A note on the Kesten-Grincevičius-Goldie theorem

Péter Kevei

TU Munich
Probabilistic Aspects of Harmonic Analysis

Outline

```
Introduction
    Motivation
    Properties
Results
    EA
    EAK}<
Further remarks
    More general random equations
```


Outline

```
Introduction
Motivation
Properties
Results
\(E A^{\kappa}=1\)
\(E A^{\kappa}<1\)
Further remarks
More general random equations
```


Outline

Introduction
Motivation
Properties

Results
$E A^{\kappa}=1$
$E A^{\kappa}<1$

Further remarks
More general random equations

Outline

Introduction
Motivation
Properties

Results

$E A^{\kappa}=1$
$E A^{\kappa}<1$

Further remarks
More general random equations

Outline

Introduction
Motivation
Properties

Results
$E A^{\kappa}=1$
$E A^{\kappa}<1$

Further remarks
More general random equations

Outline

Introduction
Motivation
Properties

Results
$E A^{\kappa}=1$
$E A^{\kappa}<1$

Further remarks

More general random equations

Outline

Introduction
Motivation
Properties
Results
$E A^{\kappa}=1$
$E A^{\kappa}<1$
Further remarks
More general random equations

Outline

Introduction
Motivation
Properties
Results
$E A^{\kappa}=1$
$E A^{\kappa}<1$
Further remarks
More general random equations

Outline

Introduction
 Motivation
 Properties
 Results
 $E A^{\kappa}=1$
 $E A^{\kappa}<1$
 Further remarks
 More general random equations

Perpetuity equation

$$
X \stackrel{\mathcal{D}}{=} A X+B,
$$

where (A, B) and X on the right-hand side are independent. Assume $\mathrm{P}\{A x+B=x\}<1$ for any $x \in \mathbb{R}, A \not \equiv 1$, and that $\log A$ conditioned on being nonzero is nonarithmetic.

Perpetuity equation

$$
X \stackrel{\mathcal{D}}{=} A X+B,
$$

where (A, B) and X on the right-hand side are independent. Assume $\mathbf{P}\{A x+B=x\}<1$ for any $x \in \mathbb{R}, A \not \equiv 1$, and that $\log A$ conditioned on being nonzero is nonarithmetic.

Applications

Actuarial application

$$
B_{1}+A_{1} B_{2}+A_{1} A_{2} B_{2}+\ldots
$$

Financial mathematics: ARCH models and perpetuities
(Embrechts \& Klüppelberg \& Mikosch); Branching processes in random environment, ...

Applications II

Exponential functional of Lévy processes:

$$
J=\int_{0}^{\infty} e^{\xi_{t}} \mathrm{~d} t
$$

Carmona \& Petit \& Yor (2001); Bertoin \& Yor (2005): survey; Maulik, Zwart, Kuznetsov, Pardo, Patie, Savov, Rivero, Behme, Lindner, Maller, ...
If $\left(\xi_{t}\right)$ has finite jump activity and 0 drift then conditioning on its first jump time one has the perpetuity equation

with B being an exponential random variable, independent of A, and the jump size is $\log A$.

Applications II

Exponential functional of Lévy processes:

$$
J=\int_{0}^{\infty} e^{\xi_{t}} \mathrm{~d} t
$$

Carmona \& Petit \& Yor (2001); Bertoin \& Yor (2005): survey; Maulik, Zwart, Kuznetsov, Pardo, Patie, Savov, Rivero, Behme, Lindner, Maller, ...
If $\left(\xi_{t}\right)$ has finite jump activity and 0 drift then conditioning on its first jump time one has the perpetuity equation
with B being an exponential random variable, independent of A,

Applications II

Exponential functional of Lévy processes:

$$
J=\int_{0}^{\infty} e^{\xi_{t}} \mathrm{~d} t
$$

Carmona \& Petit \& Yor (2001); Bertoin \& Yor (2005): survey; Maulik, Zwart, Kuznetsov, Pardo, Patie, Savov, Rivero, Behme, Lindner, Maller, ...
If $\left(\xi_{t}\right)$ has finite jump activity and 0 drift then conditioning on its first jump time one has the perpetuity equation

$$
J \stackrel{\mathcal{D}}{=} A J+B,
$$

with B being an exponential random variable, independent of A, and the jump size is $\log A$.

Applications III (self-advertising)

Random iterative geometric structures: K regular d-dimensional simplex with centroid ($0,0, \ldots, 0$) and vertices $\left(e_{0}, e_{1}, \ldots, e_{d}\right), e_{0}=(1,0, \ldots, 0)$.

Applications III (self-advertising)

Random iterative geometric structures: K regular d-dimensional simplex with centroid ($0,0, \ldots, 0$) and vertices $\left(e_{0}, e_{1}, \ldots, e_{d}\right), e_{0}=(1,0, \ldots, 0)$.
$K_{0}=K, p_{n+1}$ uniformly distributed random point in K_{n}, and $K_{n+1}=K_{n} \cap\left(p_{n+1}+K\right)$.
Clearly $\left\{K_{n}\right\}$ is a nested sequence of regular simplexes, which converges to a regular simplex.
d-dimensional perpetuity equation \Rightarrow have (2011); Hitczenko \& Letac (2014); K \& Vígh (2016))

Applications III (self-advertising)

Random iterative geometric structures: K regular
d-dimensional simplex with centroid ($0,0, \ldots, 0$) and vertices $\left(e_{0}, e_{1}, \ldots, e_{d}\right), e_{0}=(1,0, \ldots, 0)$.
$K_{0}=K, p_{n+1}$ uniformly distributed random point in K_{n}, and
$K_{n+1}=K_{n} \cap\left(p_{n+1}+K\right)$.
Clearly $\left\{K_{n}\right\}$ is a nested sequence of regular simplexes, which converges to a regular simplex.
The barycentric coordinates of the limiting simplex satisfy a d-dimensional perpetuity equation \Rightarrow have $\mathcal{D}(d /(d+1), \ldots, d /(d+1))$ distribution. (Ambrus \& K \& Vígh (2011); Hitczenko \& Letac (2014); K \& Vígh (2016))

Outline

Introduction
 Motivation

Properties

Results
$E A^{\kappa}=1$
$E A^{\kappa}<1$

Further remarks
More general random equations

Existence

$$
X \stackrel{\mathcal{D}}{=} A X+B
$$

If $\mathrm{E} \log A<0, \mathrm{E} \log _{+}|B|<\infty$, then there is a unique solution. For NASC see Goldie, Maller (2001).

Tail asymptotic: heavy tails

$$
X \stackrel{\mathcal{D}}{=} A X+B
$$

Theorem (Kesten (1973))
If $\mathbf{E}|A|^{\kappa}=1, \mathbf{E}|A|^{\kappa} \log _{+}|A|<\infty, \mathbf{E}|B|^{\kappa}<\infty$ then

$$
\mathbf{P}\{X>x\} \sim c_{+} x^{-\kappa} \text { and } \mathbf{P}\{X<-x\} \sim c_{-} x^{-\kappa} \text { as } x \rightarrow \infty .
$$

Goldie (1991) simplified proof (for more general equations), based on Grincevičius (1975)
Where is the slowly varying function $\ell(x)$ from the asymptotics?

Tail asymptotic: heavy tails

$$
X \stackrel{\mathcal{D}}{=} A X+B
$$

Theorem (Kesten (1973))
If $\mathbf{E}|A|^{\kappa}=1, \mathbf{E}|A|^{\kappa} \log _{+}|A|<\infty, \mathbf{E}|B|^{\kappa}<\infty$ then

$$
\mathbf{P}\{X>x\} \sim c_{+} x^{-\kappa} \text { and } \mathbf{P}\{X<-x\} \sim c_{-} x^{-\kappa} \text { as } x \rightarrow \infty
$$

Goldie (1991) simplified proof (for more general equations), based on Grincevičius (1975) Where is the slowly varying function $\ell(x)$ from the asymptotics?

$$
\mathbf{P}\{X>x\} \sim \frac{\ell(x)}{x^{\kappa}}
$$

Tail asymptotic: heavy tails II

$$
X \stackrel{\mathcal{D}}{=} A X+B
$$

Theorem (Grincevičius (1975), Grey (1994))
If $A \geq 0, \mathrm{EA}^{\kappa}<1, \mathrm{E} A^{\kappa+\epsilon}<\infty$ then the tail of X is regularly varying with parameter $-\kappa$ if and only if the tail of B is.
That is, the regular variation of X is either caused by A alone, or by B alone.

Tail asymptotic: heavy tails II

$$
X \stackrel{\mathcal{D}}{=} A X+B
$$

Theorem (Grincevičius (1975), Grey (1994))
If $A \geq 0, \mathrm{EA}^{\kappa}<1, \mathrm{E} A^{\kappa+\epsilon}<\infty$ then the tail of X is regularly varying with parameter $-\kappa$ if and only if the tail of B is.
That is, the regular variation of X is either caused by A alone, or by B alone.

Tail asymptotics: light tails

If $\mathbf{P}\{|A|>1\}>0$ then the tail decreases at least polynomially (Goldie \& Grübel, 1996). Can even be slowly varying: Dyszewski (2016)
Theorem (Goldie \& Grübel (1996)) X has at least exponential tail under the assumption $|A| \leq 1$. See also Hitczenko \& Wesołowski 2009; Bartosz Kołodziejek: Perpetuities with thin tails revisited once again

Tail asymptotics: light tails

If $\mathbf{P}\{|A|>1\}>0$ then the tail decreases at least polynomially (Goldie \& Grübel, 1996). Can even be slowly varying: Dyszewski (2016)
Theorem (Goldie \& Grübel (1996))
X has at least exponential tail under the assumption $|A| \leq 1$.
See also Hitczenko \& Wesołowski 2009;
Bartosz Kołodziejek: Perpetuities with thin tails revisited once again

Outline

Introduction
 Motivation
 Properties

Results
$E A^{\kappa}=1$
$E A^{\kappa}<1$

Further remarks

More general random equations

Always assume

$$
X \stackrel{\mathcal{D}}{=} A X+B
$$

$A \geq 0, \mathbf{P}\{A x+B=x\}<1$ for any $x \in \mathbb{R}, A \not \equiv 1$, and that $\log A$
conditioned on being nonzero is nonarithmetic, $\mathbf{E}|B|^{\nu}<\infty$ for some $\nu>\kappa>0$.

Assume that $\mathbf{E} A^{\kappa}=1, \kappa>0$. Put $F_{\kappa}(x)=\int_{-\infty}^{x} e^{\kappa y} F(\mathrm{~d} y)$, $\log A \sim F$, and assume $\bar{F}_{\kappa}(x)=\ell(x) x^{-\alpha}, \alpha \in(0,1)$. That is $\mathbf{E}_{\kappa} \log A=\infty!$
The truncated expectation

Assume that $E A^{\kappa}=1, \kappa>0$. Put $F_{\kappa}(x)=\int_{-\infty}^{x} e^{\kappa y} F(\mathrm{~d} y)$, $\log A \sim F$, and assume $\bar{F}_{\kappa}(x)=\ell(x) x^{-\alpha}, \alpha \in(0,1)$. That is $\mathrm{E}_{\kappa} \log A=\infty$!
The truncated expectation

$$
m(x)=\int_{0}^{x}\left[F_{\kappa}(-u)+\bar{F}_{\kappa}(u)\right] \mathrm{d} u \sim \int_{0}^{x} \bar{F}_{\kappa}(u) \mathrm{d} u \sim \frac{\ell(x) x^{1-\alpha}}{1-\alpha}
$$

Assume (Caravenna-Doney condition)

$$
\lim _{\delta \rightarrow 0} \limsup _{x \rightarrow \infty} x \bar{F}_{\kappa}(x) \int_{1}^{\delta x} \frac{1}{y \bar{F}_{\kappa}(y)^{2}} F_{\kappa}(x-\mathrm{d} y)=0 .
$$

Theorem (K)
If the assumptions above are satisfied then

Assume (Caravenna-Doney condition)

$$
\lim _{\delta \rightarrow 0} \limsup _{x \rightarrow \infty} x \bar{F}_{\kappa}(x) \int_{1}^{\delta x} \frac{1}{y \bar{F}_{\kappa}(y)^{2}} F_{\kappa}(x-\mathrm{d} y)=0 .
$$

Theorem (K)
If the assumptions above are satisfied then

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} m(\log x) x^{\kappa} \mathbf{P}\{X>x\}=C_{\alpha} \frac{1}{\kappa} \mathbf{E}\left[(A X+B)_{+}^{\kappa}-(A X)_{+}^{\kappa}\right], \\
& \lim _{x \rightarrow \infty} m(\log x) x^{\kappa} \mathbf{P}\{X \leq-x\}=C_{\alpha} \frac{1}{\kappa} \mathbf{E}\left[(A X+B)_{-}^{\kappa}-(A X)_{-}^{\kappa}\right] .
\end{aligned}
$$

Moreover, $\mathbf{E}\left[(A X+B)_{+}^{\kappa}-(A X)_{+}^{\kappa}\right]+\mathbf{E}\left[(A X+B)_{-}^{\kappa}-(A X)_{-}^{\kappa}\right]>0$.

Comments

Theorem is stated as a conjecture/open problem by Iksanov 2007.

The conditions of the theorem are stated in terms of F_{κ}. If

with a slowly varying ℓ then $F_{\kappa} \in D(\alpha)$. The Caravenna-Doney condition

always holds if $\alpha>1 / 2$.

Comments

Theorem is stated as a conjecture/open problem by Iksanov 2007.

The conditions of the theorem are stated in terms of F_{κ}. If

$$
e^{\kappa x} \bar{F}(x)=\frac{\alpha \ell(x)}{\kappa x^{\alpha+1}}
$$

with a slowly varying ℓ then $F_{\kappa} \in D(\alpha)$.
The Caravenna-Doney condition

Comments

Theorem is stated as a conjecture/open problem by Iksanov 2007.

The conditions of the theorem are stated in terms of F_{κ}. If

$$
e^{\kappa x} \bar{F}(x)=\frac{\alpha \ell(x)}{\kappa X^{\alpha+1}}
$$

with a slowly varying ℓ then $F_{\kappa} \in D(\alpha)$.
The Caravenna-Doney condition

$$
\lim _{\delta \rightarrow 0} \limsup _{x \rightarrow \infty} x \bar{F}_{\kappa}(x) \int_{1}^{\delta x} \frac{1}{y \bar{F}_{\kappa}(y)^{2}} F_{\kappa}(x-\mathrm{d} y)=0
$$

always holds if $\alpha>1 / 2$.

Comments II

X is closely related to the maximum $M=\max \left\{0, S_{1}, S_{2}, \ldots\right\}$ of the RW $S_{n}=\log A_{1}+\log A_{2}+\ldots+\log A_{n}, \log A_{1}, \log A_{2}, \ldots$ iid $\log A\left(E A^{\kappa}=1\right.$ implies that $\mathbf{E} \log A<0$, so M is a.s. finite $)$. Korshunov (2005)

$$
\lim _{x \rightarrow \infty} \mathbf{P}\{M>x\} e^{\kappa x} m(x)=c
$$

In specific cases this result is equivalent to our theorem. Let
$\left(\xi_{t}\right)_{t \geq 0}$ be a nonmonotone Lévy process, $J=\int_{0}^{\infty} e^{\xi_{t}} \mathrm{~d} t$, and $\bar{\xi}_{\infty}=\sup _{t \geq 0} \xi_{t}$. Arista and Rivero (2015) showed that
$\mathbf{P}\{J>x\} \in \mathcal{R} \mathcal{V}_{-\alpha}$ iff $\mathbf{P}\left\{e^{\bar{\xi}_{\infty}}>x\right\} \in \mathcal{R} \mathcal{V}_{-\alpha}$.
If $\left(\xi_{t}\right)$ has finite jump activity and 0 drift then conditioning on its
first jump

with B being an exponential random variable, independent of A.

In specific cases this result is equivalent to our theorem. Let
$\left(\xi_{t}\right)_{t \geq 0}$ be a nonmonotone Lévy process, $J=\int_{0}^{\infty} e^{\xi_{t}} \mathrm{~d} t$, and
$\bar{\xi}_{\infty}=\sup _{t \geq 0} \xi_{t}$. Arista and Rivero (2015) showed that
$\mathbf{P}\{J>x\} \in \mathcal{R} \mathcal{V}_{-\alpha}$ iff $\mathbf{P}\left\{e^{\bar{\xi}_{\infty}}>x\right\} \in \mathcal{R} \mathcal{V}_{-\alpha}$.
If $\left(\xi_{t}\right)$ has finite jump activity and 0 drift then conditioning on its first jump

$$
J \stackrel{\mathcal{D}}{=} A J+B,
$$

with B being an exponential random variable, independent of A.

Comments III

Rivero (2007): Let $\left(\sigma_{t}\right)_{t \geq 0}$ be a nonlattice subordinator, such that $\mathbf{E} e^{\kappa \sigma_{1}}<\infty$ and $m(x)=\mathbf{E} /\left(\sigma_{1}>x\right) e^{\kappa \sigma_{1}}$ is regularly varying with index $-\alpha \in(-1 / 2,-1)$. Consider the Lévy process $\left(\xi_{t}\right)_{t \geq 0}$ obtained by killing σ at ζ, an independent exponential time with parameter $\log E e^{\kappa \sigma_{1}}$. Then for $J=\int_{0}^{\zeta} e^{\xi t} \mathrm{~d} t$ $\lim _{x \rightarrow \infty} m(\log x) x^{\kappa} \mathbf{P}\{J>x\}=c$.

Proof I

$X \stackrel{\mathcal{D}}{=} A X+B$,

$\psi(x)=e^{\kappa x}\left(\mathbf{P}\left\{A X+B>e^{x}\right\}-\mathbf{P}\left\{A X>e^{x}\right\}\right), f(x)=e^{\kappa x} \mathbf{P}\left\{X>e^{x}\right\}$ using that X and A are independent
$f(x)=\psi(x)+A^{\kappa} e^{\kappa(x-\log A)} \mathbf{P}\left\{X>e^{x-\log A}\right\}=\psi(x)+E f(x-\log A) A^{\kappa}$.
Under the measure $\mathbf{P}_{\kappa}\{\log A \in C\}=\mathbf{E}\left[I(\log A \in C) A^{\kappa}\right]$

$$
f(x)=\psi(x)+\mathbf{E}_{k} f(x-\log A)
$$

Proof I

$$
X \stackrel{\mathcal{D}}{=} A X+B,
$$

$\mathbf{P}\left\{X>e^{x}\right\}=\left[\mathbf{P}\left\{A X+B>e^{x}\right\}-\mathbf{P}\left\{A X>e^{x}\right\}\right]+\mathbf{P}\left\{A X>e^{x}\right\}$
using that X and A are independent
$f(x)=\psi(x)+A^{\kappa} e^{\kappa(x-\log A)} \mathbf{p}\left\{X>e^{x-\log A}\right\}=\psi(x)+E f(x-\log A) A^{k}$.
Under the measure $\mathbf{P}_{\kappa}\{\log A \in C\}=E\left[/(\log A \in C) A^{\kappa}\right]$

$$
f(x)=\psi(x)+\mathbf{E}_{\kappa} f(x-\log A) .
$$

Proof I

$$
X \stackrel{\mathcal{D}}{=} A X+B,
$$

$\mathbf{P}\left\{X>e^{x}\right\}=\left[\mathbf{P}\left\{A X+B>e^{x}\right\}-\mathbf{P}\left\{A X>e^{x}\right\}\right]+\mathbf{P}\left\{A X>e^{x}\right\}$
$\psi(x)=e^{\kappa x}\left(\mathbf{P}\left\{A X+B>e^{x}\right\}-\mathbf{P}\left\{A X>e^{x}\right\}\right), f(x)=e^{\kappa x} \mathbf{P}\left\{X>e^{x}\right\}$ using that X and A are independent $f(x)=\psi(x)+A^{\kappa} e^{k(x-\log A)} \mathbf{P}\left\{X>e^{x-\log A}\right\}=\psi(x)+\mathbf{E} f(x-\log A) A^{\kappa}$.
Under the measure $\mathbf{P}_{k}\{\log A \in C\}=E\left[(\log A \in C) A^{k}\right]$

$$
f(x)=\psi(x)+\mathbf{E}_{\kappa} f(x-\log A) .
$$

Proof I

$$
X \stackrel{\mathcal{D}}{=} A X+B
$$

$\mathbf{P}\left\{X>e^{x}\right\}=\left[\mathbf{P}\left\{A X+B>e^{x}\right\}-\mathbf{P}\left\{A X>e^{x}\right\}\right]+\mathbf{P}\left\{A X>e^{x}\right\}$
$\psi(x)=e^{\kappa x}\left(\mathbf{P}\left\{A X+B>e^{x}\right\}-\mathbf{P}\left\{A X>e^{x}\right\}\right), f(x)=e^{\kappa x} \mathbf{P}\left\{X>e^{x}\right\}$
using that X and A are independent
$f(x)=\psi(x)+A^{\kappa} e^{\kappa(x-\log A)} \mathbf{P}\left\{X>e^{x-\log A}\right\}=\psi(x)+\mathbf{E} f(x-\log A) A^{\kappa}$.
Under the measure $\mathbf{P}_{\kappa}\{\log A \in C\}=\mathbf{E}\left[I(\log A \in C) A^{\kappa}\right]$

$$
f(x)=\psi(x)+\mathbf{E}_{\kappa} f(x-\log A)
$$

Proof II

$$
f(x)=\psi(x)+\mathbf{E}_{\kappa} f(x-\log A)
$$

We have

$$
f(x)=\int_{\mathbb{R}} \psi(x-y) U(\mathrm{~d} y)
$$

where $U(x)=\sum_{n=0}^{\infty} F_{\kappa}^{* n}(x)$. If $\mathrm{E}_{\kappa} \log A<\infty$ then, from the
renewal theorem

which is the KGG theorem. In our case under $\mathbf{P}_{\kappa} \log A \in D(\alpha)$,
so $E_{\kappa} \log A=\infty$.

Proof II

$$
f(x)=\psi(x)+\mathbf{E}_{\kappa} f(x-\log A)
$$

We have

$$
f(x)=\int_{\mathbb{R}} \psi(x-y) U(\mathrm{~d} y)
$$

where $U(x)=\sum_{n=0}^{\infty} F_{\kappa}^{* n}(x)$. If $\mathbf{E}_{\kappa} \log A<\infty$ then, from the renewal theorem

$$
\lim _{x \rightarrow \infty} f(x)=m^{-1} \int_{\mathbb{R}} \psi(y) \mathrm{d} y
$$

which is the KGG theorem. In our case under $P_{k} \log A \in D(\alpha)$,

Proof II

$$
f(x)=\psi(x)+\mathbf{E}_{\kappa} f(x-\log A)
$$

We have

$$
f(x)=\int_{\mathbb{R}} \psi(x-y) U(\mathrm{~d} y)
$$

where $U(x)=\sum_{n=0}^{\infty} F_{\kappa}^{* n}(x)$. If $\mathbf{E}_{\kappa} \log A<\infty$ then, from the renewal theorem

$$
\lim _{x \rightarrow \infty} f(x)=m^{-1} \int_{\mathbb{R}} \psi(y) \mathrm{d} y
$$

which is the KGG theorem. In our case under $\mathbf{P}_{\kappa} \log A \in D(\alpha)$, so $\mathbf{E}_{\kappa} \log A=\infty$.

Infinite mean renewal theorems

Infinite mean analogue of SRT

$$
\lim _{x \rightarrow \infty} m(x)[U(x+h)-U(x)]=h C_{\alpha}, \quad \forall h>0 .
$$

Infinite mean SRT: Garsia \& Lamperti (1963), Erickson (1970): for $\alpha \in(1 / 2,1]$ assumption $H \in D(\alpha)$ implies SRT; for $\alpha \leq 1 / 2$ further assumptions are needed.
NASC for nonnegative random variables was given
independently by Caravenna (2015+) and Doney (2015+):

Infinite mean renewal theorems

Infinite mean analogue of SRT

$$
\lim _{x \rightarrow \infty} m(x)[U(x+h)-U(x)]=h C_{\alpha}, \quad \forall h>0 .
$$

Infinite mean SRT: Garsia \& Lamperti (1963), Erickson (1970): for $\alpha \in(1 / 2,1]$ assumption $H \in D(\alpha)$ implies SRT; for $\alpha \leq 1 / 2$ further assumptions are needed.
NASC for nonnegative random variables was given independently by Caravenna (2015+) and Doney (2015+):

Infinite mean renewal theorems

Infinite mean analogue of SRT

$$
\lim _{x \rightarrow \infty} m(x)[U(x+h)-U(x)]=h C_{\alpha}, \quad \forall h>0 .
$$

Infinite mean SRT: Garsia \& Lamperti (1963), Erickson (1970): for $\alpha \in(1 / 2,1]$ assumption $H \in D(\alpha)$ implies SRT; for $\alpha \leq 1 / 2$ further assumptions are needed.
NASC for nonnegative random variables was given independently by Caravenna (2015+) and Doney (2015+):

$$
\lim _{\delta \rightarrow 0} \limsup _{x \rightarrow \infty} x \bar{H}(x) \int_{1}^{\delta x} \frac{1}{y \bar{H}(y)^{2}} H(x-\mathrm{d} y)=0 .
$$

Back to proof

$$
f(x)=\int_{\mathbb{R}} \psi(x-y) U(\mathrm{~d} y)
$$

where $U(x)=\sum_{n=0}^{\infty} F_{\kappa}^{* n}(x)$.

$$
\lim _{x \rightarrow \infty} m(x)[U(x+h)-U(x)]=h C_{\alpha}
$$

Back to proof

$$
f(x)=\int_{\mathbb{R}} \psi(x-y) U(\mathrm{~d} y)
$$

where $U(x)=\sum_{n=0}^{\infty} F_{\kappa}^{* n}(x)$.

$$
\lim _{x \rightarrow \infty} m(x)[U(x+h)-U(x)]=h C_{\alpha}
$$

$$
\lim _{x \rightarrow \infty} m(x) \int_{\mathbb{R}} \psi(x-y) U(\mathrm{~d} y)=C_{\alpha} \int_{\mathbb{R}} \psi(y) \mathrm{d} y
$$

Outline

Introduction
 Motivation
 Properties

Results

$E A^{\kappa}=1$
$E A^{\kappa}<1$

Further remarks

More general random equations

NASC for the regular variation of X ?

$$
X \in \mathcal{R} \mathcal{V}_{-\kappa} \Rightarrow E A^{\kappa}=1 ?
$$

```
If }X\in\mathcal{R}\mp@subsup{\mathcal{V}}{-\kappa}{}\mathrm{ then }\mathbf{E}|X\mp@subsup{|}{}{p}<\infty\mathrm{ for all }p<\kappa\mathrm{ and }\mathbf{E}|X\mp@subsup{|}{}{p}=\infty\mathrm{ for all
p>\kappa.
Theorem (Alsmeyer & Iksanov & Rösler (2009))
E |X '}\mp@subsup{|}{}{p}<\infty\mathrm{ iff E A A
Thus }X\in\mathcal{R}\mp@subsup{\mathcal{V}}{-\kappa}{}\mathrm{ implies EA}\mp@subsup{A}{}{\kappa}\leq1. Can it be <1? ?
Theorem (K)
Yes.
```


NASC for the regular variation of X ?

$$
X \in \mathcal{R} \mathcal{V}_{-\kappa} \Rightarrow E A^{\kappa}=1 ?
$$

If $X \in \mathcal{R} \mathcal{V}_{-\kappa}$ then $\mathbf{E}|X|^{p}<\infty$ for all $p<\kappa$ and $\mathbf{E}|X|^{p}=\infty$ for all $p>\kappa$.

Theorem (Alsmeyer \& Iksanov \& Rösler (2009)) $\mathbf{E}|X|^{p}<\infty$ iff $\mathrm{E} A^{p}<1$ and $\mathbf{E}|B|^{p}<\infty$. Thus $X \in \mathcal{R} \mathcal{V}_{-\kappa}$ implies $E A^{\kappa} \leq 1$. Can it be <1 ?

Theorem (K) Yes.

NASC for the regular variation of X ?

$$
X \in \mathcal{R} \mathcal{V}_{-\kappa} \Rightarrow E A^{\kappa}=1 ?
$$

If $X \in \mathcal{R} \mathcal{V}_{-\kappa}$ then $\mathbf{E}|X|^{p}<\infty$ for all $p<\kappa$ and $\mathbf{E}|X|^{p}=\infty$ for all $p>\kappa$.

Theorem (Alsmeyer \& Iksanov \& Rösler (2009))
$\mathbf{E}|X|^{p}<\infty$ iff $\mathbf{E} A^{p}<1$ and $\mathbf{E}|B|^{p}<\infty$.
Thus $X \in \mathcal{R} \mathcal{V}_{-\kappa}$ implies $E A^{\kappa} \leq 1$.
Theorem (K)
Yes.

NASC for the regular variation of X ?

$$
X \in \mathcal{R} \mathcal{V}_{-\kappa} \Rightarrow E A^{\kappa}=1 ?
$$

If $X \in \mathcal{R} \mathcal{V}_{-\kappa}$ then $\mathbf{E}|X|^{p}<\infty$ for all $p<\kappa$ and $\mathbf{E}|X|^{p}=\infty$ for all $p>\kappa$.

Theorem (Alsmeyer \& Iksanov \& Rösler (2009))
$\mathbf{E}|X|^{p}<\infty$ iff $\mathbf{E} A^{p}<1$ and $\mathbf{E}|B|^{p}<\infty$.
Thus $X \in \mathcal{R} \mathcal{V}_{-\kappa}$ implies $E A^{\kappa} \leq 1$. Can it be <1 ?

NASC for the regular variation of X ?

$$
X \in \mathcal{R} \mathcal{V}_{-\kappa} \Rightarrow E A^{\kappa}=1 ?
$$

If $X \in \mathcal{R} \mathcal{V}_{-\kappa}$ then $\mathbf{E}|X|^{p}<\infty$ for all $p<\kappa$ and $\mathbf{E}|X|^{p}=\infty$ for all $p>\kappa$.

Theorem (Alsmeyer \& Iksanov \& Rösler (2009))
$\mathbf{E}|X|^{p}<\infty$ iff $\mathbf{E} A^{p}<1$ and $\mathbf{E}|B|^{p}<\infty$.
Thus $X \in \mathcal{R} \mathcal{V}_{-\kappa}$ implies $E A^{\kappa} \leq 1$. Can it be <1 ?
Theorem (K)
Yes.

Assume $\mathbf{E} A^{\kappa}=\theta<1$ for some $\kappa>0$, and $\mathbf{E} A^{t}=\infty$ for any $t>\kappa$.

$$
F_{\kappa}(x)=\theta^{-1} \int_{-\infty}^{x} e^{\kappa y} F(\mathrm{~d} y)
$$

The assumption EA $A^{t}=\infty$ for all $t>\kappa$ means that F_{κ} is heavy-tailed.
To analyze the asymptotic behavior of the resulting defective renewal equation we use the techniques and results developed by Asmussen, Foss and Korshunov (2003).

Locally subexponential distributions

For some $T \in(0, \infty]$ let $\Delta=(0, T]$. For a df H we put $H(x+\Delta)=H(x+T)-H(x)$. A df H on \mathbb{R} is in the class \mathcal{L}_{Δ} if $H(x+t+\Delta) / H(x+\Delta) \rightarrow 1$ uniformly in $t \in[0,1]$, and it belongs to the class of Δ-subexponential distributions, $H \in \mathcal{S}_{\Delta}$, if $H(x+\Delta)>0$ for x large enough, $H \in \mathcal{L}_{\Delta}$, and $(H * H)(x+\Delta) \sim 2 H(x+\Delta)$. If $H \in \mathcal{S}_{\Delta}$ for every $T>0$ then it is called locally subexponential, $H \in \mathcal{S}_{\text {loc }}$.

Locally subexponential distributions

For some $T \in(0, \infty]$ let $\Delta=(0, T]$. For a df H we put $H(x+\Delta)=H(x+T)-H(x)$. A df H on \mathbb{R} is in the class \mathcal{L}_{Δ} if $H(x+t+\Delta) / H(x+\Delta) \rightarrow 1$ uniformly in $t \in[0,1]$, and it belongs to the class of Δ-subexponential distributions, $H \in \mathcal{S}_{\Delta}$, if $H(x+\Delta)>0$ for x large enough, $H \in \mathcal{L}_{\Delta}$, and
$(H * H)(x+\Delta) \sim 2 H(x+\Delta)$. If $H \in \mathcal{S}_{\Delta}$ for every $T>0$ then it is called locally subexponential, $H \in \mathcal{S}_{\text {loc }}$.
Or assume simply that F_{κ} is a nice subexponential distribution.

Theorem (K)
Assume $\mathbf{E} A^{\kappa}=\theta<1$, and F_{κ} is a nice subexponential distribution. Then
$\lim _{x \rightarrow \infty} g(\log x)^{-1} x^{\kappa} \mathbf{P}\{X>x\}=\frac{\theta}{(1-\theta)^{2} \kappa} \mathbf{E}\left[(A X+B)_{+}^{\kappa}-(A X)_{+}^{\kappa}\right]$,
$\lim _{x \rightarrow \infty} g(\log x)^{-1} x^{\kappa} \mathbf{P}\{X \leq-x\}=\frac{\theta}{(1-\theta)^{2} \kappa} \mathbf{E}\left[(A X+B)_{-}^{\kappa}-(A X)_{-}^{\kappa}\right]$,
where $g(x)=F_{\kappa}(x+1)-F_{\kappa}(x)$. Moreover,
$\mathbf{E}\left[(A X+B)_{+}^{\kappa}-(A X)_{+}^{\kappa}\right]+\mathbf{E}\left[(A X+B)_{-}^{\kappa}-(A X)_{-}^{\kappa}\right]>0$.
Note that $g(\log x)$ is slowly varying.

Comment

In the Pareto case, $\bar{F}_{\kappa}(x)=c x^{-\beta}$, then $g(x) \sim c \beta x^{-\beta-1}$, and so $\mathbf{P}\{X>x\} \sim c^{\prime} x^{-\kappa}(\log x)^{-\beta-1}$. In the lognormal case, $F_{\kappa}(x)=\Phi(\log x)$, with Φ being the standard normal df, $\mathbf{P}\{X>x\} \sim c x^{-\kappa} e^{-(\log \log x)^{2} / 2} / \log x, c>0$. For Weibull tails $\bar{F}_{\kappa}(x)=e^{-x^{\beta}}, \beta \in(0,1)$, we obtain
$\mathbf{P}\{X>x\} \sim c x^{-\kappa}(\log x)^{\beta-1} e^{-(\log x)^{\beta}}$.
Note that $\mathrm{E}|X|^{\kappa}<\infty$, so $\int_{0}^{\infty} x^{\kappa-1} \bar{F}_{\kappa}(x) \mathrm{d} x<\infty$.

Outline

Introduction
 Motivation Properties
 Results
 $E A^{\kappa}=1$
 $E A^{\kappa}<1$
 Further remarks
 More general random equations

Goldie's unified approach

Goldie obtained tail asymptotics for more general random equations. Consider the equation

```
where }a\veeb=\operatorname{max}{a,b},A\geq0\mathrm{ and (A,B) and X on the
right-hand side are independent.
If }B\equiv1\mathrm{ then }\operatorname{log}X=M\mathrm{ , where }M=\operatorname{max}{0,\mp@subsup{S}{1}{},\mp@subsup{S}{2}{},\ldots}\mathrm{ , and
S
iid log A.
```


Goldie's unified approach

Goldie obtained tail asymptotics for more general random equations. Consider the equation

$$
X \stackrel{\mathcal{D}}{=} A X \vee B,
$$

where $a \vee b=\max \{a, b\}, A \geq 0$ and (A, B) and X on the right-hand side are independent.

Goldie's unified approach

Goldie obtained tail asymptotics for more general random equations. Consider the equation

$$
X \stackrel{\mathcal{D}}{=} A X \vee B
$$

where $a \vee b=\max \{a, b\}, A \geq 0$ and (A, B) and X on the right-hand side are independent.
If $B \equiv 1$ then $\log X=M$, where $M=\max \left\{0, S_{1}, S_{2}, \ldots\right\}$, and $S_{n}=\log A_{1}+\log A_{2}+\ldots+\log A_{n}$, where $\log A_{1}, \log A_{2}, \ldots$ are iid $\log A$.

Theorem (Goldie (1991))
If $E A^{\kappa}=1, E A^{\kappa} \log _{+} A<\infty$ then there is a unique solution X, and $\mathbf{P}\{X>x\} \sim C x^{-\kappa}$.

Theorem (K)
Assume $\mathrm{E} A^{\kappa}=1, F_{k} \in D(\alpha)$, and the Caravenna-Doney condition holds. Then
$\lim _{x \rightarrow \infty} m(\log x) x^{\kappa} \mathbf{P}\{X>x\}=C_{\alpha} \frac{1}{\kappa} E\left[\left(A X_{+} \vee B_{+}\right)^{\kappa}-\left(A X_{+}\right)^{\kappa}\right]$.
For $B \equiv 1$ we get back Korshunov's result.

Theorem (Goldie (1991))
If $\mathrm{E} A^{\kappa}=1, \mathrm{E} A^{\kappa} \log _{+} A<\infty$ then there is a unique solution X, and $\mathbf{P}\{X>x\} \sim c x^{-\kappa}$.

Theorem (K)
Assume $\mathrm{E} A^{\kappa}=1, F_{\kappa} \in D(\alpha)$, and the Caravenna-Doney condition holds. Then

$$
\lim _{x \rightarrow \infty} m(\log x) x^{\kappa} \mathbf{P}\{X>x\}=C_{\alpha} \frac{1}{\kappa} \mathbf{E}\left[\left(A X_{+} \vee B_{+}\right)^{\kappa}-\left(A X_{+}\right)^{\kappa}\right] .
$$

For $B \equiv 1$ we get back Korshunov's result.

Theorem (Goldie (1991))
If $\mathrm{E} A^{\kappa}=1, \mathrm{E} A^{\kappa} \log _{+} A<\infty$ then there is a unique solution X, and $\mathbf{P}\{X>x\} \sim c x^{-\kappa}$.

Theorem (K)
Assume $\mathbf{E A} A^{\kappa}=1, F_{\kappa} \in D(\alpha)$, and the Caravenna-Doney condition holds. Then

$$
\lim _{x \rightarrow \infty} m(\log x) x^{\kappa} \mathbf{P}\{X>x\}=C_{\alpha} \frac{1}{\kappa} \mathbf{E}\left[\left(A X_{+} \vee B_{+}\right)^{\kappa}-\left(A X_{+}\right)^{\kappa}\right] .
$$

For $B \equiv 1$ we get back Korshunov's result.

$E A^{\kappa}<1$

Theorem (K)
Assume $E A^{\kappa}<1$, and F_{κ} is a nice subexponential distribution.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} g(\log x)^{-1} x^{\kappa} \mathbf{P}\{X>x\}=\frac{\theta}{(1-\theta)^{2} \kappa} \mathrm{E}\left[\left(A X_{+} \vee B_{+}\right)^{\kappa}-\left(A X_{+}\right)^{\kappa}\right], \\
& \text { where } g(x)=F_{\kappa}(x+1)-F_{\kappa}(x) .
\end{aligned}
$$

In the special case $B \equiv 1$ we have the following.
Corollary
$S_{n}=\log A_{1}+\log A_{2}+\ldots+\log A_{n}, M=\max \left\{0, S_{1}, S_{2}, \ldots\right\}$ Then

$E A^{\kappa}<1$

Theorem (K)
Assume $\mathrm{EA}^{\kappa}<1$, and F_{κ} is a nice subexponential distribution.
$\lim _{x \rightarrow \infty} g(\log x)^{-1} x^{\kappa} \mathbf{P}\{X>x\}=\frac{\theta}{(1-\theta)^{2} \kappa} \mathbf{E}\left[\left(A X_{+} \vee B_{+}\right)^{\kappa}-\left(A X_{+}\right)^{\kappa}\right]$,
where $g(x)=F_{\kappa}(x+1)-F_{\kappa}(x)$.
In the special case $B \equiv 1$ we have the following.
Corollary
$S_{n}=\log A_{1}+\log A_{2}+\ldots+\log A_{n}, M=\max \left\{0, S_{1}, S_{2}, \ldots\right\}$.
Then

$$
\mathbf{P}\{M>x\} \sim c g(x) e^{-\kappa x},
$$

where $g(x)=F_{\kappa}(x+1)-F_{\kappa}(x)$.

