part with general k

```
Jump - jump ratios

\section*{Outline}

Jump - jump ratios Introduction Results

Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the \(r\)-trimmed limit

\section*{The representation}
\(\omega_{1}, \omega_{2}, \ldots\) iid exponential(1) random variables, and \(\Gamma_{n}=\omega_{1}+\ldots+\omega_{n}\). Put
\[
\varphi(s)=\sup \{y: \bar{\Lambda}(y)>s\}=\bar{\Lambda}^{\leftarrow}(s)
\]


Buchmann, Fan, Maller (2016), LePage, Woodroofe, Zinn (1981), Rosiński (2001)

\section*{The representation}
\(\omega_{1}, \omega_{2}, \ldots\) iid exponential(1) random variables, and \(\Gamma_{n}=\omega_{1}+\ldots+\omega_{n}\). Put
\[
\varphi(s)=\sup \{y: \bar{\Lambda}(y)>s\}=\bar{\Lambda}^{\leftarrow}(s)
\]
\[
V_{t} \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\infty} \varphi\left(\frac{\Gamma_{i}}{t}\right) .
\]

Buchmann, Fan, Maller (2016), LePage, Woodroofe, Zinn (1981), Rosiński (2001)

\section*{The representation}
\(\omega_{1}, \omega_{2}, \ldots\) iid exponential(1) random variables, and
\(\Gamma_{n}=\omega_{1}+\ldots+\omega_{n}\). Put
\[
\begin{gathered}
\qquad(s)=\sup \{y: \bar{\Lambda}(y)>s\}=\bar{\Lambda}^{\leftarrow}(s) \\
V_{t} \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\infty} \varphi\left(\frac{\Gamma_{i}}{t}\right) \\
\left(\Delta_{t}^{(1)}, \Delta_{t}^{(2)}, \ldots\right) \stackrel{\mathcal{D}}{=}\left(\varphi\left(\Gamma_{1} / t\right), \varphi\left(\Gamma_{2} / t\right), \ldots\right) \\
\text { Buchmann, Fan, Maller (2016), LePage, Woodroofe, Zinn }
\end{gathered}
\] (1981), Rosiński (2001)

\section*{The representation}
\(\omega_{1}, \omega_{2}, \ldots\) iid exponential(1) random variables, and
\(\Gamma_{n}=\omega_{1}+\ldots+\omega_{n}\). Put
\[
\begin{gathered}
\varphi(s)=\sup \{y: \bar{\Lambda}(y)>s\}=\bar{\Lambda}^{\leftarrow}(s) \\
V_{t} \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\infty} \varphi\left(\frac{\Gamma_{i}}{t}\right) \\
\left(\Delta_{t}^{(1)}, \Delta_{t}^{(2)}, \ldots\right) \stackrel{\mathcal{D}}{=}\left(\varphi\left(\Gamma_{1} / t\right), \varphi\left(\Gamma_{2} / t\right), \ldots\right)
\end{gathered}
\]

Buchmann, Fan, Maller (2016), LePage, Woodroofe, Zinn (1981), Rosiński (2001)
\[
\begin{gathered}
\varphi(s)=\sup \{y: \bar{\Lambda}(y)>s\}=\bar{\Lambda}^{\leftarrow}(s) . \\
v_{t} \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\infty} \varphi\left(\frac{\Gamma_{i}}{t}\right),\left(\Delta_{t}^{(1)}, \Delta_{t}^{(2)}, \ldots\right) \stackrel{\mathcal{D}}{=}\left(\varphi\left(\Gamma_{1} / t\right), \varphi\left(\Gamma_{2} / t\right), \ldots\right)
\end{gathered}
\]

\[
\begin{gathered}
\varphi(s)=\sup \{y: \bar{\Lambda}(y)>s\}=\bar{\Lambda}^{\leftarrow}(s) \\
V_{t} \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\infty} \varphi\left(\frac{\Gamma_{i}}{t}\right),\left(\Delta_{t}^{(1)}, \Delta_{t}^{(2)}, \ldots\right) \stackrel{\mathcal{D}}{=}\left(\varphi\left(\Gamma_{1} / t\right), \varphi\left(\Gamma_{2} / t\right), \ldots\right) \\
\frac{V_{t}^{(k)}}{\Delta_{t}^{(k+1)}} \stackrel{\mathcal{D}}{=} \frac{\sum_{i=k+1}^{\infty} \varphi\left(\Gamma_{i} / t\right)}{\varphi\left(\Gamma_{k+1} / t\right)}
\end{gathered}
\]

Given \(\Gamma_{k+1}=s,\left(\Gamma_{k+2}, \Gamma_{k+3}, \ldots\right)\) is a homogeneous Poisson point process on ( \(s, \infty\) ), thus
\[
\sum_{i=k+2}^{\infty} \varphi\left(S_{i} / t\right)=\sum_{i=k+2}^{\infty} \varphi\left(\frac{s}{t}+\frac{S_{i}-s}{t}\right)
\]

where \(\varphi_{s}(x)=\varphi(s+x)\).

Given \(\Gamma_{k+1}=s,\left(\Gamma_{k+2}, \Gamma_{k+3}, \ldots\right)\) is a homogeneous Poisson point process on ( \(s, \infty\) ), thus
\[
\begin{aligned}
\sum_{i=k+2}^{\infty} \varphi\left(S_{i} / t\right) & =\sum_{i=k+2}^{\infty} \varphi\left(\frac{s}{t}+\frac{S_{i}-s}{t}\right) \\
& \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\infty} \varphi\left(\frac{s}{t}+\frac{S_{i}}{t}\right)
\end{aligned}
\]
where \(\varphi_{s}(x)=\varphi(s+x)\).

Given \(\Gamma_{k+1}=s,\left(\Gamma_{k+2}, \Gamma_{k+3}, \ldots\right)\) is a homogeneous Poisson point process on ( \(s, \infty\) ), thus
\[
\begin{aligned}
\sum_{i=k+2}^{\infty} \varphi\left(S_{i} / t\right) & =\sum_{i=k+2}^{\infty} \varphi\left(\frac{s}{t}+\frac{S_{i}-s}{t}\right) \\
& \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\infty} \varphi\left(\frac{s}{t}+\frac{S_{i}}{t}\right) \\
& =\sum_{i=1}^{\infty} \varphi_{s / t}\left(S_{i} / t\right)
\end{aligned}
\]
where \(\varphi_{s}(x)=\varphi(s+x)\).


\section*{Proof - main idea}




\section*{Then use the Tauberian theorem 3-times.}
\(E e^{-\lambda \frac{v_{t}^{(k)}}{m_{t}^{(k+1)}}}=\mathbf{E} e^{-\lambda \frac{\sum_{i=k+1}^{\infty} \varphi\left(S_{i} / t\right)}{\varphi\left(S_{k+1} / t\right)}}\)
\(=\int_{0}^{\infty} \frac{s^{k}}{k!} e^{-s}\left[e^{-\lambda} \mathbf{E} e^{-\frac{\lambda}{\varphi(s / t)} \sum_{i=1}^{\infty} \varphi_{s / t}\left(S_{i} / t\right)}\right] d s\)


Then use the Tauberian theorem 3-times.
\(E e^{-\lambda \frac{v_{t}^{(k)}}{m_{t}^{(k+1)}}}=\mathbf{E} e^{-\lambda \frac{\sum_{i=k+1}^{\infty} \varphi\left(S_{i} / t\right)}{\varphi\left(S_{k+1} / t\right)}}\)
\(=\int_{0}^{\infty} \frac{s^{k}}{k!} e^{-s}\left[e^{-\lambda} \mathbf{E} e^{-\frac{\lambda}{\varphi(s / t)} \sum_{i=1}^{\infty} \varphi_{s / t}\left(S_{i} / t\right)}\right] d s\)
\(=e^{-\lambda} \int_{0}^{\infty} \frac{s^{k}}{k!} e^{-s} \exp \left\{-t \int_{s / t}^{\infty}\left[1-e^{-\frac{\lambda}{\varphi(s / t)} \varphi(x)}\right] d x\right\} d s\)


Then use the Tauberian theorem 3-times.
\(\mathbf{E} e^{-\lambda \frac{v_{t}^{(k)}}{m_{t}^{(k+1)}}}=\mathbf{E} e^{-\lambda \frac{\sum_{i=k+1}^{\infty} \varphi\left(S_{i} / t\right)}{\varphi\left(S_{k+1} / t\right)}}\)
\(=\int_{0}^{\infty} \frac{s^{k}}{k!} e^{-s}\left[e^{-\lambda} \mathbf{E} e^{-\frac{\lambda}{\varphi(s / t)} \sum_{i=1}^{\infty} \varphi_{s / t}\left(S_{i} / t\right)}\right] \mathrm{d} s\)
\(=e^{-\lambda} \int_{0}^{\infty} \frac{s^{k}}{k!} e^{-s} \exp \left\{-t \int_{s / t}^{\infty}\left[1-e^{-\frac{\lambda}{\varphi(s / t)} \varphi(x)}\right] \mathrm{d} x\right\} \mathrm{d} s\)
\(=\frac{t^{k+1}}{k!} e^{-\lambda} \int_{0}^{\infty} u^{k} \exp \left\{-t\left(u+\int_{u}^{\infty}\left[1-e^{-\lambda \frac{\varphi(x)}{\varphi(u)}}\right] \mathrm{d} x\right)\right\} \mathrm{d} u\).
Then use the Tauberian theorem 3-times.

Jump - jump ratios Introduction Results

Process - jump ratios Results
Proof - main idea
St. Petersburg game Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the r-trimmed limit

\section*{St. Petersburg paradox}

Nicolaus Bernoulli (1713): Paul's gain \(X\), then
\[
\mathbf{P}\left\{X=2^{k}\right\}=\frac{1}{2^{k}}, \quad k=1,2, \ldots
\]

What is the fair price?
Paradox:

but \(\mathbf{P}\{X>40\}=2^{-5}=0.03125\)
there ought not be a sane man who would not happily sell his chance for forty ducats' - Nicolaus Bernoulli

\section*{St. Petersburg paradox}

Nicolaus Bernoulli (1713): Paul's gain \(X\), then
\[
\mathbf{P}\left\{X=2^{k}\right\}=\frac{1}{2^{k}}, \quad k=1,2, \ldots
\]

What is the fair price?
Paradox:

but \(\mathbf{P}\{X>40\}=2^{-5}=0.03125\)
there ought not be a sane man who would not happily sell his chance for forty ducats' - Nicolaus Bernoulli

\section*{St. Petersburg paradox}

Nicolaus Bernoulli (1713): Paul's gain \(X\), then
\[
\mathbf{P}\left\{X=2^{k}\right\}=\frac{1}{2^{k}}, \quad k=1,2, \ldots
\]

What is the fair price?
Paradox:
\(\mathbf{E}(X)=\sum_{k=1}^{\infty} 2^{k} \frac{1}{2^{k}}=\sum_{k=1}^{\infty} 1=\infty\)
but \(P\{X>40\}=2^{-5}=0.03125\)
'there ought not be a sane man who would not happily sell his chance for forty ducats' - Nicolaus Bernoulli

\section*{St. Petersburg paradox}

Nicolaus Bernoulli (1713): Paul's gain \(X\), then
\[
\mathbf{P}\left\{X=2^{k}\right\}=\frac{1}{2^{k}}, \quad k=1,2, \ldots
\]

What is the fair price?
Paradox:
\[
\begin{aligned}
& \mathbf{E}(X)=\sum_{k=1}^{\infty} 2^{k} \frac{1}{2^{k}}=\sum_{k=1}^{\infty} 1=\infty \\
& \text { but } \mathbf{P}\{X>40\}=2^{-5}=0.03125
\end{aligned}
\]
'there ought not be a sane man who would not happily sell his chance for forty ducats' - Nicolaus Bernoulli

\section*{\(x_{1}, x_{2}, \ldots\) iid St.Petersburg rv's, \(s_{n}=\sum_{i=1}^{n} x_{i}\),}


Doeblin-Gnedenko criterion:

\(2^{\left\{\log _{2} x\right\}}\) is not slowly varying ( \(\{\cdot\}\) fractional part)

\section*{CLT}
\(X_{1}, X_{2}, \ldots\) iid St.Petersburg rv's, \(S_{n}=\sum_{i=1}^{n} X_{i}\),
\[
\frac{S_{n}-c_{n}}{a_{n}} \xrightarrow{\mathcal{D}} ?
\]

Doeblin-Gnedenko criterion:
\[
\mathbf{P}\{X \leq x\}= \begin{cases}0, & \text { for } x<2 \\ 1-2^{-\left\lfloor\log _{2} x\right\rfloor}=1-\frac{2^{\left\{\log _{2} x\right\}}}{x}, & \text { for } x \geq 2\end{cases}
\]
\(2^{\left\{\log _{2} x\right\}}\) is not slowly varying ( \(\{\cdot\}\) fractional part)

\section*{CLT}
\(x_{1}, X_{2}, \ldots\) iid St.Petersburg rv's, \(S_{n}=\sum_{i=1}^{n} x_{i}\),
\[
\frac{S_{n}-c_{n}}{a_{n}} \xrightarrow{\mathcal{D}} ?
\]

Doeblin-Gnedenko criterion:
\[
\mathbf{P}\{X \leq x\}= \begin{cases}0, & \text { for } x<2, \\ 1-2^{-\left\lfloor\log _{2} x\right\rfloor}=1-\frac{2^{\left\{\log _{2} x\right\}}}{x}, & \text { for } x \geq 2\end{cases}
\]
\(2^{\left\{\log _{2} x\right\}}\) is not slowly varying ( \(\{\cdot\}\) fractional part) \(\Rightarrow\) there is no limit theorem for \(\frac{S_{n}-c_{n}}{a_{n}}\) for any choice of \(a_{n}, c_{n}\).

\section*{There is on subsequences!}

Theorem (Martin-Löf (1985))
\[
\frac{S_{2^{n}}}{2^{n}}-n \xrightarrow{\mathcal{D}} W, \quad \text { as } n \rightarrow \infty .
\]

W semistable rv. Moreover, convergence holds on subsequences \(n_{k}=\left\lfloor\gamma 2^{k}\right\rfloor, \gamma \in(1 / 2,1]\).
Csörgő \& Dodunekova (1991): convergence only on these
subsequences
Lévy (1935): definition of semistable laws, convergence on
subsequences

\section*{There is on subsequences!}

Theorem (Martin-Löf (1985))
\[
\frac{S_{2^{n}}}{2^{n}}-n \xrightarrow{\mathcal{D}} W, \quad \text { as } n \rightarrow \infty .
\]

W semistable rv. Moreover, convergence holds on subsequences \(n_{k}=\left\lfloor\gamma 2^{k}\right\rfloor, \gamma \in(1 / 2,1]\).
Csörgő \& Dodunekova (1991): convergence only on these subsequences
Lévy (1935): definition of semistable laws, convergence on subsequences

\section*{Merging}

\section*{Theorem (Csörgő (2002))}
\[
\sup _{x \in \mathbb{R}}\left|\mathbf{P}\left\{\frac{S_{n}}{n}-\log _{2} n \leq x\right\}-G_{\gamma_{n}}(x)\right| \rightarrow 0, \quad \text { as } n \rightarrow \infty,
\]
where
\[
\gamma_{n}=\frac{n}{2^{\left\lceil\log _{2} n\right\rceil}} .
\]

\section*{The limit}

Characteristic function of \(W_{\gamma}, \gamma \in(1 / 2,1]\),
\[
\mathbf{E}\left(e^{\mathrm{i} t W_{\gamma}}\right)=\exp \left(\mathrm{i} t a+\int_{0}^{\infty}\left(e^{\mathrm{i} t x}-1-\frac{\mathrm{i} t x}{1+x^{2}}\right) \mathrm{d} R_{\gamma}(x)\right)
\]
with right-hand-side Lévy function
\[
R_{\gamma}(x)=-\frac{\gamma}{2^{\left\lfloor\log _{2}(\gamma x)\right\rfloor}}=-\frac{2^{\left\{\log _{2}(\gamma x)\right\}}}{x}, \quad x>0
\]
(semistable laws, Lévy)

\section*{The maximum}

For \(j \in \mathbb{Z}\) and \(\gamma \in[1 / 2,1]\) introduce the notation
\[
p_{j, \gamma}=e^{-\gamma 2^{-j}}\left(1-e^{-\gamma 2^{-j}}\right), \quad \gamma_{n}=\frac{n}{2^{\left\lceil\log _{2} n\right\rceil}}
\]

Lemma


In particular for any \(j \in \mathbb{Z}\), as \(n \rightarrow \infty\)


\section*{The maximum}

For \(j \in \mathbb{Z}\) and \(\gamma \in[1 / 2,1]\) introduce the notation
\[
p_{j, \gamma}=e^{-\gamma 2^{-j}}\left(1-e^{-\gamma 2^{-j}}\right), \quad \gamma_{n}=\frac{n}{2^{\left\lceil\log _{2} n\right\rceil}}
\]

Lemma
\[
\sup _{j \in \mathbb{Z}}\left|\mathbf{P}\left\{X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+j}\right\}-p_{j, \gamma_{n}}\right|=O\left(n^{-1}\right)
\]

In particular for any \(j \in \mathbb{Z}\), as \(n \rightarrow \infty\)
\[
\mathbf{P}\left\{X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+j}\right\} \sim e^{-\gamma_{n} 2^{-j}}\left(1-e^{-\gamma_{n} 2^{-j}}\right) .
\]

\section*{Typical maximum}

Proposition (Gut \& Martin-Löf (2016))
Conditionally on \(X_{n}^{*}=2^{\left[\log _{2} n\right\rceil+j}, j \in \mathbb{Z}\),
\[
\#\left\{j: j \leq n, X_{j}=X_{n}^{*}\right\} \xrightarrow{\mathcal{D}} M_{j, \gamma_{n}} \quad \text { (in the merging sense), }
\]
where \(M_{j, \gamma} \sim \operatorname{Poisson}\left(2^{-j} \gamma\right)\) conditioned on not being zero.

Jump - jump ratios Introduction Results

Process - jump ratios Results
Proof - main idea
St. Petersburg game Introduction

\section*{Conditional limit results}

Trimmed limits
Trimmed limit theorem
Properties of the \(r\)-trimmed limit

\section*{Conditioning on typical maximum}

Proposition (Berkes-Györfi-K (2016))
For \(j \in \mathbb{Z}\) we have
\[
\left|\mathbf{P}\left\{\left.\frac{S_{n}}{n}-\log _{2} n \leq x \right\rvert\, X_{n}^{*}=2^{[\log 2 n\rceil+j}\right\}-\widetilde{G}_{j, \gamma_{n}}(x)\right| \rightarrow 0,
\]
where
\[
\widetilde{G}_{j, \gamma}(x)=\sum_{m=1}^{\infty} G_{j-1, \gamma}\left(x-m \frac{2^{j}}{\gamma}\right) \frac{\left(2^{-j} \gamma\right)^{m}}{m!}\left(e^{2^{-j} \gamma}-1\right)^{-1}
\]
\[
\begin{aligned}
G_{j, \gamma}(x) & =\mathbf{P}\left(W_{j, \gamma} \leq x\right) \\
\varphi_{j, \gamma}(t) & =\mathbf{E} e^{\mathrm{i} t W_{j, \gamma}}=\exp \left[\mathrm{i} t u_{j, \gamma}+\int_{0}^{\infty}\left(e^{\mathrm{i} t x}-1-\mathrm{i} t x\right) \mathrm{d} L_{j, \gamma}(x)\right],
\end{aligned}
\]
with
\[
L_{j, \gamma}(x)= \begin{cases}\gamma^{-j}-\frac{\left.2^{(\log } 2(\gamma x)\right\}}{x}, & \text { for } x<2^{j} \gamma^{-1}, \\ 0, & \text { for } x \geq 2^{j} \gamma^{-1},\end{cases}
\]

\section*{Corollary}

Theorem (Gut \& Martin-Löf (2016))
For any \(\gamma \in[1 / 2,1]\)
\[
G_{\gamma}(x)=\sum_{j=-\infty}^{\infty} \widetilde{G}_{j, \gamma}(x) e^{-\gamma 2^{-j}}\left(1-e^{-\gamma 2^{-j}}\right) .
\]

This is equivalent to the distributional representation


\section*{Corollary}

Theorem (Gut \& Martin-Löf (2016))
For any \(\gamma \in[1 / 2,1]\)
\[
G_{\gamma}(x)=\sum_{j=-\infty}^{\infty} \tilde{G}_{j, \gamma}(x) e^{-\gamma 2^{-j}}\left(1-e^{-\gamma 2^{-j}}\right) .
\]

This is equivalent to the distributional representation
\[
W_{\gamma} \stackrel{\mathcal{D}}{=} W_{Y_{\gamma}-1, \gamma}+M_{Y_{\gamma}, \gamma} 2^{Y_{\gamma}} \gamma^{-1},
\]
where \(\left(W_{j, \gamma}\right)_{j \in \mathbb{Z}},\left(M_{j, \gamma}\right)_{j \in \mathbb{Z}}\) and \(Y_{\gamma}\) are independent, \(Y_{\gamma} \sim\left(p_{j, \gamma}\right)_{j \in \mathbb{Z}}, M_{j, \gamma} \sim\) Poisson \(\left(\gamma 2^{-j}\right)\) conditioned on not being 0 .

\section*{Buchmann, Fan \& Maller (2016) result}

Lévy process setup: \(W_{\gamma}\) is a semistable Lévy process at time 1.
\[
W_{\gamma} \stackrel{\mathcal{D}}{=} W_{Y_{\gamma}-1, \gamma}+M_{Y_{\gamma}, \gamma} 2^{Y_{\gamma}} \gamma^{-1},
\]

The value \(2^{Y_{\gamma}} / \gamma\) corresponds to the maximum jump, \(M_{Y_{\gamma}, \gamma}\) is the number of the maximum jumps, and \(W_{Y_{\gamma}-1, \gamma}\) has the law of the Lévy process conditioned on that the maximum jump is strictly less than \(2^{\gamma_{\gamma}} / \gamma\).
processes were obtained by Buchmann, Fan \& Maller (2016).

\section*{Buchmann, Fan \& Maller (2016) result}

Lévy process setup: \(W_{\gamma}\) is a semistable Lévy process at time 1.
\[
W_{\gamma} \stackrel{\mathcal{D}}{=} W_{Y_{\gamma}-1, \gamma}+M_{Y_{\gamma}, \gamma} 2^{Y_{\gamma}} \gamma^{-1},
\]

The value \(2^{Y_{\gamma}} / \gamma\) corresponds to the maximum jump, \(M_{Y_{\gamma}, \gamma}\) is the number of the maximum jumps, and \(W_{Y_{\gamma}-1, \gamma}\) has the law of the Lévy process conditioned on that the maximum jump is strictly less than \(2^{\gamma_{\gamma}} / \gamma\).
This kind of distributional representations for general Lévy processes were obtained by Buchmann, Fan \& Maller (2016).

\section*{Jump - jump ratios \\ Outline}

Jump - jump ratios Introduction Results

Process - jump ratios Results
Proof - main idea
St. Petersburg game Introduction Conditional limit results

Trimmed limits Trimmed limit theorem
Properties of the \(r\)-trimmed limit

\section*{Notation}
\(X, X_{1}, X_{2}, \ldots\) iid St. Petersburg rv's
\(X_{1 n} \leq X_{2 n} \leq \ldots \leq X_{n n}\) ordered sample of \(X_{1}, X_{2}, \ldots, X_{n}\).
\(r\)-trimmed sum: \(S_{n, r}=\sum_{k=1}^{n-r} X_{k n}\).
\(\omega_{1}, \omega_{2}, \ldots\) iid \(\operatorname{Exp}(1), \Gamma_{k}=\omega_{1}+\ldots+\omega_{k}\)
Theorem (Berkes-Györfi-K (2016))
Let \(n_{k}=\left\lfloor\gamma 2^{k}\right\rfloor\), for some \(\gamma \in(1 / 2,1]\). Then for any \(r \geq 0\)
\(\frac{1}{n_{k}} S_{n_{k}, r}-a_{n_{k}, \gamma}^{(r)} \xrightarrow{\mathcal{D}} Y_{r, \gamma}=\sum_{k=r+1}^{\infty} \gamma^{-1}\left(2^{-\left\lfloor\log _{2} \Gamma_{k} / \gamma\right\rfloor}-2^{-\left\lfloor\log _{2} k / \gamma\right\rfloor}\right)\),
with centering sequence
\[
a_{n, \gamma}^{(r)}=\gamma^{-1} \sum_{j=r+1}^{n} 2^{-\lfloor j / \gamma\rfloor}
\]

\section*{Proof (sketch)}

Quantile method \& LePage, Woodroofe, Zinn idea.

where \(F^{-1}(s)=Q(s)=\inf \{x: s \leq F(x)\}\)

\(\left(\omega_{i}\right)_{i \in \mathbb{N}}\) iid \(\operatorname{Exp}(1), \Gamma_{n}=\omega_{1}+\ldots+\omega_{n}\). For \(n\) fix

where U's are ordered sample of \(n\) iid \(\operatorname{Uniform}(0,1)\).

\section*{Proof (sketch)}

Quantile method \& LePage, Woodroofe, Zinn idea.
Quantile representation: \(\left(X_{1 n}, \ldots, X_{n n}\right) \stackrel{\mathcal{D}}{=}\left(Q\left(U_{1 n}\right), \ldots, Q\left(U_{n n}\right)\right)\), where \(F^{-1}(s)=Q(s)=\inf \{x: s \leq F(x)\}\)

where U's are ordered sample of \(n\) iid \(\operatorname{Uniform}(0,1)\).

\section*{Proof (sketch)}

Quantile method \& LePage, Woodroofe, Zinn idea.
Quantile representation: \(\left(X_{1 n}, \ldots, X_{n n}\right) \stackrel{\mathcal{D}}{=}\left(Q\left(U_{1 n}\right), \ldots, Q\left(U_{n n}\right)\right)\), where \(F^{-1}(s)=Q(s)=\inf \{x: s \leq F(x)\}\)
\[
Q(s)= \begin{cases}2, & s=0 \\ 2^{\left\lceil-\log _{2}(1-s)\right\rceil}=\frac{2^{\left\{\log _{2}(1-s)\right\}}}{1-s}, & s \in(0,1)\end{cases}
\]

where U's are ordered sample of \(n\) iid \(\operatorname{Uniform}(0,1)\).

\section*{Proof (sketch)}

Quantile method \& LePage, Woodroofe, Zinn idea.
Quantile representation: \(\left(X_{1 n}, \ldots, X_{n n}\right) \stackrel{\mathcal{D}}{=}\left(Q\left(U_{1 n}\right), \ldots, Q\left(U_{n n}\right)\right)\), where \(F^{-1}(s)=Q(s)=\inf \{x: s \leq F(x)\}\)
\[
Q(s)= \begin{cases}2, & s=0 \\ 2^{\left.\Gamma-\log _{2}(1-s)\right\rceil}=\frac{2^{\left\{\log _{2}(1-s)\right\}}}{1-s}, & s \in(0,1) .\end{cases}
\]
\(\left(\omega_{i}\right)_{i \in \mathbb{N}}\) iid \(\operatorname{Exp}(1), \Gamma_{n}=\omega_{1}+\ldots+\omega_{n}\). For \(n\) fix
\[
\left(U_{1 n}, U_{2 n}, \ldots, U_{n n}\right) \stackrel{\mathcal{D}}{=}\left(\frac{\Gamma_{1}}{\Gamma_{n+1}}, \frac{\Gamma_{2}}{\Gamma_{n+1}}, \ldots, \frac{\Gamma_{n}}{\Gamma_{n+1}}\right)
\]
where U's are ordered sample of \(n\) iid \(\operatorname{Uniform}(0,1)\).

\section*{Proof}
\[
\begin{aligned}
& \Psi(x)=2^{\left\{\log _{2} x\right\}}\left(\text { grows linearly from } 1 \text { to } 2 \text { in each }\left[2^{j}, 2^{j+1}\right)\right) . \\
& Q(1-s)=\Psi(s) / s
\end{aligned}
\]


\section*{Proof}
\[
\begin{aligned}
& \left.\Psi(x)=2^{\left\{\log _{2} x\right\}} \text { (grows linearly from } 1 \text { to } 2 \text { in each }\left[2^{j}, 2^{j+1}\right)\right) . \\
& Q(1-s)=\Psi(s) / s \\
& \quad\left(X_{1 n}, \ldots, X_{n n}\right)=\left(\frac{\mathcal{D}}{=}\left(\Gamma_{n+1} \Gamma_{1} \psi\left(\Gamma_{1} / \Gamma_{n+1}\right), \ldots, \frac{\Gamma_{n+1}}{\Gamma_{n}} \Psi\left(\Gamma_{n} / \Gamma_{n+1}\right)\right)\right. \\
& \text { SLLN } \Gamma_{n+1} / n \rightarrow 1 \text { a.s. } \\
& \quad X_{j, n}=\frac{n}{\Gamma_{j}} \psi\left(\frac{\Gamma_{j}}{n}\right)(1+o(1)) \quad \text { a.s. }
\end{aligned}
\]

\section*{Proof}
\[
\begin{aligned}
& \Psi(x)=2^{\left\{\log _{2} x\right\}}\left(\text { grows linearly from } 1 \text { to } 2 \text { in each }\left[2^{j}, 2^{j+1}\right)\right) . \\
& Q(1-s)=\Psi(s) / s \\
& \quad\left(X_{1 n}, \ldots, X_{n n}\right) \stackrel{\mathcal{D}}{=}\left(\frac{\Gamma_{n+1}}{\Gamma_{1}} \Psi\left(\Gamma_{1} / \Gamma_{n+1}\right), \ldots, \frac{\Gamma_{n+1}}{\Gamma_{n}} \Psi\left(\Gamma_{n} / \Gamma_{n+1}\right)\right)
\end{aligned}
\]
\(\operatorname{SLLN} \Gamma_{n+1} / n \rightarrow 1\) a.s.
\[
X_{j, n}^{*}=\frac{n}{\Gamma_{j}} \Psi\left(\frac{\Gamma_{j}}{n}\right)(1+o(1)) \quad \text { a.s. }
\]

\section*{Proof}
\[
\begin{aligned}
& \Psi(x)=2^{\left\{\log _{2} x\right\}}\left(\text { grows linearly from } 1 \text { to } 2 \text { in each }\left[2^{j}, 2^{j+1}\right)\right) . \\
& Q(1-s)=\Psi(s) / s \\
& \quad\left(X_{1 n}, \ldots, X_{n n}\right) \stackrel{\mathcal{D}}{=}\left(\frac{\Gamma_{n+1}}{\Gamma_{1}} \Psi\left(\Gamma_{1} / \Gamma_{n+1}\right), \ldots, \frac{\Gamma_{n+1}}{\Gamma_{n}} \Psi\left(\Gamma_{n} / \Gamma_{n+1}\right)\right)
\end{aligned}
\]
\(\operatorname{SLLN} \Gamma_{n+1} / n \rightarrow 1\) a.s.
\[
\begin{gathered}
X_{j, n}^{*}=\frac{n}{\Gamma_{j}} \Psi\left(\frac{\Gamma_{j}}{n}\right)(1+o(1)) \quad \text { a.s. } \\
\Psi\left(\Gamma_{j} / n\right)=\Psi\left(\Gamma_{j} / \gamma_{n}\right)
\end{gathered}
\]

\section*{LePage, Woodroofe \& Zinn (1981)}
\[
\begin{aligned}
& Y, Y_{1}, Y_{2}, \ldots \text { iid, } \geq 0, Y \in D(\alpha), S_{n} \text { partial sum, } \\
& \left(S_{n}-n b_{n}\right) / a_{n} \rightarrow S . Y_{1, n} \geq Y_{2, n} \geq \ldots \geq Y_{n, n}
\end{aligned}
\]

where \(\omega_{1}, \omega_{2}, \ldots\) are iid \(\operatorname{Exp}(1), \Gamma_{k}=\omega_{1}+\ldots+\omega_{k}\). Moreover,


\section*{LePage, Woodroofe \& Zinn (1981)}
\(Y, Y_{1}, Y_{2}, \ldots\) iid, \(\geq 0, Y \in D(\alpha), S_{n}\) partial sum, \(\left(S_{n}-n b_{n}\right) / a_{n} \rightarrow S . Y_{1, n} \geq Y_{2, n} \geq \ldots \geq Y_{n, n}\)
\[
S=\sum_{k=1}^{\infty}\left(\Gamma_{k}^{-1 / \alpha}-\mathbf{E} \Gamma_{k}^{-1 / \alpha} l\left(\Gamma_{k}^{-1 / \alpha}<1\right)\right),
\]
where \(\omega_{1}, \omega_{2}, \ldots\) are iid \(\operatorname{Exp}(1), \Gamma_{k}=\omega_{1}+\ldots+\omega_{k}\). Moreover,
\[
\left(\frac{S_{n}-n b_{n}}{a_{n}},\left(\frac{Y_{1, n}}{a_{n}}, \ldots, \frac{Y_{n, n}}{a_{n}}\right)\right) \xrightarrow{\mathcal{D}}\left(S,\left(\Gamma_{1}^{-1 / \alpha}, \Gamma_{2}^{-1 / \alpha}, \ldots\right)\right) .
\]

\section*{On the centering}

For any \(\gamma \in(1 / 2,1], n_{k}=\left\lfloor\gamma 2^{k}\right\rfloor\),
\[
a_{n_{k}, \gamma}^{(0)}-\log _{2} n_{k} \rightarrow 2-\frac{1}{\gamma} \sum_{k=1}^{\infty} \frac{k \varepsilon_{k}}{2^{k}}-\log _{2} \gamma=\xi(\gamma),
\]
where \(\gamma=\sum_{k=1}^{\infty} \varepsilon_{k} 2^{-k}\).
Steinhaus' resolution of the St. Petersburg paradox (Csörgő \&
Simons 1993)
\(\xi\) is right-continuous, left-continuous except at dyadic rationals greater than \(1 / 2\) and has unbounded variation (Csörgő \& Simons 1993); the Hausdorff and box-dimension of the graph of \(\xi\) is 1 (Kern \& Wedrich 2014).

\section*{On the centering}

For any \(\gamma \in(1 / 2,1], n_{k}=\left\lfloor\gamma 2^{k}\right\rfloor\),
\[
a_{n_{k}, \gamma}^{(0)}-\log _{2} n_{k} \rightarrow 2-\frac{1}{\gamma} \sum_{k=1}^{\infty} \frac{k \varepsilon_{k}}{2^{k}}-\log _{2} \gamma=\xi(\gamma),
\]
where \(\gamma=\sum_{k=1}^{\infty} \varepsilon_{k} 2^{-k}\).
Steinhaus' resolution of the St. Petersburg paradox (Csörgő \& Simons 1993)
> \(\xi\) is right-continuous, left-continuous except at dyadic rationals greater than 1/2 and has unbounded variation (Csörgő \& Simons 1993); the Hausdorff and box-dimension of the graph of छ is 1 (Kern \& Wedrich 2014).

\section*{On the centering}

For any \(\gamma \in(1 / 2,1], n_{k}=\left\lfloor\gamma 2^{k}\right\rfloor\),
\[
a_{n_{k}, \gamma}^{(0)}-\log _{2} n_{k} \rightarrow 2-\frac{1}{\gamma} \sum_{k=1}^{\infty} \frac{k \varepsilon_{k}}{2^{k}}-\log _{2} \gamma=\xi(\gamma)
\]
where \(\gamma=\sum_{k=1}^{\infty} \varepsilon_{k} 2^{-k}\).
Steinhaus' resolution of the St. Petersburg paradox (Csörgő \& Simons 1993)
\(\xi\) is right-continuous, left-continuous except at dyadic rationals greater than \(1 / 2\) and has unbounded variation (Csörgő \& Simons 1993); the Hausdorff and box-dimension of the graph of \(\xi\) is 1 (Kern \& Wedrich 2014).

\section*{Trimmed limit theorem}
\(\xi(\gamma)\)


\section*{Jump - jump ratios \\ Outline}

Jump - jump ratios
Introduction
Results
Process - jump ratios
Results
Proof - main idea
St. Petersburg game
Introduction
Conditional limit results
Trimmed limits
Trimmed limit theorem
Properties of the \(r\)-trimmed limit

\section*{Tail of the trimmed limit}
\[
Y_{r, \gamma}=\sum_{k=r+1}^{\infty} \gamma^{-1}\left(2^{-\left\lfloor\log _{2} \Gamma_{k} / \gamma\right\rfloor}-2^{-\left\lfloor\log _{2} k / \gamma\right\rfloor}\right), \quad A_{r, \gamma}=\gamma^{-1} \sum_{k=1}^{r} 2^{\lfloor k / \gamma\rfloor}
\]

Theorem (Berkes-Györfi-K (2016))
\[
\begin{aligned}
& \mathbf{P}\left\{Y_{r, \gamma}>x\right\} \sim \frac{2^{\left\{\log _{2}(\gamma x)\right\}(r+1)}}{(r+1)!x^{r+1}}\left[2^{-r-1}+\left(2^{r+1}-1\right)\right. \\
& \left.\quad \times \sum_{\ell=0}^{1} 2^{-\ell(r+1)} \mathbf{P}\left\{Y_{0, \gamma}+A_{r, \gamma}>x\left(1-2^{\ell-\left\{\log _{2}(\gamma x)\right\}}\right)\right\}\right]
\end{aligned}
\]

\section*{Properties of the \(r\)-trimmed limit}

\section*{Untrimmed case}
\[
\begin{aligned}
\mathbf{P}\left\{Y_{0, \gamma}>x\right\} & \sim \frac{2^{\left\{\log _{2}(\gamma x)\right\}}}{x} \\
& \times\left[2^{-1}+\sum_{\ell=0}^{1} 2^{-\ell} \mathbf{P}\left\{Y_{0, \gamma}>x\left(1-2^{\ell-\left\{\log _{2}(\gamma x)\right\}}\right)\right\}\right]
\end{aligned}
\]

\section*{Exactly the tail of the Lévy measure appears}


\section*{Untrimmed case}
\[
\begin{aligned}
\mathbf{P}\left\{Y_{0, \gamma}>x\right\} & \sim \frac{2^{\left\{\log _{2}(\gamma x)\right\}}}{x} \\
& \times\left[2^{-1}+\sum_{\ell=0}^{1} 2^{-\ell} \mathbf{P}\left\{Y_{0, \gamma}>x\left(1-2^{\ell-\left\{\log _{2}(\gamma x)\right\}}\right)\right\}\right]
\end{aligned}
\]

Exactly the tail of the Lévy measure appears
\[
\left.\frac{\mathbf{P}\left\{Y_{0, \gamma}>x\right\}}{-R_{\gamma}(x)} \sim 2^{-1}+\sum_{\ell=0}^{1} 2^{-\ell} \mathbf{P}\left\{Y_{0, \gamma}>x\left(1-2^{\ell-\left\{\log _{2}(\gamma x)\right\}}\right)\right\}\right]
\]

\section*{Properties of the \(r\)-trimmed limit}
\[
\left.\frac{\mathbf{P}\left\{Y_{0, \gamma}>x\right\}}{-R_{\gamma}(x)} \sim 2^{-1}+\sum_{\ell=0}^{1} 2^{-\ell} \mathbf{P}\left\{Y_{0, \gamma}>x\left(1-2^{\ell-\left\{\log _{2}(\gamma x)\right\}}\right)\right\}\right]
\]

\[
\begin{aligned}
\frac{\mathbf{P}\left\{Y_{0, \gamma}>x\right\}}{-R_{\gamma}(x)} \sim 2^{-1}+ & \left.\sum_{\ell=0}^{1} 2^{-\ell} \mathbf{P}\left\{Y_{0, \gamma}>x\left(1-2^{\ell-\left\{\log _{2}(\gamma x)\right\}}\right)\right\}\right] \\
2^{-1}+2^{-1} \mathbf{P}\left\{Y_{0, \gamma}>0\right\} & =\liminf _{x \rightarrow \infty} \frac{\mathbf{P}\left\{Y_{0, \gamma}>x\right\}}{-R_{\gamma}(x)} \\
& <\limsup _{x \rightarrow \infty} \frac{\mathbf{P}\left\{Y_{0, \gamma}>x\right\}}{-R_{\gamma}(x)}=1+\mathbf{P}\left\{Y_{0, \gamma}>0\right\}
\end{aligned}
\]

For any \(\delta \in(0,1 / 2)\) we have
\[
\lim _{x \rightarrow \infty, \delta<\left\{\log _{2}(\gamma x)\right\}<1-\delta} \mathbf{P}\left\{Y_{r, \gamma}>x\right\} \frac{x}{2\left\{\log _{2}(\gamma x)\right\}}=1
\]

In the untrimmed case \((r=0)\) for \(\gamma=1\)

(Martin-Löf 1985).

For any \(\delta \in(0,1 / 2)\) we have
\[
\lim _{x \rightarrow \infty, \delta<\left\{\log _{2}(\gamma x)\right\}<1-\delta} \mathbf{P}\left\{Y_{r, \gamma}>x\right\} \frac{x}{2^{\left\{\log _{2}(\gamma x)\right\}}}=1 .
\]

In the untrimmed case \((r=0)\) for \(\gamma=1\)
\[
\mathbf{P}\left\{Y_{0,1}>2^{m}+c\right\} \sim 2^{-m}\left[1+\mathbf{P}\left\{Y_{0,1}>c\right\}\right], \quad \text { as } m \rightarrow \infty
\]
(Martin-Löf 1985).

\section*{Watanabe \& Yamamuro (2012) result}

For general semistable distributions:
\[
\begin{gathered}
\lim _{n \rightarrow \infty} 2^{n} \mathbf{P}\left\{W_{1}>x 2^{n}\right\}=-R_{1}(x)+\left[R_{1}(x-)-R_{1}(x)\right] \mathbf{P}\left\{W_{1}>0\right\} \\
C_{*}=\liminf _{x \rightarrow \infty} \frac{\mathbf{P}\{W>x\}}{-R(x)} \leq \limsup _{x \rightarrow \infty} \frac{\mathbf{P}\{W>x\}}{-R(x)}=C^{*},
\end{gathered}
\]
with
\[
\begin{aligned}
& C_{*}=1-\left(1-Q^{-1}\right) \mathbf{P}\{W<0\}, C^{*}=Q+(Q-1) \mathbf{P}\{W<0\} \text {, } \\
& \text { and } Q=\sup _{x \in[1,2]} R(x-) / R(x) .
\end{aligned}
\]```

