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Motivation

Perpetuity equation

X D
= AX + B,

where (A,B) and X on the right-hand side are independent.
Assume P{Ax + B = x} < 1 for any x ∈ R, A 6≡ 1, and that
log A conditioned on being nonzero is nonarithmetic.
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Applications

Actuarial application

B1 + A1B2 + A1A2B2 + . . .

Financial mathematics: ARCH models and perpetuities
(Embrechts & Klüppelberg & Mikosch); Branching processes in
random environment, ...
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Motivation

Applications II
Exponential functional of Lévy processes:

J =

∫ ∞
0

eξt dt

Carmona & Petit & Yor (2001); Bertoin & Yor (2005): survey;
Maulik, Zwart, Kuznetsov, Pardo, Patie, Savov, Rivero, Behme,
Lindner, Maller, ...
If (ξt ) has finite jump activity and 0 drift then conditioning on its
first jump time one has the perpetuity equation

J D= AJ + B,

with B being an exponential random variable, independent of A,
and the jump size is log A.
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Motivation

Applications III (self-advertising)

Random iterative geometric structures: K regular
d-dimensional simplex with centroid (0,0, . . . ,0) and vertices
(e0,e1, . . . ,ed ), e0 = (1,0, . . . ,0).
K0 = K , pn+1 uniformly distributed random point in Kn, and
Kn+1 = Kn ∩ (pn+1 + K ).
Clearly {Kn} is a nested sequence of regular simplexes, which
converges to a regular simplex.
The barycentric coordinates of the limiting simplex satisfy a
d-dimensional perpetuity equation⇒ have
D(d/(d + 1), . . . ,d/(d + 1)) distribution. (Ambrus & K & Vígh
(2011); Hitczenko & Letac (2014); K & Vígh (2016))
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Properties

Existence

X D
= AX + B

If E log A < 0, E log+ |B| <∞, then there is a unique solution.
For NASC see Goldie, Maller (2001).
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Tail asymptotic: heavy tails

X D
= AX + B

Theorem (Kesten (1973))
If E|A|κ = 1,E|A|κ log+ |A| <∞, E|B|κ <∞ then

P{X > x} ∼ c+x−κ and P{X < −x} ∼ c−x−κ as x →∞.

Goldie (1991) simplified proof (for more general equations),
based on Grincevičius (1975)
Where is the slowly varying function `(x) from the asymptotics?

P{X > x} ∼ `(x)

xκ
.
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Tail asymptotic: heavy tails II

X D
= AX + B

Theorem (Grincevičius (1975), Grey (1994))
If A ≥ 0, EAκ < 1, EAκ+ε <∞ then the tail of X is regularly
varying with parameter −κ if and only if the tail of B is.
That is, the regular variation of X is either caused by A alone,
or by B alone.
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Tail asymptotics: light tails

If P{|A| > 1} > 0 then the tail decreases at least polynomially
(Goldie & Grübel, 1996). Can even be slowly varying:
Dyszewski (2016)

Theorem (Goldie & Grübel (1996))
X has at least exponential tail under the assumption |A| ≤ 1.
See also Hitczenko & Wesołowski 2009;
Bartosz Kołodziejek: Perpetuities with thin tails revisited once
again
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EAκ = 1

Always assume

X D
= AX + B,

A ≥ 0, P{Ax + B = x} < 1 for any x ∈ R, A 6≡ 1, and that log A

conditioned on being nonzero is nonarithmetic, E|B|ν <∞ for
some ν > κ > 0.
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EAκ = 1

Assume that EAκ = 1, κ > 0. Put Fκ(x) =
∫ x
−∞ eκyF (dy),

log A ∼ F , and assume Fκ(x) = `(x)x−α, α ∈ (0,1). That is
Eκ log A =∞!
The truncated expectation

m(x) =

∫ x

0
[Fκ(−u) + Fκ(u)]du ∼

∫ x

0
Fκ(u)du ∼ `(x)x1−α

1− α
.
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EAκ = 1

Assume (Caravenna–Doney condition)

lim
δ→0

lim sup
x→∞

xFκ(x)

∫ δx

1

1
yFκ(y)2

Fκ(x − dy) = 0.

Theorem (K)
If the assumptions above are satisfied then

lim
x→∞

m(log x)xκP{X > x} = Cα
1
κ

E[(AX + B)κ+ − (AX )κ+],

lim
x→∞

m(log x)xκP{X ≤ −x} = Cα
1
κ

E[(AX + B)κ− − (AX )κ−].

Moreover, E[(AX + B)κ+ − (AX )κ+] + E[(AX + B)κ−− (AX )κ−] > 0.
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EAκ = 1

Comments
Theorem is stated as a conjecture/open problem by Iksanov
2007.
The conditions of the theorem are stated in terms of Fκ. If

eκxF (x) =
α `(x)

κ xα+1

with a slowly varying ` then Fκ ∈ D(α).
The Caravenna–Doney condition

lim
δ→0

lim sup
x→∞

xFκ(x)

∫ δx

1

1
yFκ(y)2

Fκ(x − dy) = 0

always holds if α > 1/2.
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EAκ = 1

Comments II

X is closely related to the maximum M = max{0,S1,S2, . . .} of
the RW Sn = log A1 + log A2 + . . .+ log An, log A1, log A2, . . . iid
log A (EAκ = 1 implies that E log A < 0, so M is a.s. finite).
Korshunov (2005)

lim
x→∞

P{M > x}eκxm(x) = c.
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EAκ = 1

In specific cases this result is equivalent to our theorem. Let
(ξt )t≥0 be a nonmonotone Lévy process, J =

∫∞
0 eξt dt , and

ξ∞ = supt≥0 ξt . Arista and Rivero (2015) showed that
P{J > x} ∈ RV−α iff P{eξ∞ > x} ∈ RV−α.
If (ξt ) has finite jump activity and 0 drift then conditioning on its
first jump

J D= AJ + B,

with B being an exponential random variable, independent of A.
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EAκ = 1

Comments III

Rivero (2007): Let (σt )t≥0 be a nonlattice subordinator, such
that Eeκσ1 <∞ and m(x) = EI(σ1 > x)eκσ1 is regularly varying
with index −α ∈ (−1/2,−1). Consider the Lévy process (ξt )t≥0
obtained by killing σ at ζ, an independent exponential time with
parameter log Eeκσ1 . Then for J =

∫ ζ
0 eξt dt

limx→∞m(log x)xκP{J > x} = c.
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EAκ = 1

Proof I

X D
= AX + B,

P{X > ex} = [P{AX + B > ex} − P{AX > ex}] + P{AX > ex}

ψ(x) = eκx (P{AX+B > ex}−P{AX > ex}), f (x) = eκxP{X > ex}
using that X and A are independent

f (x) = ψ(x)+Aκeκ(x−log A)P{X > ex−log A} = ψ(x)+Ef (x−log A)Aκ.

Under the measure Pκ{log A ∈ C} = E[I(log A ∈ C)Aκ]

f (x) = ψ(x) + Eκf (x − log A).
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Introduction Results Further remarks

EAκ = 1

Proof I

X D
= AX + B,

P{X > ex} = [P{AX + B > ex} − P{AX > ex}] + P{AX > ex}

ψ(x) = eκx (P{AX+B > ex}−P{AX > ex}), f (x) = eκxP{X > ex}
using that X and A are independent

f (x) = ψ(x)+Aκeκ(x−log A)P{X > ex−log A} = ψ(x)+Ef (x−log A)Aκ.

Under the measure Pκ{log A ∈ C} = E[I(log A ∈ C)Aκ]

f (x) = ψ(x) + Eκf (x − log A).

A note on the Kesten–Grincevičius–Goldie theorem TUM
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EAκ = 1

Proof II

f (x) = ψ(x) + Eκf (x − log A).

We have
f (x) =

∫
R
ψ(x − y)U(dy),

where U(x) =
∑∞

n=0 F ∗nκ (x). If Eκ log A <∞ then, from the
renewal theorem

lim
x→∞

f (x) = m−1
∫
R
ψ(y)dy ,

which is the KGG theorem. In our case under Pκ log A ∈ D(α),
so Eκ log A =∞.
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EAκ = 1

Infinite mean renewal theorems
Infinite mean analogue of SRT

lim
x→∞

m(x)[U(x + h)− U(x)] = hCα, ∀h > 0.

Infinite mean SRT: Garsia & Lamperti (1963), Erickson (1970):
for α ∈ (1/2,1] assumption H ∈ D(α) implies SRT; for α ≤ 1/2
further assumptions are needed.
NASC for nonnegative random variables was given
independently by Caravenna (2015+) and Doney (2015+):

lim
δ→0

lim sup
x→∞

xH(x)

∫ δx

1

1
yH(y)2

H(x − dy) = 0.
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EAκ = 1

Back to proof

f (x) =

∫
R
ψ(x − y)U(dy),

where U(x) =
∑∞

n=0 F ∗nκ (x).

lim
x→∞

m(x)[U(x + h)− U(x)] = hCα

lim
x→∞

m(x)

∫
R
ψ(x − y)U(dy) = Cα

∫
R
ψ(y)dy
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EAκ < 1

NASC for the regular variation of X?

X ∈ RV−κ ⇒ EAκ = 1 ?

If X ∈ RV−κ then E|X |p <∞ for all p < κ and E|X |p =∞ for all
p > κ.

Theorem (Alsmeyer & Iksanov & Rösler (2009))
E|X |p <∞ iff EAp < 1 and E|B|p <∞.
Thus X ∈ RV−κ implies EAκ ≤ 1. Can it be < 1?

Theorem (K)
Yes.
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EAκ < 1

Assume EAκ = θ < 1 for some κ > 0, and EAt =∞ for any
t > κ.

Fκ(x) = θ−1
∫ x

−∞
eκyF (dy).

The assumption EAt =∞ for all t > κ means that Fκ is
heavy-tailed.
To analyze the asymptotic behavior of the resulting defective
renewal equation we use the techniques and results developed
by Asmussen, Foss and Korshunov (2003).
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EAκ < 1

Locally subexponential distributions

For some T ∈ (0,∞] let ∆ = (0,T ]. For a df H we put
H(x + ∆) = H(x + T )− H(x). A df H on R is in the class L∆ if
H(x + t + ∆)/H(x + ∆)→ 1 uniformly in t ∈ [0,1], and it
belongs to the class of ∆-subexponential distributions, H ∈ S∆,
if H(x + ∆) > 0 for x large enough, H ∈ L∆, and
(H ∗ H)(x + ∆) ∼ 2H(x + ∆). If H ∈ S∆ for every T > 0 then it
is called locally subexponential, H ∈ Sloc .
Or assume simply that Fκ is a nice subexponential distribution.
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EAκ < 1

Theorem (K)
Assume EAκ = θ < 1, and Fκ is a nice subexponential
distribution. Then

lim
x→∞

g(log x)−1xκP{X > x} =
θ

(1− θ)2κ
E[(AX + B)κ+ − (AX )κ+],

lim
x→∞

g(log x)−1xκP{X ≤ −x} =
θ

(1− θ)2κ
E[(AX + B)κ− − (AX )κ−],

where g(x) = Fκ(x + 1)− Fκ(x). Moreover,
E[(AX + B)κ+ − (AX )κ+] + E[(AX + B)κ− − (AX )κ−] > 0.
Note that g(log x) is slowly varying.
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Comment

In the Pareto case, Fκ(x) = c x−β, then g(x) ∼ cβx−β−1, and
so P{X > x} ∼ c′x−κ(log x)−β−1. In the lognormal case,
Fκ(x) = Φ(log x), with Φ being the standard normal df,
P{X > x} ∼ cx−κe−(log log x)2/2/ log x , c > 0. For Weibull tails
Fκ(x) = e−xβ , β ∈ (0,1), we obtain
P{X > x} ∼ cx−κ(log x)β−1e−(log x)β .
Note that E|X |κ <∞, so

∫∞
0 xκ−1Fκ(x)dx <∞.
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More general random equations

Goldie’s unified approach

Goldie obtained tail asymptotics for more general random
equations. Consider the equation

X D
= AX ∨ B,

where a ∨ b = max{a,b}, A ≥ 0 and (A,B) and X on the
right-hand side are independent.
If B ≡ 1 then log X = M, where M = max{0,S1,S2, . . .}, and
Sn = log A1 + log A2 + . . .+ log An, where log A1, log A2, . . . are
iid log A.
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More general random equations

Theorem (Goldie (1991))
If EAκ = 1,EAκ log+ A <∞ then there is a unique solution X,
and P{X > x} ∼ cx−κ.

Theorem (K)
Assume EAκ = 1, Fκ ∈ D(α), and the Caravenna–Doney
condition holds. Then

lim
x→∞

m(log x)xκP{X > x} = Cα
1
κ

E[(AX+ ∨ B+)κ − (AX+)κ].

For B ≡ 1 we get back Korshunov’s result.
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Introduction Results Further remarks

More general random equations

Theorem (Goldie (1991))
If EAκ = 1,EAκ log+ A <∞ then there is a unique solution X,
and P{X > x} ∼ cx−κ.

Theorem (K)
Assume EAκ = 1, Fκ ∈ D(α), and the Caravenna–Doney
condition holds. Then

lim
x→∞

m(log x)xκP{X > x} = Cα
1
κ

E[(AX+ ∨ B+)κ − (AX+)κ].

For B ≡ 1 we get back Korshunov’s result.

A note on the Kesten–Grincevičius–Goldie theorem TUM
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More general random equations

EAκ < 1
Theorem (K)
Assume EAκ < 1, and Fκ is a nice subexponential distribution.

lim
x→∞

g(log x)−1xκP{X > x} =
θ

(1− θ)2κ
E[(AX+∨B+)κ−(AX+)κ],

where g(x) = Fκ(x + 1)− Fκ(x).
In the special case B ≡ 1 we have the following.

Corollary
Sn = log A1 + log A2 + . . .+ log An, M = max{0,S1,S2, . . .}.
Then

P{M > x} ∼ cg(x)e−κx ,

where g(x) = Fκ(x + 1)− Fκ(x).
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