On the Breiman conjecture

Péter Kevei¹ David Mason²

¹TU Munich

²University of Delaware

12th GPSD Bochum

Introduction

Motivation Earlier results

Partial solution

Results Sketch of the proof

Subsequential limits

Introduction Motivation

Earlier results

Partial solution

Results Sketch of the proof

Subsequential limits

Introduction Motivation Earlier results

Partial solution

Results Sketch of the proof

Subsequential limits

Introduction Motivation Earlier results

Partial solution

Results Sketch of the proof

Subsequential limits

Introduction Motivation Earlier results

Partial solution

Results

Sketch of the proof

Subsequential limits

Introduction Motivation

Earlier results

Partial solution

Results Sketch of the proof

Subsequential limits

Introduction Motivation

Earlier results

Partial solution

Results Sketch of the proof

Subsequential limits

Introduction Motivation

Earlier results

Partial solution

Results Sketch of the proof

Subsequential limits

Introduction Motivation

Earlier results

Partial solution

Results Sketch of the proof

Subsequential limits

Introduction	Partial solution	Subsequential limits
•0000 0000000	000000 00000	0000000

Outline

Introduction Motivation

Earlier results

Partial solution

Results Sketch of the proof

Subsequential limits

Introduction	Partial solution	Subsequential limits
00000 0000000	000000 00000	0000000

Breiman 1965

Coin tossing \longrightarrow random walk S_1, S_2, \dots Put Y_1, Y_2, \dots the interarrival times between the zeros of S_1, S_2, \dots X, X_1, X_2, \dots iid $\mathbf{P}\{X = 0\} = \frac{1}{2} = \mathbf{P}\{X = 1\}.$ $T_n = \frac{\sum_{i=1}^n X_i Y_i}{\sum_{i=1}^n Y_i}$

is the proportion of the time that the random walk spends in $[0,\infty)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Introduction	Partial solution	Subsequential limits
00000 0000000	000000 00000	0000000

Breiman 1965

Coin tossing \longrightarrow random walk $S_1, S_2, ...$ Put $Y_1, Y_2, ...$ the interarrival times between the zeros of $S_1, S_2, ...$ $X, X_1, X_2, ...$ iid $\mathbf{P}\{X = 0\} = \frac{1}{2} = \mathbf{P}\{X = 1\}.$ $T_n = \frac{\sum_{i=1}^n X_i Y_i}{\sum_{i=1}^n Y_i}$

is the proportion of the time that the random walk spends in $[0,\infty)$.

ロ と く 伺 と く き と く き と

Introduction	Partial solution	Subsequential limits
00000	000000 00000	0000000

Arc-sine law

In this case:

$$\lim_{n\to\infty} \mathbf{P}\left\{T_n \le x\right\} = \frac{2}{\pi} \arcsin\sqrt{x}$$

On the Breiman conjecture

Introduction	Partial solution	Subsequential limits
00000	000000	0000000

In general

Y, *Y*₁, *Y*₂,... non-negative iid rv's with df *G* X, X_1, X_2, \ldots iid with df *F*, independent from *Y*, *Y*₁, *Y*₂,..., $E|X| < \infty$

$$T_n = \frac{\sum_{i=1}^n X_i Y_i}{\sum_{i=1}^n Y_i}$$

OOOOO OOOOOO OO OO OOOOOO OOOOOO OO OO	00000

In general

Y, Y_1, Y_2, \dots non-negative iid rv's with df G X, X_1, X_2, \dots iid with df F, independent from Y, Y_1, Y_2, \dots , $\mathbf{E}|X| < \infty$

$$T_n = \frac{\sum_{i=1}^n X_i Y_i}{\sum_{i=1}^n Y_i}$$

OOOOO OOOOOO OO OO OOOOOO OOOOOO OO OO	00000

In general

Y, Y_1, Y_2, \dots non-negative iid rv's with df G X, X_1, X_2, \dots iid with df F, independent from Y, Y_1, Y_2, \dots , $\mathbf{E}|X| < \infty$

$$T_n = \frac{\sum_{i=1}^n X_i Y_i}{\sum_{i=1}^n Y_i}$$

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで

Introduction	Partial solution	Subsequential limits
00000 00000000	000000 00000	000000

Remark

If $\mathbf{E}Y < \infty$, then

$$\frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} Y_i} = \frac{\frac{\sum_{i=1}^{n} X_i Y_i}{n}}{\frac{\sum_{i=1}^{n} Y_i}{n}} \xrightarrow{\text{a.s.}} \mathbf{E} X.$$

 $\mathbf{E}|X| < \infty$ implies (T_n) is tight.

On the Breiman conjecture

Introduction	Partial solution	Subsequential limits
00000 00000000	000000 00000	0000000

Remark

If $\mathbf{E}Y < \infty$, then

$$\frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} Y_i} = \frac{\frac{\sum_{i=1}^{n} X_i Y_i}{n}}{\frac{\sum_{i=1}^{n} Y_i}{n}} \xrightarrow{\text{a.s.}} \mathsf{E}X.$$

 $\mathbf{E}|X| < \infty$ implies (T_n) is tight.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○目・ のへで

Introduction	Partial solution	Subsequential limits
00000 0000000	000000	0000000

Earlier results

Outline

Introduction Motivation Earlier results

Partial solution

Results Sketch of the proof

Subsequential limits

Introduction	Partial solution	Subsequential limits
○○○○○	000000	0000000
○●○○○○○○	00000	000
Earlier results		

Theorem (Breiman, 1965)

If T_n converges in distribution for every F, and the limit is non-degenerate for at least one F, then $Y \in D(\beta)$, for some $\beta \in [0, 1)$.

Conjecture (Breiman)

If T_n has a non-degenerate limit for some F, then $Y \in D(\beta)$ for some $\beta \in [0, 1)$.

Breiman, L.

On some limit theorems similar to the arc-sin law *Teor. Verojatnost. i Primenen.* **10** 351–360, 1965.

▲□▶▲□▶▲□▶▲□▶ = ● ● ●

Introduction	Partial solution	Subsequential limits
○○○○○	000000	0000000
○●○○○○○○	00000	000
Earlier results		

Theorem (Breiman, 1965)

If T_n converges in distribution for every F, and the limit is non-degenerate for at least one F, then $Y \in D(\beta)$, for some $\beta \in [0, 1)$.

Conjecture (Breiman)

If T_n has a non-degenerate limit for some F, then $Y \in D(\beta)$ for some $\beta \in [0, 1)$.

🔋 Breiman, L.

On some limit theorems similar to the arc-sin law *Teor. Verojatnost. i Primenen.* **10** 351–360, 1965.

Introduction	Partial solution	Subsequential limits
○○○○○	000000	0000000
○○●○○○○○	00000	000
Earlier results		

 $D(\beta)$

Domain of attraction of an β -stable law:

$$Y \in D(\beta) \Leftrightarrow 1 - G(x) = rac{\ell(x)}{x^{\beta}},$$

where ℓ is slowly varying $(\ell(\lambda x)/\ell(x) \to 1 \text{ for any } \lambda > 0 \text{ as } x \to \infty)$.

Introduction	Partial solution	Subsequential limits
0000	000000	0000000
000000	00000	000
Earlier results		

D(0)

$Y \in D(0)$ if 1 - G(x) is slowly varying in which case (Darling, 1952)

$$\frac{\max\{Y_i: i=1,2,\ldots,n\}}{\sum_{i=1}^n Y_i} \longrightarrow 1$$

and so

$$\frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} Y_i} \xrightarrow{\mathcal{D}} X$$

	Partial solution	Subsequential limits
0000000	00000	000
Earlier results		

D(0)

 $Y \in D(0)$ if 1 - G(x) is slowly varying in which case (Darling, 1952)

$$\frac{\max\{Y_i: i=1,2,\ldots,n\}}{\sum_{i=1}^n Y_i} \xrightarrow{\mathbf{P}} 1$$

and so

$$\frac{\sum_{i=1}^{n} X_{i} Y_{i}}{\sum_{i=1}^{n} Y_{i}} \xrightarrow{\mathcal{D}} X$$

Introduction	Partial solution	Subsequential limits
○○○○○	000000	oooooooo
○○○○●○○○	00000	ooo
Earlier results		

Limits

Theorem (Breiman) Assume that $Y \in D(\beta)$, $\beta \in (0, 1)$, and $\mathbf{E}|X|^{\beta+\varepsilon} < \infty$, for some $\varepsilon > 0$. Then $T_n \xrightarrow{\mathcal{D}} T$, where

$$\mathbf{P}\left\{T \le x\right\} = \frac{1}{2} + \frac{1}{\pi\beta} \arctan\left[\frac{\int |u-x|^{\beta} \operatorname{sgn}(x-u)F(\mathrm{d}u)}{\int |u-x|^{\beta}F(\mathrm{d}u)} \tan\frac{\pi\beta}{2}\right]$$

$$\mathsf{P}{T > x} \approx \mathsf{P}{X > x}$$

Introduction	Partial solution	Subsequential limits
○○○○○	000000	oooooooo
○○○○●○○○	00000	ooo
Earlier results		

Limits

Theorem (Breiman) Assume that $Y \in D(\beta)$, $\beta \in (0, 1)$, and $\mathbf{E}|X|^{\beta+\varepsilon} < \infty$, for some $\varepsilon > 0$. Then $T_n \xrightarrow{\mathcal{D}} T$, where

$$\mathbf{P}\left\{T \le x\right\} = \frac{1}{2} + \frac{1}{\pi\beta} \arctan\left[\frac{\int |u-x|^{\beta} \operatorname{sgn}(x-u)F(\mathrm{d}u)}{\int |u-x|^{\beta}F(\mathrm{d}u)} \tan\frac{\pi\beta}{2}\right]$$

 $\mathsf{P}\{T > x\} \approx \mathsf{P}\{X > x\}$

Introduction	Partial solution	Subsequential limits
00000	000000	0000000

Earlier results

 $|\mathbf{E}|X|^{2+\delta} < \infty$

Theorem (Mason & Zinn, 2005) Assume that $\mathbf{E}|X|^{2+\delta} < \infty$. Then $T_n \to R$, where R is non-degenerate, iff $Y \in D(\beta)$, $\beta \in [0, 1)$.

э

く 同 ト く ヨ ト く ヨ ト

Introduction ○○○○○ ○○○○○○●○	Partial solution oooooo ooooo	Subsequential limits 0000000 000
Earlier results		

Studentization

Other type of self-normalization (Logan & Mallows & Rice & Shepp, 1973):

 X, X_1, X_2, \dots iid. Student's *T*-statistic:

$$\frac{\sum_{i=1}^{n} X_i}{\sqrt{n}\sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}}$$

The two ratios are asymptotically the same.

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction ○○○○○ ○○○○○●○	Partial solution oooooo ooooo	Subsequential limits 0000000 000
Earlier results		

Studentization

Other type of self-normalization (Logan & Mallows & Rice & Shepp, 1973):

$$\frac{\sum_{i=1}^n X_i}{\sqrt{\sum_{i=1}^n X_i^2}},$$

 X, X_1, X_2, \dots iid. Student's *T*-statistic:

$$\frac{\sum_{i=1}^{n} X_i}{\sqrt{n}\sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}}$$

The two ratios are asymptotically the same.

- (同) (ヨ) (ヨ)

Introduction	Partial solution	Subsequential limits
○○○○○	000000	০০০০০০০০
○○○○○○●	00000	০০০
Earlier results		

Conjecture (Logan & Mallows & Rice & Shepp, 1973)

$$\frac{\sum_{i=1}^{n} X_i}{\sqrt{\sum_{i=1}^{n} X_i^2}} \xrightarrow{\mathcal{D}} W,$$

where $P\{|W| = 1\} < 1$, iff $X \in D(\alpha)$, $\alpha \in (0, 2]$; if $\alpha > 1$, EX = 0; if $\alpha = 1$, $X \in D(Cauchy)$.

Giné & Götze & Mason (1997): *W* is standard normal iff $X \in D(2)$ and $\mathbf{E}X = 0$ Chistyakov & Götze (2004): in general

< 回 > < 回 > < 回 > -

Results

Outline

ntroduction Motivation Earlier results

Partial solution

Results

Sketch of the proof

Subsequential limits

Introduction	
00000	
00000000	

Results

Recall

Y, *Y*₁, *Y*₂,... non-negative iid rv's with df *G X*, *X*₁, *X*₂,... iid with df *F*, independent from *Y*, *Y*₁, *Y*₂,..., $\mathbf{E}|X| < \infty$.

$$\phi_X(t) = \mathbf{E} e^{\mathrm{i} t X}$$

On the Breiman conjecture

э

イロト 不得 トイヨト イヨト

 Introduction
 Partial solution
 Subsequential limits

 00000
 000000
 000000

 000000
 000000
 000000

Theorem (K – Mason)

Assume that for some EX = 0, $1 < \alpha \le 2$, positive slowly varying function L at zero and c > 0,

$$rac{-\log\left(\Re\phi_X(t)
ight)}{|t|^lpha\,L\left(|t|
ight)}
ightarrow c, \; \textit{as}\; t
ightarrow 0.$$

Whenever

Results

$$\frac{\sum_{i=1}^{n} X_{i} Y_{i}}{\sum_{i=1}^{n} Y_{i}} \xrightarrow{\mathcal{D}} W \quad (W \text{ nondegenerate})$$

then $Y \in D(\beta)$ for some $\beta \in [0, 1)$.

э

< ロト < 回 ト < 三 ト < 三 ト

Partial solution

Subsequential limits

Results

What does this condition mean?

For α < 2 this holds iff (Pitman)

$$\mathbf{P}\left\{|X|>x\right\}\sim L(1/x)x^{-\alpha}c\Gamma(\alpha)\frac{2}{\pi}\sin\left(\frac{\pi\alpha}{2}\right)$$

If $\mathbf{E}X = 0$ and $X \in D(\alpha)$ then this condition is satisfied. Also if $\mathbf{E}X = 0$, $\mathbf{E}X^2 < \infty$ then the condition of the theorem is satisfied ($\alpha = 2$, $c = \sigma^2/2$). Partial solution

Subsequential limits

Results

What does this condition mean?

$$\begin{split} \mathsf{As} &- \log \Re \phi_X(t) \sim 1 - \Re \phi_X(t), \ t \to 0, \\ &\frac{- \log \left(\Re \phi_X(t) \right)}{|t|^{\alpha} L(|t|)} \to c \ \Leftrightarrow \ \frac{1 - \Re \phi_X(t)}{|t|^{\alpha} L(|t|)} \to c. \end{split}$$

For α < 2 this holds iff (Pitman)

$$\mathbf{P}\left\{|X|>x\right\}\sim L(1/x)x^{-\alpha}c\Gamma(\alpha)\frac{2}{\pi}\sin\left(\frac{\pi\alpha}{2}\right)$$

If $\mathbf{E}X = 0$ and $X \in D(\alpha)$ then this condition is satisfied. Also if $\mathbf{E}X = 0$, $\mathbf{E}X^2 < \infty$ then the condition of the theorem is satisfied ($\alpha = 2$, $c = \sigma^2/2$).

Subsequential limits

Results

What does this condition mean?

$$\begin{split} \mathsf{As} &- \log \Re \phi_X(t) \sim 1 - \Re \phi_X(t), \ t \to 0, \\ &\frac{- \log \left(\Re \phi_X(t) \right)}{|t|^{\alpha} L(|t|)} \to c \ \Leftrightarrow \ \frac{1 - \Re \phi_X(t)}{|t|^{\alpha} L(|t|)} \to c. \end{split}$$

For α < 2 this holds iff (Pitman)

$$\mathbf{P}\left\{|X|>x\right\}\sim L(1/x)x^{-\alpha}c\Gamma(\alpha)\frac{2}{\pi}\sin\left(\frac{\pi\alpha}{2}\right)$$

If $\mathbf{E}X = 0$ and $X \in D(\alpha)$ then this condition is satisfied. Also if $\mathbf{E}X = 0$, $\mathbf{E}X^2 < \infty$ then the condition of the theorem is satisfied ($\alpha = 2$, $c = \sigma^2/2$).

э

Proposition

Assume that the assumptions of the theorem hold. Then for some 0 $<\gamma \leq$ 1

$$\mathsf{E}\frac{\sum_{i=1}^{n} Y_{i}^{\alpha}}{\left(\sum_{i=1}^{n} Y_{i}\right)^{\alpha}} \to \gamma. \tag{(\star)}$$

イロト イポト イヨト イヨト

ъ

Proposition

If (*) holds with some $\gamma \in (0, 1]$ then $Y \in D(\beta)$, for some $\beta \in [0, 1)$, where $-\beta \in (-1, 0]$ is the unique solution of

Beta
$$(\alpha - 1, 1 - \beta) = \frac{\Gamma(\alpha - 1)\Gamma(1 - \beta)}{\Gamma(\alpha - \beta)} = \frac{1}{\gamma(\alpha - 1)}.$$

In particular, $Y \in D(0)$ for $\gamma = 1$. Conversely, if $Y \in D(\beta)$, $0 \le \beta < 1$, then (*) holds with

$$\gamma = \frac{\Gamma(\alpha - \beta)}{\Gamma(\alpha)\Gamma(1 - \beta)} = \frac{1}{(\alpha - 1)\operatorname{Beta}(\alpha - 1, 1 - \beta)}.$$

Extension of a result by Fuchs, Joffe and Teugels (2001), where $\alpha = 2$.

Proposition

If (*) holds with some $\gamma \in (0, 1]$ then $Y \in D(\beta)$, for some $\beta \in [0, 1)$, where $-\beta \in (-1, 0]$ is the unique solution of

Beta
$$(\alpha - 1, 1 - \beta) = \frac{\Gamma(\alpha - 1)\Gamma(1 - \beta)}{\Gamma(\alpha - \beta)} = \frac{1}{\gamma(\alpha - 1)}$$

In particular, $Y \in D(0)$ for $\gamma = 1$. Conversely, if $Y \in D(\beta)$, $0 \le \beta < 1$, then (*) holds with

$$\gamma = \frac{\Gamma(\alpha - \beta)}{\Gamma(\alpha)\Gamma(1 - \beta)} = \frac{1}{(\alpha - 1)\operatorname{Beta}(\alpha - 1, 1 - \beta)}.$$

Extension of a result by Fuchs, Joffe and Teugels (2001), where $\alpha = 2$.

Proposition

If (*) holds with some $\gamma \in (0, 1]$ then $Y \in D(\beta)$, for some $\beta \in [0, 1)$, where $-\beta \in (-1, 0]$ is the unique solution of

Beta
$$(\alpha - 1, 1 - \beta) = \frac{\Gamma(\alpha - 1)\Gamma(1 - \beta)}{\Gamma(\alpha - \beta)} = \frac{1}{\gamma(\alpha - 1)}$$

In particular, $Y \in D(0)$ for $\gamma = 1$. Conversely, if $Y \in D(\beta)$, $0 \le \beta < 1$, then (*) holds with

$$\gamma = \frac{\Gamma(\alpha - \beta)}{\Gamma(\alpha)\Gamma(1 - \beta)} = \frac{1}{(\alpha - 1)\text{Beta}(\alpha - 1, 1 - \beta)}.$$

Extension of a result by Fuchs, Joffe and Teugels (2001), where $\alpha = 2$.

Outline

troduction Motivation Earlier results

Partial solution

Results Sketch of the proof

Subsequential limits

Results Further remarks

Introduction	
00000	
00000000	

Subsequential limits

Sketch of the proof

$$\mathbf{E} \frac{\sum_{i=1}^{n} \mathbf{Y}_{i}^{\alpha}}{\left(\sum_{i=1}^{n} \mathbf{Y}_{i}\right)^{\alpha}} \to \gamma \tag{(*)}$$

Proposition

If (*) holds with some $\gamma \in (0, 1]$ then $Y \in D(\beta)$, for some $\beta \in [0, 1)$, where $-\beta \in (-1, 0]$ is the unique solution of

Beta
$$(\alpha - 1, 1 - \beta) = \frac{\Gamma(\alpha - 1)\Gamma(1 - \beta)}{\Gamma(\alpha - \beta)} = \frac{1}{\gamma(\alpha - 1)}$$

In particular, $Y \in D(0)$ for $\gamma = 1$. Conversely, For $\alpha = 2$ this gives $1 - \gamma = \beta$.

Introduction	
00000	
00000000	

Subsequential limits

Sketch of the proof

$$\begin{split} \mathbf{E} \frac{\sum_{i=1}^{n} Y_{i}^{\alpha}}{\left(\sum_{i=1}^{n} Y_{i}\right)^{\alpha}} &= n \mathbf{E} \frac{Y_{1}^{\alpha}}{\left(\sum_{i=1}^{n} Y_{i}\right)^{\alpha}} \\ &= \frac{n}{\Gamma(\alpha)} \mathbf{E} \int_{0}^{\infty} Y_{1}^{\alpha} e^{-t \sum_{i=1}^{n} Y_{i}} t^{\alpha-1} \mathrm{d}t \\ &= \frac{n}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1} \mathbf{E} \left(e^{-tY_{1}} Y_{1}^{\alpha} \right) (\mathbf{E} e^{-tY_{1}})^{n-1} \mathrm{d}t \\ &=: \frac{n}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1} \phi_{\alpha}(t) \phi_{0}(t)^{n-1} \mathrm{d}t. \end{split}$$

Note that for $\alpha = 2$ we have $\phi_{\alpha} = \phi_0''$.

$$s \int_0^\infty t^{\alpha-1} \phi_\alpha(t) e^{s \log \phi_0(t)} \mathrm{d}t \to \gamma \Gamma(\alpha), \quad s \to \infty.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Introduction	
00000	
00000000	

Subsequential limits

Sketch of the proof

$$\begin{split} \mathbf{E} \frac{\sum_{i=1}^{n} Y_{i}^{\alpha}}{\left(\sum_{i=1}^{n} Y_{i}\right)^{\alpha}} &= n \mathbf{E} \frac{Y_{1}^{\alpha}}{\left(\sum_{i=1}^{n} Y_{i}\right)^{\alpha}} \\ &= \frac{n}{\Gamma(\alpha)} \mathbf{E} \int_{0}^{\infty} Y_{1}^{\alpha} e^{-t \sum_{i=1}^{n} Y_{i}} t^{\alpha-1} \mathrm{d}t \\ &= \frac{n}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1} \mathbf{E} \left(e^{-tY_{1}} Y_{1}^{\alpha} \right) (\mathbf{E} e^{-tY_{1}})^{n-1} \mathrm{d}t \\ &=: \frac{n}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1} \phi_{\alpha}(t) \phi_{0}(t)^{n-1} \mathrm{d}t. \end{split}$$

Note that for $\alpha = 2$ we have $\phi_{\alpha} = \phi_{0}''$.

$$s \int_0^\infty t^{lpha - 1} \phi_lpha(t) e^{s \log \phi_0(t)} \mathrm{d}t o \gamma \Gamma(lpha), \quad s o \infty.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣んで

Introduction	Partial solution	Subsequential limits
00000 00000000	00000	0000000

$$\phi_{\alpha}(t) = \mathbf{E} e^{-tY} Y^{\alpha}, \quad \phi_{0}(t) = \mathbf{E} e^{-tY}$$

By Karamata's Tauberian theorem

$$\lim_{t\to 0}\frac{\int_0^t y^{\alpha-1}\phi_\alpha(y)\mathrm{d}y}{1-\phi_0(t)}=\gamma\Gamma(\alpha).$$

After some further calculation

$$t^{\alpha-1} \frac{\int_0^\infty \overline{G}(u) u^{\alpha-1} e^{-ut} \mathrm{d} u}{\int_0^\infty \overline{G}(u) e^{-ut} \mathrm{d} u} \to \gamma \Gamma(\alpha), \text{ as } t \searrow 0.$$

$$u^{1-\alpha}e^{-ut} = \frac{1}{\Gamma(\alpha-1)}\int_0^\infty y^{\alpha-2}e^{-(y+t)u}\mathrm{d}y,$$

which holds for u > 0 and $\alpha \in (1, 2]$. Weyl-transform, or Weyl-fractional integral of the function e^{-ut} .

On the Breiman conjecture

Introduction	Partial solution	Subsequential limits
00000 00000000		0000000

$$\phi_{\alpha}(t) = \mathbf{E} e^{-tY} Y^{\alpha}, \quad \phi_{0}(t) = \mathbf{E} e^{-tY}$$

By Karamata's Tauberian theorem

$$\lim_{t\to 0} \frac{\int_0^t y^{\alpha-1} \phi_\alpha(y) \mathrm{d} y}{1-\phi_0(t)} = \gamma \Gamma(\alpha).$$

After some further calculation

$$t^{\alpha-1} \frac{\int_0^\infty \overline{G}(u) u^{\alpha-1} e^{-ut} \mathrm{d} u}{\int_0^\infty \overline{G}(u) e^{-ut} \mathrm{d} u} \to \gamma \Gamma(\alpha), \text{ as } t \searrow 0.$$

$$u^{1-\alpha}e^{-ut} = \frac{1}{\Gamma(\alpha-1)}\int_0^\infty y^{\alpha-2}e^{-(y+t)u}\mathrm{d}y,$$

which holds for u > 0 and $\alpha \in (1, 2]$. Weyl-transform, or Weyl-fractional integral of the function e^{-ut} .

On the Breiman conjecture

Introduction	Partial solution	Subsequential limits
00000 00000000		0000000

$$\phi_{\alpha}(t) = \mathbf{E} e^{-tY} Y^{\alpha}, \quad \phi_{0}(t) = \mathbf{E} e^{-tY}$$

By Karamata's Tauberian theorem

$$\lim_{t\to 0} \frac{\int_0^t y^{\alpha-1} \phi_\alpha(y) \mathrm{d} y}{1-\phi_0(t)} = \gamma \Gamma(\alpha).$$

After some further calculation

$$t^{\alpha-1} \frac{\int_0^\infty \overline{G}(u) u^{\alpha-1} e^{-ut} \mathrm{d} u}{\int_0^\infty \overline{G}(u) e^{-ut} \mathrm{d} u} \to \gamma \Gamma(\alpha), \text{ as } t \searrow 0.$$

$$u^{1-\alpha}e^{-ut}=\frac{1}{\Gamma(\alpha-1)}\int_0^\infty y^{\alpha-2}e^{-(y+t)u}\mathrm{d}y,$$

which holds for u > 0 and $\alpha \in (1, 2]$. Weyl-transform, or Weyl-fractional integral of the function e^{-ut} .

On the Breiman conjecture

Introduction	Partial solution	Subsequential limits
00000	00000 00000	0000000

We obtain

$$\int_{1}^{\infty} (u-1)^{\alpha-2} u^{-\alpha} \frac{g_{\infty}(x/u)}{g_{\infty}(x)} \mathrm{d}u = \frac{k \stackrel{M}{*} g_{\infty}(x)}{g_{\infty}(x)} \to [\gamma(\alpha-1)]^{-1}$$

with

$$g_{\infty}(x) = \int_0^{\infty} \overline{G}(ux) u^{\alpha-1} e^{-u} \mathrm{d} u.$$

$$k \stackrel{M}{*} h(x) = \int_0^\infty h(x/u) k(u) / u \mathrm{d} u$$

Mellin-convolution of *h* and *k*.

Drasin-Shea theorem implies that $g_{\infty}(x)$ is regularly varying at infinity with index $0 \ge \rho > -1$.

Introduction	Partial solution	Subsequential limits
00000	00000 0000	000000

We obtain

$$\int_{1}^{\infty} (u-1)^{\alpha-2} u^{-\alpha} \frac{g_{\infty}(x/u)}{g_{\infty}(x)} \mathrm{d}u = \frac{k \overset{M}{*} g_{\infty}(x)}{g_{\infty}(x)} \to [\gamma(\alpha-1)]^{-1}$$

with

$$g_{\infty}(x) = \int_0^{\infty} \overline{G}(ux) u^{\alpha-1} e^{-u} \mathrm{d}u.$$

$$k \stackrel{M}{*} h(x) = \int_0^\infty h(x/u) k(u) / u \mathrm{d} u$$

Mellin-convolution of h and k.

Drasin-Shea theorem implies that $g_{\infty}(x)$ is regularly varying at infinity with index $0 \ge \rho > -1$.

Introduction	Partial solution	Subsequential limits
00000	00000 0000	000000

We obtain

$$\int_{1}^{\infty} (u-1)^{\alpha-2} u^{-\alpha} \frac{g_{\infty}(x/u)}{g_{\infty}(x)} \mathrm{d}u = \frac{k \stackrel{M}{*} g_{\infty}(x)}{g_{\infty}(x)} \to [\gamma(\alpha-1)]^{-1}$$

with

$$g_{\infty}(x) = \int_0^{\infty} \overline{G}(ux) u^{\alpha-1} e^{-u} \mathrm{d}u.$$

$$k \stackrel{M}{*} h(x) = \int_0^\infty h(x/u) k(u) / u \mathrm{d} u$$

Mellin-convolution of *h* and *k*.

Drasin-Shea theorem implies that $g_{\infty}(x)$ is regularly varying at infinity with index $0 \ge \rho > -1$.

э

ヘロト 人間 ト ヘヨト ヘヨト

Outline

troduction Motivation Earlier result

Partial solution

Results Sketch of the proof

Subsequential limits

Results Further remarks

Introduction 00000 00000000	Partial solution 000000 00000	Subsequential limits ○●○○○○○

Recall

 Y, Y_1, Y_2, \dots non-negative iid rv's with df G X, X_1, X_2, \dots iid with df F, independent from Y, Y_1, Y_2, \dots , $\mathbf{E}|X| < \infty$

$$T_n = \frac{\sum_{i=1}^n X_i Y_i}{\sum_{i=1}^n Y_i}$$

 $\mathbf{E}|X| < \infty$ implies (*T_n*) is tight.

Introduction	Partial solution	Subsequential limits
00000 00000000	000000 00000	

Notation

 $id(a, b, \nu)$ infinitely divisible distribution on \mathbb{R}^d with characteristic exponent

$$\mathrm{i}u'b-rac{1}{2}u'au+\int\left(\mathrm{e}^{\mathrm{i}u'x}-1-\mathrm{i}u'xl(|x|\leq1)
ight)
u(\mathrm{d}x),$$

where $b \in \mathbb{R}^d$, $a \in \mathbb{R}^{d \times d}$ is a positive semidefinite matrix and ν is the Lévy measure.

Introduction 00000 00000000	Partial solution 000000 00000	Subsequential limits
Results		

Theorem (K & Mason, 2012) If along a subsequence {n'}

$$\frac{1}{a_{n'}}\sum_{i=1}^{n'}Y_i \stackrel{\mathcal{D}}{\longrightarrow} W_2, \text{ as } n' \to \infty,$$

where $W_2 \sim id(0, b, \Lambda)$, then

$$\left(\frac{\sum_{i=1}^{n'} X_i Y_i}{a_{n'}}, \frac{\sum_{i=1}^{n'} Y_i}{a_{n'}}\right) \stackrel{\mathcal{D}}{\longrightarrow} (W_1, W_2), \ n' \to \infty,$$

where $(W_1, W_2) \sim \operatorname{id}(\mathbf{0}, \mathbf{b}, \Pi)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction 00000 00000000	Partial solution 000000 00000	Subsequential limits
Results		

Theorem (K & Mason, 2012) If along a subsequence {n'}

$$\frac{1}{a_{n'}}\sum_{i=1}^{n'}Y_i \stackrel{\mathcal{D}}{\longrightarrow} W_2, \text{ as } n' \to \infty,$$

where $W_2 \sim \operatorname{id}(0, b, \Lambda)$, then

$$\left(\frac{\sum_{i=1}^{n'} X_i Y_i}{a_{n'}}, \frac{\sum_{i=1}^{n'} Y_i}{a_{n'}}\right) \stackrel{\mathcal{D}}{\longrightarrow} (W_1, W_2), \ n' \to \infty,$$

where $(W_1, W_2) \sim \operatorname{id}(\mathbf{0}, \mathbf{b}, \Pi)$

A B K A B K

Introduction 00000 00000000	Partial solution 000000 00000	Subsequential limits

Theorem (K & Mason, 2012) *i.e. its characteristic function*

$$\Psi(\theta_1, \theta_2) = \mathbf{E} e^{i(\theta_1 W_1 + \theta_2 W_2)} = \exp \left\{ i(\theta_1 b_1 + \theta_2 b_2) + \int_0^\infty \int_{-\infty}^\infty \left(e^{i(\theta_1 x + \theta_2 y)} - 1 - (i\theta_1 x + i\theta_2 y) \mathbf{1}_{\{x^2 + y^2 \le 1\}} \right) F(dx/y) \Lambda(dy) \right\}.$$

$$H(x) = \mathbf{P}\left\{\frac{W_1}{W_2} \le x\right\} = \frac{1}{2} - \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\Im \mathfrak{m} \Psi(u, -ux)}{u} \mathrm{d} u$$

Results

Introduction 00000 00000000	Partial solution 000000 00000	Subsequential limits

Theorem (K & Mason, 2012) *i.e. its characteristic function*

$$\Psi(\theta_1, \theta_2) = \mathbf{E} e^{i(\theta_1 W_1 + \theta_2 W_2)} = \exp \left\{ i(\theta_1 b_1 + \theta_2 b_2) + \int_0^\infty \int_{-\infty}^\infty \left(e^{i(\theta_1 x + \theta_2 y)} - 1 - (i\theta_1 x + i\theta_2 y) \mathbf{1}_{\{x^2 + y^2 \le 1\}} \right) F(dx/y) \Lambda(dy) \right\}.$$

$$H(x) = \mathbf{P}\left\{\frac{W_1}{W_2} \le x\right\} = \frac{1}{2} - \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\Im \mathfrak{m} \Psi(u, -ux)}{u} \mathrm{d} u.$$

- * ロ * * 個 * * 目 * * 目 * - 目 * のへで

Results

Introduction 00000 00000000	Partial solution 000000 00000	Subsequential limits ○○○○○●○
Besults		

Feller class

 ξ, ξ_1, \dots iid with df *F*, $S_n = \sum_{i=1}^n \xi_i$. *F* is in the *centered Feller class*, if there exists B_n , such that every subsequence *n'* has a further subsequence *n''*, such that

$$\frac{\mathsf{S}_{n''}}{\mathsf{B}_{n''}} \xrightarrow{\mathcal{D}} W,$$

where W is non-degenerate.

Theorem (Feller (1966), Maller (1979))

Y is in the centered Feller class, iff

$$\limsup_{x\to\infty}\frac{x^2\mathbf{P}\{|Y|>x\}+x|\mathbf{E}YI(|Y|\leq x)|}{\mathbf{E}[Y^2I(|Y|\leq x)]}<\infty.$$

Introduction	Partial solution	Subsequential limits
00000	oooooo	oooco●o
00000000	ooooo	ooo
Results		

Feller class

 ξ, ξ_1, \dots iid with df *F*, $S_n = \sum_{i=1}^n \xi_i$. *F* is in the *centered Feller class*, if there exists B_n , such that every subsequence *n'* has a further subsequence *n''*, such that

$$\frac{\mathsf{S}_{n''}}{\mathsf{B}_{n''}} \xrightarrow{\mathcal{D}} W,$$

where W is non-degenerate.

Theorem (Feller (1966), Maller (1979))

Y is in the centered Feller class, iff

$$\limsup_{x\to\infty}\frac{x^2\mathbf{P}\{|Y|>x\}+x|\mathbf{E}YI(|Y|\leq x)|}{\mathbf{E}[Y^2I(|Y|\leq x)]}<\infty.$$

Surprising result

Theorem (K & Mason, 2012)

The subsequential limit distributions of

$$T_n = \frac{\sum_{i=1}^n X_i Y_i}{\sum_{i=1}^n Y_i}$$

are continuous for all X with finite expectation if and only if $Y \in \mathcal{F}_c$.

э

イロト イポト イヨト イヨト

Introduction 00000 00000000	Partial solution 000000 00000	Subsequential limits

Further remarks

Outline

troduction Motivation Earlier result

Partial solution

Results Sketch of the proof

Subsequential limits

Results Further remarks

Further remarks

Towards Lévy processes

$$(W_1, W_2) \stackrel{\mathcal{D}}{=} (a_1 + U, a_2 + V),$$

where $(a_1, a_2) = \left(\left(b - \int_0^1 x \Lambda(\mathrm{d}x) \right) \mathbf{E} X, b - \int_0^1 x \Lambda(\mathrm{d}x) \right)$

$$\mathbf{E}\mathrm{e}^{\mathrm{i}(\theta_{1}U+\theta_{2}V)}=\exp\left\{\int_{0}^{\infty}\int_{-\infty}^{\infty}\left(\mathrm{e}^{\mathrm{i}(\theta_{1}x+\theta_{2}y)}-1\right)F\left(\mathrm{d}x/y\right)\Lambda\left(\mathrm{d}y\right)\right\}$$

Under the conditions of the theorem

$$\left(\frac{\sum_{1\leq i\leq n't}X_iY_i}{a_{n'}},\frac{\sum_{1\leq i\leq n't}Y_i}{a_{n'}}\right)_{t>0}\stackrel{\mathcal{D}}{\longrightarrow}(a_1t+U_t,a_2t+V_t)_{t>0},$$

where (U_t, V_t) , $t \ge 0$, is the corresponding Lévy process.

00000	000000
0000000 00000	000

Further remarks

$$\frac{U_t}{V_t} \xrightarrow{\mathcal{D}} , \ t \to 0 \ \text{ or } \ t \to \infty$$

📔 Kevei, P, Mason, D.M.

Randomly Weighted Self-normalized Lévy Processes *Stochastic Processes and their Applications*, **123** (2) 2013, 490–522.

э

.