A note on the Kesten–Grincevičius–Goldie theorem

Péter Kevei

TU Munich

Probabilistic Aspects of Harmonic Analysis

Introduction

Motivation Properties

Results

 $\mathbf{E}\mathbf{A}^{\kappa} = \mathbf{1}$ $\mathbf{E}\mathbf{A}^{\kappa} < \mathbf{1}$

Further remarks

Introduction Motivation Properties

Results

 $\mathbf{E} \mathbf{A}^{\kappa} = \mathbf{1}$ $\mathbf{E} \mathbf{A}^{\kappa} < \mathbf{1}$

Further remarks

More general random equations

▲□▶▲圖▶▲臣▶▲臣▶ = 目 - のへ⊙

Introduction Motivation Properties

Results

 $\mathbf{E}\mathbf{A}^{\kappa}=\mathbf{1}$ $\mathbf{E}\mathbf{A}^{\kappa}<\mathbf{1}$

Further remarks

More general random equations

▲□▶▲圖▶▲臣▶▲臣▶ = 目 - のへ⊙

Introduction Motivation Properties

Results

 $\mathbf{E}\mathbf{A}^{\kappa} = \mathbf{1}$ $\mathbf{E}\mathbf{A}^{\kappa} < \mathbf{1}$

Further remarks

Introduction Motivation Properties

 $\frac{\text{Results}}{\text{E}A^{\kappa}} = 1$

 $\mathbf{E} \mathbf{A}^{\kappa} < 1$

Further remarks

Introduction Motivation Properties

Results

 $\mathbf{E} \mathbf{A}^{\kappa} = \mathbf{1}$ $\mathbf{E} \mathbf{A}^{\kappa} < \mathbf{1}$

Further remarks

Introduction Motivation Properties

Results

 $\mathbf{E} \mathbf{A}^{\kappa} = \mathbf{1}$ $\mathbf{E} \mathbf{A}^{\kappa} < \mathbf{1}$

Further remarks

Introduction Motivation Properties

Results

 $\mathbf{E}\mathbf{A}^{\kappa} = \mathbf{1}$ $\mathbf{E}\mathbf{A}^{\kappa} < \mathbf{1}$

Further remarks

More general random equations

イロト イボト イヨト イヨト

Outline

Introduction Motivation Properties

Results

 $\mathbf{E}\mathbf{A}^{\kappa} = \mathbf{1}$ $\mathbf{E}\mathbf{A}^{\kappa} < \mathbf{1}$

Further remarks

More general random equations

▲□▶▲圖▶▲臣▶▲臣▶ = 目 - のへ⊙

Perpetuity equation

$$X \stackrel{\mathcal{D}}{=} AX + B,$$

where (A, B) and X on the right-hand side are independent. Assume $P{Ax + B = x} < 1$ for any $x \in \mathbb{R}$, $A \neq 1$, and that log A conditioned on being nonzero is nonarithmetic.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Perpetuity equation

$$X\stackrel{\mathcal{D}}{=} AX + B,$$

where (A, B) and X on the right-hand side are independent. Assume $\mathbf{P}{Ax + B = x} < 1$ for any $x \in \mathbb{R}$, $A \neq 1$, and that log A conditioned on being nonzero is nonarithmetic.

Actuarial application

$$B_1 + A_1 B_2 + A_1 A_2 B_2 + \ldots$$

Financial mathematics: ARCH models and perpetuities (Embrechts & Klüppelberg & Mikosch); Branching processes in random environment, ...

э

< ロト (同) (三) (三)

Applications II

Exponential functional of Lévy processes:

$$J = \int_0^\infty \boldsymbol{e}^{\xi_t} \mathrm{d}t$$

Carmona & Petit & Yor (2001); Bertoin & Yor (2005): survey; Maulik, Zwart, Kuznetsov, Pardo, Patie, Savov, Rivero, Behme, Lindner, Maller, ...

If (ξ_t) has finite jump activity and 0 drift then conditioning on its first jump time one has the perpetuity equation

$$J \stackrel{\mathcal{D}}{=} AJ + B,$$

with *B* being an exponential random variable, independent of *A*, and the jump size is $\log A$.

Applications II

Exponential functional of Lévy processes:

$$J = \int_0^\infty \boldsymbol{e}^{\xi_t} \mathrm{d}t$$

Carmona & Petit & Yor (2001); Bertoin & Yor (2005): survey; Maulik, Zwart, Kuznetsov, Pardo, Patie, Savov, Rivero, Behme, Lindner, Maller, ...

If (ξ_t) has finite jump activity and 0 drift then conditioning on its first jump time one has the perpetuity equation

$$J \stackrel{\mathcal{D}}{=} AJ + B,$$

with *B* being an exponential random variable, independent of *A*, and the jump size is $\log A$.

Applications II

Exponential functional of Lévy processes:

$$J = \int_0^\infty \boldsymbol{e}^{\xi_t} \mathrm{d}t$$

Carmona & Petit & Yor (2001); Bertoin & Yor (2005): survey; Maulik, Zwart, Kuznetsov, Pardo, Patie, Savov, Rivero, Behme, Lindner, Maller, ...

If (ξ_t) has finite jump activity and 0 drift then conditioning on its first jump time one has the perpetuity equation

$$J \stackrel{\mathcal{D}}{=} AJ + B,$$

with *B* being an exponential random variable, independent of *A*, and the jump size is $\log A$.

Applications III (self-advertising)

Random iterative geometric structures: *K* regular *d*-dimensional simplex with centroid (0, 0, ..., 0) and vertices $(e_0, e_1, ..., e_d), e_0 = (1, 0, ..., 0).$ $K_0 = K, p_{n+1}$ uniformly distributed random point in K_n , and $K_{n+1} = K_n \cap (p_{n+1} + K).$ Clearly $\{K_n\}$ is a nested sequence of regular simplexes, which converges to a regular simplex. The barycentric coordinates of the limiting simplex satisfy a *d*-dimensional perpetuity equation \Rightarrow have $\mathcal{D}(d/(d+1), ..., d/(d+1))$ distribution. (Ambrus & K & Vigh

2011); Hitczenko & Letac (2014); K & Vígh (2016))

<ロト

Applications III (self-advertising)

Random iterative geometric structures: *K* regular *d*-dimensional simplex with centroid (0, 0, ..., 0) and vertices $(e_0, e_1, ..., e_d), e_0 = (1, 0, ..., 0).$ $K_0 = K, p_{n+1}$ uniformly distributed random point in K_n , and $K_{n+1} = K_n \cap (p_{n+1} + K).$ Clearly $\{K_n\}$ is a nested sequence of regular simplexes, which

converges to a regular simplex.

The barycentric coordinates of the limiting simplex satisfy a *d*-dimensional perpetuity equation \Rightarrow have $\mathcal{D}(d/(d+1), \ldots, d/(d+1))$ distribution. (Ambrus & K & Vígh (2011); Hitczenko & Letac (2014); K & Vígh (2016))

・ロト・日本・日本・日本・日本・今日・

Applications III (self-advertising)

Random iterative geometric structures: *K* regular *d*-dimensional simplex with centroid (0, 0, ..., 0) and vertices $(e_0, e_1, ..., e_d), e_0 = (1, 0, ..., 0).$ $K_0 = K, p_{n+1}$ uniformly distributed random point in K_n , and $K_{n+1} = K_n \cap (p_{n+1} + K).$

Clearly $\{K_n\}$ is a nested sequence of regular simplexes, which converges to a regular simplex.

The barycentric coordinates of the limiting simplex satisfy a d-dimensional perpetuity equation \Rightarrow have

 $\mathcal{D}(d/(d+1),\ldots,d/(d+1))$ distribution. (Ambrus & K & Vígh (2011); Hitczenko & Letac (2014); K & Vígh (2016))

Outline

Introduction Motivation Properties

Results

 $\mathbf{E} \mathbf{A}^{\kappa} = 1$ $\mathbf{E} \mathbf{A}^{\kappa} < 1$

Further remarks

$$X \stackrel{\mathcal{D}}{=} AX + B$$

If $E \log A < 0$, $E \log_+ |B| < \infty$, then there is a unique solution. For NASC see Goldie, Maller (2001).

э

イロト イボト イヨト イヨト

Tail asymptotic: heavy tails

$$X \stackrel{\mathcal{D}}{=} AX + B$$

Theorem (Kesten (1973)) If $\mathbf{E}|A|^{\kappa} = 1$, $\mathbf{E}|A|^{\kappa} \log_{+} |A| < \infty$, $\mathbf{E}|B|^{\kappa} < \infty$ then

$$\mathbf{P}{X > x} \sim c_+ x^{-\kappa}$$
 and $\mathbf{P}{X < -x} \sim c_- x^{-\kappa}$ as $x \to \infty$.

Goldie (1991) simplified proof (for more general equations), based on Grincevičius (1975)

Where is the slowly varying function $\ell(x)$ from the asymptotics?

$$\mathsf{P}\{X > x\} \sim \frac{\ell(x)}{x^{\kappa}}.$$

くロット (目) くろう くろう

Tail asymptotic: heavy tails

$$X \stackrel{\mathcal{D}}{=} AX + B$$

Theorem (Kesten (1973)) If $\mathbf{E}|A|^{\kappa} = 1$, $\mathbf{E}|A|^{\kappa} \log_{+} |A| < \infty$, $\mathbf{E}|B|^{\kappa} < \infty$ then

$$\mathbf{P}{X > x} \sim c_+ x^{-\kappa}$$
 and $\mathbf{P}{X < -x} \sim c_- x^{-\kappa}$ as $x \to \infty$.

Goldie (1991) simplified proof (for more general equations), based on Grincevičius (1975)

Where is the slowly varying function $\ell(x)$ from the asymptotics?

$$\mathsf{P}\{X>x\}\sim \frac{\ell(x)}{x^{\kappa}}.$$

э

Tail asymptotic: heavy tails II

$$X \stackrel{\mathcal{D}}{=} AX + B$$

Theorem (Grincevičius (1975), Grey (1994)) If $A \ge 0$, $\mathbf{E}A^{\kappa} < 1$, $\mathbf{E}A^{\kappa+\epsilon} < \infty$ then the tail of X is regularly varying with parameter $-\kappa$ if and only if the tail of B is.

That is, the regular variation of X is either caused by A alone, or by B alone.

э

イロト イポト イヨト イヨト

Tail asymptotic: heavy tails II

$$X \stackrel{\mathcal{D}}{=} AX + B$$

Theorem (Grincevičius (1975), Grey (1994)) If $A \ge 0$, $\mathbf{E}A^{\kappa} < 1$, $\mathbf{E}A^{\kappa+\epsilon} < \infty$ then the tail of X is regularly varying with parameter $-\kappa$ if and only if the tail of B is.

That is, the regular variation of X is either caused by A alone, or by B alone.

э

くつん くぼん くほん くまん

Tail asymptotics: light tails

If $\mathbf{P}\{|A| > 1\} > 0$ then the tail decreases at least polynomially (Goldie & Grübel, 1996). Can even be slowly varying: Dyszewski (2016)

Theorem (Goldie & Grübel (1996))

X has at least exponential tail under the assumption $|A| \le 1$. See also Hitczenko & Wesołowski 2009; Bartosz Kołodziejek: Perpetuities with thin tails revisited once again

э

< ロト (同) (三) (三)

Tail asymptotics: light tails

If $\mathbf{P}\{|A| > 1\} > 0$ then the tail decreases at least polynomially (Goldie & Grübel, 1996). Can even be slowly varying: Dyszewski (2016)

Theorem (Goldie & Grübel (1996))

X has at least exponential tail under the assumption $|A| \leq 1$.

See also Hitczenko & Wesołowski 2009;

Bartosz Kołodziejek: Perpetuities with thin tails revisited once again

э

A B N A B N

Outline

ntroduction Motivation Properties

 $\begin{aligned} \textbf{Results} \\ \textbf{E} \textbf{A}^{\kappa} &= \textbf{1} \\ \textbf{E} \textbf{A}^{\kappa} &< \textbf{1} \end{aligned}$

Further remarks

Always assume

$$\boldsymbol{X} \stackrel{\mathcal{D}}{=} \boldsymbol{A}\boldsymbol{X} + \boldsymbol{B},$$

 $A \ge 0$, $\mathbf{P}{Ax + B = x} < 1$ for any $x \in \mathbb{R}$, $A \not\equiv 1$, and that $\log A$

conditioned on being nonzero is nonarithmetic, ${\bf E}|B|^{\nu}<\infty$ for some $\nu>\kappa>$ 0.

Assume that
$$\mathbf{E}A^{\kappa} = 1$$
, $\kappa > 0$. Put $F_{\kappa}(x) = \int_{-\infty}^{x} e^{\kappa y} F(dy)$,
log $A \sim F$, and assume $\overline{F}_{\kappa}(x) = \ell(x)x^{-\alpha}$, $\alpha \in (0, 1)$. That is
 $\mathbf{E}_{\kappa} \log A = \infty$!
The truncated expectation

$$m(x) = \int_0^x [F_{\kappa}(-u) + \overline{F}_{\kappa}(u)] \mathrm{d}u \sim \int_0^x \overline{F}_{\kappa}(u) \mathrm{d}u \sim \frac{\ell(x) x^{1-\alpha}}{1-\alpha}.$$

Assume that
$$\mathbf{E}A^{\kappa} = 1$$
, $\kappa > 0$. Put $F_{\kappa}(x) = \int_{-\infty}^{x} e^{\kappa y} F(\mathrm{d}y)$,
log $A \sim F$, and assume $\overline{F}_{\kappa}(x) = \ell(x)x^{-\alpha}$, $\alpha \in (0, 1)$. That is
 $\mathbf{E}_{\kappa} \log A = \infty$!
The truncated expectation

$$m(x) = \int_0^x [F_{\kappa}(-u) + \overline{F}_{\kappa}(u)] \mathrm{d}u \sim \int_0^x \overline{F}_{\kappa}(u) \mathrm{d}u \sim \frac{\ell(x)x^{1-\alpha}}{1-\alpha}.$$

Assume (Caravenna–Doney condition)

$$\lim_{\delta\to 0}\limsup_{x\to\infty} x\overline{F}_{\kappa}(x)\int_1^{\delta x}\frac{1}{y\overline{F}_{\kappa}(y)^2}F_{\kappa}(x-\mathrm{d} y)=0.$$

$$\lim_{X \to \infty} m(\log x) x^{\kappa} \mathbf{P}\{X > x\} = C_{\alpha} \frac{1}{\kappa} \mathbf{E}[(AX + B)_{+}^{\kappa} - (AX)_{+}^{\kappa}],$$
$$\lim_{X \to \infty} m(\log x) x^{\kappa} \mathbf{P}\{X \le -x\} = C_{\alpha} \frac{1}{\kappa} \mathbf{E}[(AX + B)_{-}^{\kappa} - (AX)_{-}^{\kappa}].$$
Moreover, $\mathbf{E}[(AX + B)_{+}^{\kappa} - (AX)_{+}^{\kappa}] + \mathbf{E}[(AX + B)_{-}^{\kappa} - (AX)_{-}^{\kappa}] > 0.$

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @

٨

Assume (Caravenna–Doney condition)

$$\lim_{\delta\to 0}\limsup_{x\to\infty} x\overline{F}_{\kappa}(x)\int_1^{\delta x}\frac{1}{y\overline{F}_{\kappa}(y)^2}F_{\kappa}(x-\mathrm{d} y)=0.$$

Theorem (K)

If the assumptions above are satisfied then

$$\lim_{x \to \infty} m(\log x) x^{\kappa} \mathbf{P}\{X > x\} = C_{\alpha} \frac{1}{\kappa} \mathbf{E}[(AX + B)_{+}^{\kappa} - (AX)_{+}^{\kappa}],$$
$$\lim_{x \to \infty} m(\log x) x^{\kappa} \mathbf{P}\{X \le -x\} = C_{\alpha} \frac{1}{\kappa} \mathbf{E}[(AX + B)_{-}^{\kappa} - (AX)_{-}^{\kappa}].$$
Noreover,
$$\mathbf{E}[(AX + B)_{+}^{\kappa} - (AX)_{+}^{\kappa}] + \mathbf{E}[(AX + B)_{-}^{\kappa} - (AX)_{-}^{\kappa}] > 0.$$

Introduction 00000 00000	Results 00000000000 000000	Further remarks
$FA^{\kappa} = 1$		

Comments

Theorem is stated as a conjecture/open problem by Iksanov 2007.

The conditions of the theorem are stated in terms of F_{κ} . If

$$e^{\kappa x}\overline{F}(x) = rac{lpha \,\ell(x)}{\kappa \, x^{lpha+1}}$$

with a slowly varying ℓ then $F_{\kappa} \in D(\alpha)$. The Caravenna–Doney condition

$$\lim_{\delta \to 0} \limsup_{x \to \infty} x \overline{F}_{\kappa}(x) \int_{1}^{\delta x} \frac{1}{y \overline{F}_{\kappa}(y)^{2}} F_{\kappa}(x - \mathrm{d}y) = 0$$

always holds if $\alpha > 1/2$.

Introduction 00000 00000	Results ○○○○●○○○○○○○ ○○○○○○	Further remarks
$\mathbf{E}A^{\kappa} = 1$		

Comments

Theorem is stated as a conjecture/open problem by Iksanov 2007.

The conditions of the theorem are stated in terms of F_{κ} . If

$$e^{\kappa x}\overline{F}(x) = rac{lpha \,\ell(x)}{\kappa \, x^{lpha+1}}$$

with a slowly varying ℓ then $F_{\kappa} \in D(\alpha)$. The Caravenna–Doney condition

$$\lim_{\delta \to 0} \limsup_{x \to \infty} x \overline{F}_{\kappa}(x) \int_{1}^{\delta x} \frac{1}{y \overline{F}_{\kappa}(y)^{2}} F_{\kappa}(x - \mathrm{d}y) = 0$$

always holds if $\alpha > 1/2$.

Introduction 00000 00000	Results ○○○○●○○○○○○○ ○○○○○○	Further remarks
$\mathbf{E}A^{\kappa} = 1$		

Comments

Theorem is stated as a conjecture/open problem by Iksanov 2007.

The conditions of the theorem are stated in terms of F_{κ} . If

$$e^{\kappa x}\overline{F}(x) = rac{lpha \,\ell(x)}{\kappa \, x^{lpha+1}}$$

with a slowly varying ℓ then $F_{\kappa} \in D(\alpha)$. The Caravenna–Doney condition

$$\lim_{\delta\to 0}\limsup_{x\to\infty}x\overline{F}_\kappa(x)\int_1^{\delta x}\frac{1}{y\overline{F}_\kappa(y)^2}F_\kappa(x-\mathrm{d} y)=0$$

always holds if $\alpha > 1/2$.

Comments II

X is closely related to the maximum $M = \max\{0, S_1, S_2, ...\}$ of the RW $S_n = \log A_1 + \log A_2 + ... + \log A_n$, $\log A_1$, $\log A_2$, ... iid $\log A$ (**E** $A^{\kappa} = 1$ implies that **E** log A < 0, so *M* is a.s. finite). Korshunov (2005)

$$\lim_{x\to\infty}\mathbf{P}\{M>x\}e^{\kappa x}m(x)=c.$$

-

・ロト ・ 同ト ・ ヨト ・ ヨト

In specific cases this result is equivalent to our theorem. Let $(\xi_t)_{t\geq 0}$ be a nonmonotone Lévy process, $J = \int_0^\infty e^{\xi_t} dt$, and $\overline{\xi}_\infty = \sup_{t\geq 0} \xi_t$. Arista and Rivero (2015) showed that $\mathbf{P}\{J > x\} \in \mathcal{RV}_{-\alpha}$ iff $\mathbf{P}\{e^{\overline{\xi}_\infty} > x\} \in \mathcal{RV}_{-\alpha}$. If (ξ_t) has finite jump activity and 0 drift then conditioning on its first jump

$$J \stackrel{\mathcal{D}}{=} AJ + B,$$

with *B* being an exponential random variable, independent of *A*.

In specific cases this result is equivalent to our theorem. Let $(\xi_t)_{t\geq 0}$ be a nonmonotone Lévy process, $J = \int_0^\infty e^{\xi_t} dt$, and $\overline{\xi}_\infty = \sup_{t\geq 0} \xi_t$. Arista and Rivero (2015) showed that $\mathbf{P}\{J > x\} \in \mathcal{RV}_{-\alpha}$ iff $\mathbf{P}\{e^{\overline{\xi}_\infty} > x\} \in \mathcal{RV}_{-\alpha}$. If (ξ_t) has finite jump activity and 0 drift then conditioning on its first jump

$$J \stackrel{\mathcal{D}}{=} AJ + B,$$

.

with *B* being an exponential random variable, independent of *A*.

э

・ 何 ト ・ ラ ト ・ ラ ト

Comments III

Rivero (2007): Let $(\sigma_t)_{t\geq 0}$ be a nonlattice subordinator, such that $\mathbf{E}e^{\kappa\sigma_1} < \infty$ and $m(x) = \mathbf{E}I(\sigma_1 > x)e^{\kappa\sigma_1}$ is regularly varying with index $-\alpha \in (-1/2, -1)$. Consider the Lévy process $(\xi_t)_{t\geq 0}$ obtained by killing σ at ζ , an independent exponential time with parameter log $\mathbf{E}e^{\kappa\sigma_1}$. Then for $J = \int_0^{\zeta} e^{\xi_t} dt$ $\lim_{x\to\infty} m(\log x)x^{\kappa}\mathbf{P}\{J > x\} = c.$

くつん 不得た イラト イラト

Proof I

$$X\stackrel{\mathcal{D}}{=} AX + B,$$

$$\mathbf{P}\{X > e^{x}\} = [\mathbf{P}\{AX + B > e^{x}\} - \mathbf{P}\{AX > e^{x}\}] + \mathbf{P}\{AX > e^{x}\}$$

 $\psi(x) = e^{\kappa x} (\mathbf{P}\{AX + B > e^{x}\} - \mathbf{P}\{AX > e^{x}\}), f(x) = e^{\kappa x} \mathbf{P}\{X > e^{x}\}$ using that *X* and *A* are independent $f(x) = \psi(x) + A^{\kappa} e^{\kappa(x - \log A)} \mathbf{P}\{X > e^{x - \log A}\} = \psi(x) + \mathbf{E}f(x - \log A)A^{\kappa}.$ Under the measure $\mathbf{P}_{\kappa}\{\log A \in C\} = \mathbf{E}[I(\log A \in C)A^{\kappa}]$ $f(x) = \psi(x) + \mathbf{E}_{\kappa}f(x - \log A).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

 $\mathbf{E}A^{\kappa} = 1$

Proof I

$$X \stackrel{\mathcal{D}}{=} AX + B,$$

$$\mathbf{P}\{X > e^{x}\} = [\mathbf{P}\{AX + B > e^{x}\} - \mathbf{P}\{AX > e^{x}\}] + \mathbf{P}\{AX > e^{x}\}$$

 $\psi(x) = e^{\kappa x} (\mathbf{P}\{AX + B > e^{x}\} - \mathbf{P}\{AX > e^{x}\}), f(x) = e^{\kappa x} \mathbf{P}\{X > e^{x}\}$ using that X and A are independent $f(x) = \psi(x) + A^{\kappa} e^{\kappa(x - \log A)} \mathbf{P}\{X > e^{x - \log A}\} = \psi(x) + \mathbf{E}f(x - \log A)A^{\kappa}.$ Under the measure $\mathbf{P}_{\kappa}\{\log A \in C\} = \mathbf{E}[I(\log A \in C)A^{\kappa}]$ $f(x) = \psi(x) + \mathbf{E}_{\kappa}f(x - \log A).$

(日) (四) (三) (三) (三) (三) (○) (○)

 $\mathbf{E}A^{\kappa} = 1$

Proof I

$$X \stackrel{\mathcal{D}}{=} AX + B,$$

$$\mathbf{P}\{X > e^{x}\} = [\mathbf{P}\{AX + B > e^{x}\} - \mathbf{P}\{AX > e^{x}\}] + \mathbf{P}\{AX > e^{x}\}$$

 $\psi(x) = e^{\kappa x} (\mathbf{P} \{AX + B > e^x\} - \mathbf{P} \{AX > e^x\}), f(x) = e^{\kappa x} \mathbf{P} \{X > e^x\}$ using that X and A are independent $f(x) = \psi(x) + A^{\kappa} e^{\kappa(x - \log A)} \mathbf{P} \{X > e^{x - \log A}\} = \psi(x) + \mathbf{E} f(x - \log A) A^{\kappa}.$ Under the measure $\mathbf{P}_{\kappa} \{\log A \in C\} = \mathbf{E} [I(\log A \in C) A^{\kappa}]$ $f(x) = \psi(x) + \mathbf{E}_{\kappa} f(x - \log A).$

Proof I

$$X \stackrel{\mathcal{D}}{=} AX + B,$$

$$\mathbf{P}\{X > e^{x}\} = [\mathbf{P}\{AX + B > e^{x}\} - \mathbf{P}\{AX > e^{x}\}] + \mathbf{P}\{AX > e^{x}\}$$

 $\psi(x) = e^{\kappa x} (\mathbf{P} \{AX + B > e^x\} - \mathbf{P} \{AX > e^x\}), f(x) = e^{\kappa x} \mathbf{P} \{X > e^x\}$ using that X and A are independent $f(x) = \psi(x) + A^{\kappa} e^{\kappa(x - \log A)} \mathbf{P} \{X > e^{x - \log A}\} = \psi(x) + \mathbf{E} f(x - \log A) A^{\kappa}.$ Under the measure $\mathbf{P}_{\kappa} \{\log A \in C\} = \mathbf{E} [I(\log A \in C) A^{\kappa}]$ $f(x) = \psi(x) + \mathbf{E}_{\kappa} f(x - \log A).$

Proof II

$$f(x) = \psi(x) + \mathbf{E}_{\kappa}f(x - \log A).$$

We have

$$f(\mathbf{x}) = \int_{\mathbb{R}} \psi(\mathbf{x} - \mathbf{y}) U(\mathrm{d}\mathbf{y}),$$

where $U(x) = \sum_{n=0}^{\infty} F_{\kappa}^{*n}(x)$. If $\mathbf{E}_{\kappa} \log A < \infty$ then, from the renewal theorem

$$\lim_{x\to\infty}f(x)=m^{-1}\int_{\mathbb{R}}\psi(y)\mathrm{d}y,$$

which is the KGG theorem. In our case under $\mathbf{P}_{\kappa} \log A \in D(\alpha)$, so $\mathbf{E}_{\kappa} \log A = \infty$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Proof II

$$f(x) = \psi(x) + \mathbf{E}_{\kappa}f(x - \log A).$$

We have

$$f(\mathbf{x}) = \int_{\mathbb{R}} \psi(\mathbf{x} - \mathbf{y}) U(\mathrm{d}\mathbf{y}),$$

where $U(x) = \sum_{n=0}^{\infty} F_{\kappa}^{*n}(x)$. If $\mathbf{E}_{\kappa} \log A < \infty$ then, from the renewal theorem

$$\lim_{x\to\infty}f(x)=m^{-1}\int_{\mathbb{R}}\psi(y)\mathrm{d}y,$$

which is the KGG theorem. In our case under $\mathbf{P}_{\kappa} \log A \in D(\alpha)$, so $\mathbf{E}_{\kappa} \log A = \infty$.

<ロ> <同> <同> < 回> < 回> < 回> = 三

Proof II

$$f(x) = \psi(x) + \mathbf{E}_{\kappa}f(x - \log A).$$

We have

$$f(\mathbf{x}) = \int_{\mathbb{R}} \psi(\mathbf{x} - \mathbf{y}) U(\mathrm{d}\mathbf{y}),$$

where $U(x) = \sum_{n=0}^{\infty} F_{\kappa}^{*n}(x)$. If $\mathbf{E}_{\kappa} \log A < \infty$ then, from the renewal theorem

$$\lim_{x\to\infty}f(x)=m^{-1}\int_{\mathbb{R}}\psi(y)\mathrm{d}y,$$

which is the KGG theorem. In our case under $\mathbf{P}_{\kappa} \log A \in D(\alpha)$, so $\mathbf{E}_{\kappa} \log A = \infty$.

-

イロト イボト イヨト イヨト

Infinite mean renewal theorems

Infinite mean analogue of SRT

$$\lim_{x\to\infty} m(x)[U(x+h)-U(x)]=hC_{\alpha},\quad\forall h>0.$$

Infinite mean SRT: Garsia & Lamperti (1963), Erickson (1970): for $\alpha \in (1/2, 1]$ assumption $H \in D(\alpha)$ implies SRT; for $\alpha \le 1/2$ further assumptions are needed. NASC for nonnegative random variables was given independently by Caravenna (2015+) and Doney (2015+):

$$\lim_{\delta \to 0} \limsup_{x \to \infty} x \overline{H}(x) \int_1^{\delta x} \frac{1}{y \overline{H}(y)^2} H(x - \mathrm{d}y) = 0.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Infinite mean renewal theorems

Infinite mean analogue of SRT

$$\lim_{x\to\infty}m(x)[U(x+h)-U(x)]=hC_{\alpha},\quad\forall h>0.$$

Infinite mean SRT: Garsia & Lamperti (1963), Erickson (1970): for $\alpha \in (1/2, 1]$ assumption $H \in D(\alpha)$ implies SRT; for $\alpha \le 1/2$ further assumptions are needed.

NASC for nonnegative random variables was given independently by Caravenna (2015+) and Doney (2015+):

$$\lim_{\delta \to 0} \limsup_{x \to \infty} x \overline{H}(x) \int_1^{\delta x} \frac{1}{y \overline{H}(y)^2} H(x - \mathrm{d}y) = 0.$$

Infinite mean renewal theorems

Infinite mean analogue of SRT

$$\lim_{x\to\infty}m(x)[U(x+h)-U(x)]=hC_{\alpha},\quad\forall h>0.$$

Infinite mean SRT: Garsia & Lamperti (1963), Erickson (1970): for $\alpha \in (1/2, 1]$ assumption $H \in D(\alpha)$ implies SRT; for $\alpha \le 1/2$ further assumptions are needed.

NASC for nonnegative random variables was given independently by Caravenna (2015+) and Doney (2015+):

$$\lim_{\delta \to 0} \limsup_{x \to \infty} x \overline{H}(x) \int_1^{\delta x} \frac{1}{y \overline{H}(y)^2} H(x - \mathrm{d} y) = 0.$$

.

Back to proof

$$f(x) = \int_{\mathbb{R}} \psi(x - y) U(dy),$$

where $U(x) = \sum_{n=0}^{\infty} F_{\kappa}^{*n}(x).$
$$\lim_{x \to \infty} m(x) [U(x + h) - U(x)] = hC_{\alpha}$$
$$\lim_{x \to \infty} m(x) \int_{\mathbb{R}} \psi(x - y) U(dy) = C_{\alpha} \int_{\mathbb{R}} \psi(y) dy$$

- ▲ 日 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ ■

A note on the Kesten-Grincevičius-Goldie theorem

Back to proof

$$f(x) = \int_{\mathbb{R}} \psi(x - y) U(dy),$$

where $U(x) = \sum_{n=0}^{\infty} F_{\kappa}^{*n}(x).$
$$\lim_{x \to \infty} m(x) [U(x + h) - U(x)] = hC_{\alpha}$$
$$\lim_{x \to \infty} m(x) \int_{\mathbb{R}} \psi(x - y) U(dy) = C_{\alpha} \int_{\mathbb{R}} \psi(y) dy$$

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @

Outline

ntroduction Motivation Properties

Results

 $\mathbf{E} \mathbf{A}^{\kappa} = 1$ $\mathbf{E} \mathbf{A}^{\kappa} < 1$

Further remarks

More general random equations

NASC for the regular variation of X?

$X \in \mathcal{RV}_{-\kappa} \Rightarrow \mathbf{E}A^{\kappa} = 1$?

If $X \in \mathcal{RV}_{-\kappa}$ then $\mathbf{E}|X|^p < \infty$ for all $p < \kappa$ and $\mathbf{E}|X|^p = \infty$ for all $p > \kappa$.

Theorem (Alsmeyer & Iksanov & Rösler (2009)) $\mathbf{E}|X|^{p} < \infty$ iff $\mathbf{E}A^{p} < 1$ and $\mathbf{E}|B|^{p} < \infty$. Thus $X \in \mathcal{RV}_{-\kappa}$ implies $\mathbf{E}A^{\kappa} \leq 1$. Can it be < 1?

Theorem (K)

Yes.

-

イロン 不得 とくほ とくほ とう

NASC for the regular variation of X?

 $X \in \mathcal{RV}_{-\kappa} \Rightarrow \mathbf{E}A^{\kappa} = 1$?

If $X \in \mathcal{RV}_{-\kappa}$ then $\mathbf{E}|X|^{p} < \infty$ for all $p < \kappa$ and $\mathbf{E}|X|^{p} = \infty$ for all $p > \kappa$.

Theorem (Alsmeyer & Iksanov & Rösler (2009)) $\mathbf{E}|X|^{p} < \infty$ iff $\mathbf{E}A^{p} < 1$ and $\mathbf{E}|B|^{p} < \infty$. Thus $X \in \mathcal{RV}_{-\kappa}$ implies $\mathbf{E}A^{\kappa} \leq 1$. Can it be < 1?

Theorem (K)

Yes.

-

ヘロト ヘ戸ト ヘヨト ヘヨト

NASC for the regular variation of X?

 $X \in \mathcal{RV}_{-\kappa} \Rightarrow \mathbf{E}A^{\kappa} = 1$?

If $X \in \mathcal{RV}_{-\kappa}$ then $\mathbf{E}|X|^p < \infty$ for all $p < \kappa$ and $\mathbf{E}|X|^p = \infty$ for all $p > \kappa$.

Theorem (Alsmeyer & Iksanov & Rösler (2009)) $\mathbf{E}|X|^{p} < \infty$ iff $\mathbf{E}A^{p} < 1$ and $\mathbf{E}|B|^{p} < \infty$. Thus $X \in \mathcal{RV}_{-\kappa}$ implies $\mathbf{E}A^{\kappa} \leq 1$. Can it be < 1? Theorem (K)

Yes.

-

ヘロト 人間 ト ヘヨ ト ヘヨ ト

NASC for the regular variation of X?

$$X \in \mathcal{RV}_{-\kappa} \Rightarrow \mathbf{E}A^{\kappa} = 1$$
?

If $X \in \mathcal{RV}_{-\kappa}$ then $\mathbf{E}|X|^p < \infty$ for all $p < \kappa$ and $\mathbf{E}|X|^p = \infty$ for all $p > \kappa$.

Theorem (Alsmeyer & Iksanov & Rösler (2009)) $\mathbf{E}|X|^{p} < \infty$ iff $\mathbf{E}A^{p} < 1$ and $\mathbf{E}|B|^{p} < \infty$. Thus $X \in \mathcal{RV}_{-\kappa}$ implies $\mathbf{E}A^{\kappa} \leq 1$. Can it be < 1? Theorem (K)

Yes.

-

イロン 不得 とくほ とくほ とう

NASC for the regular variation of X?

$$X \in \mathcal{RV}_{-\kappa} \Rightarrow \mathbf{E}A^{\kappa} = 1$$
?

If $X \in \mathcal{RV}_{-\kappa}$ then $\mathbf{E}|X|^p < \infty$ for all $p < \kappa$ and $\mathbf{E}|X|^p = \infty$ for all $p > \kappa$.

Theorem (Alsmeyer & Iksanov & Rösler (2009)) $E|X|^{p} < \infty$ iff $EA^{p} < 1$ and $E|B|^{p} < \infty$. Thus $X \in \mathcal{RV}_{-\kappa}$ implies $EA^{\kappa} \le 1$. Can it be < 1? Theorem (K) Yes

-

・ロト ・ 理 ト ・ ヨ ト ・

Introduction 00000 00000	Results ○○○○○○○○○○ ○○●○○○	Further remarks
$E A^\kappa < 1$		

Assume $\mathbf{E}A^{\kappa} = \theta < 1$ for some $\kappa > 0$, and $\mathbf{E}A^{t} = \infty$ for any $t > \kappa$.

$$F_{\kappa}(x) = \theta^{-1} \int_{-\infty}^{x} e^{\kappa y} F(\mathrm{d} y).$$

The assumption $\mathbf{E}A^t = \infty$ for all $t > \kappa$ means that F_{κ} is heavy-tailed.

To analyze the asymptotic behavior of the resulting defective renewal equation we use the techniques and results developed by Asmussen, Foss and Korshunov (2003).

Locally subexponential distributions

For some $T \in (0, \infty]$ let $\Delta = (0, T]$. For a df H we put $H(x + \Delta) = H(x + T) - H(x)$. A df H on \mathbb{R} is in the class \mathcal{L}_{Δ} if $H(x + t + \Delta)/H(x + \Delta) \rightarrow 1$ uniformly in $t \in [0, 1]$, and it belongs to the class of Δ -subexponential distributions, $H \in S_{\Delta}$, if $H(x + \Delta) > 0$ for x large enough, $H \in \mathcal{L}_{\Delta}$, and $(H * H)(x + \Delta) \sim 2H(x + \Delta)$. If $H \in S_{\Delta}$ for every T > 0 then it is called *locally subexponential*, $H \in S_{loc}$.

Or assume simply that F_{κ} is a nice subexponential distribution.

Locally subexponential distributions

For some $T \in (0, \infty]$ let $\Delta = (0, T]$. For a df H we put $H(x + \Delta) = H(x + T) - H(x)$. A df H on \mathbb{R} is in the class \mathcal{L}_{Δ} if $H(x + t + \Delta)/H(x + \Delta) \rightarrow 1$ uniformly in $t \in [0, 1]$, and it belongs to the class of Δ -subexponential distributions, $H \in S_{\Delta}$, if $H(x + \Delta) > 0$ for x large enough, $H \in \mathcal{L}_{\Delta}$, and $(H * H)(x + \Delta) \sim 2H(x + \Delta)$. If $H \in S_{\Delta}$ for every T > 0 then it is called *locally subexponential*, $H \in S_{loc}$. Or assume simply that F_{κ} is a nice subexponential distribution.

Theorem (K)

 $\mathbf{E}A^{\kappa} < 1$

Assume $\mathbf{E}A^{\kappa} = \theta < 1$, and F_{κ} is a nice subexponential distribution. Then

$$\lim_{x \to \infty} g(\log x)^{-1} x^{\kappa} \mathbf{P}\{X > x\} = \frac{\theta}{(1-\theta)^{2}\kappa} \mathbf{E}[(AX+B)^{\kappa}_{+} - (AX)^{\kappa}_{+}],$$
$$\lim_{x \to \infty} g(\log x)^{-1} x^{\kappa} \mathbf{P}\{X \le -x\} = \frac{\theta}{(1-\theta)^{2}\kappa} \mathbf{E}[(AX+B)^{\kappa}_{-} - (AX)^{\kappa}_{-}],$$

where $g(x) = F_{\kappa}(x+1) - F_{\kappa}(x)$. Moreover, $\mathbf{E}[(AX + B)^{\kappa}_{+} - (AX)^{\kappa}_{+}] + \mathbf{E}[(AX + B)^{\kappa}_{-} - (AX)^{\kappa}_{-}] > 0$. Note that $g(\log x)$ is slowly varying.

Comment

In the Pareto case, $\overline{F}_{\kappa}(x) = c x^{-\beta}$, then $g(x) \sim c\beta x^{-\beta-1}$, and so $\mathbf{P}\{X > x\} \sim c' x^{-\kappa} (\log x)^{-\beta-1}$. In the lognormal case, $F_{\kappa}(x) = \Phi(\log x)$, with Φ being the standard normal df, $\mathbf{P}\{X > x\} \sim cx^{-\kappa} e^{-(\log \log x)^2/2} / \log x, c > 0$. For Weibull tails $\overline{F}_{\kappa}(x) = e^{-x^{\beta}}, \beta \in (0, 1)$, we obtain $\mathbf{P}\{X > x\} \sim cx^{-\kappa} (\log x)^{\beta-1} e^{-(\log x)^{\beta}}$. Note that $\mathbf{E}|X|^{\kappa} < \infty$, so $\int_{0}^{\infty} x^{\kappa-1} \overline{F}_{\kappa}(x) \mathrm{d}x < \infty$.

-

Outline

ntroduction Motivation Properties

Results

 $\mathbf{E}\mathbf{A}^{\kappa} = \mathbf{1}$ $\mathbf{E}\mathbf{A}^{\kappa} < \mathbf{1}$

Further remarks

More general random equations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = つへぐ

A note on the Kesten-Grincevičius-Goldie theorem

Goldie's unified approach

Goldie obtained tail asymptotics for more general random equations. Consider the equation

 $X \stackrel{\mathcal{D}}{=} AX \vee B,$

where $a \lor b = \max\{a, b\}, A \ge 0$ and (A, B) and X on the right-hand side are independent. If $B \equiv 1$ then $\log X = M$, where $M = \max\{0, S_1, S_2, \ldots\}$, and $S_n = \log A_1 + \log A_2 + \ldots + \log A_n$, where $\log A_1, \log A_2, \ldots$ are iid $\log A$.

Goldie's unified approach

Goldie obtained tail asymptotics for more general random equations. Consider the equation

$$\boldsymbol{X} \stackrel{\mathcal{D}}{=} \boldsymbol{A} \boldsymbol{X} \vee \boldsymbol{B},$$

where $a \lor b = \max\{a, b\}, A \ge 0$ and (A, B) and X on the right-hand side are independent.

If $B \equiv 1$ then $\log X = M$, where $M = \max\{0, S_1, S_2, \ldots\}$, and $S_n = \log A_1 + \log A_2 + \ldots + \log A_n$, where $\log A_1, \log A_2, \ldots$ are iid $\log A$.

-

・ロト ・ 同ト ・ ヨト ・ ヨト

Goldie's unified approach

Goldie obtained tail asymptotics for more general random equations. Consider the equation

$$\boldsymbol{X} \stackrel{\mathcal{D}}{=} \boldsymbol{A} \boldsymbol{X} \vee \boldsymbol{B},$$

where $a \lor b = \max\{a, b\}$, $A \ge 0$ and (A, B) and X on the right-hand side are independent. If $B \equiv 1$ then $\log X = M$, where $M = \max\{0, S_1, S_2, \ldots\}$, and $S_n = \log A_1 + \log A_2 + \ldots + \log A_n$, where $\log A_1, \log A_2, \ldots$ are iid $\log A$.

-

Theorem (Goldie (1991))

If $\mathsf{E}A^{\kappa} = 1$, $\mathsf{E}A^{\kappa} \log_{+} A < \infty$ then there is a unique solution X, and $\mathsf{P}\{X > x\} \sim cx^{-\kappa}$.

Theorem (K)

Assume $\mathbf{E}A^{\kappa} = 1$, $F_{\kappa} \in D(\alpha)$, and the Caravenna–Doney condition holds. Then

$$\lim_{x\to\infty} m(\log x)x^{\kappa}\mathbf{P}\{X>x\} = C_{\alpha}\frac{1}{\kappa}\mathbf{E}[(AX_{+}\vee B_{+})^{\kappa} - (AX_{+})^{\kappa}].$$

For $B \equiv 1$ we get back Korshunov's result.

Theorem (Goldie (1991))

If $\mathsf{E}A^{\kappa} = 1$, $\mathsf{E}A^{\kappa} \log_{+} A < \infty$ then there is a unique solution X, and $\mathsf{P}\{X > x\} \sim cx^{-\kappa}$.

Theorem (K)

Assume $\mathbf{E}A^{\kappa} = 1$, $F_{\kappa} \in D(\alpha)$, and the Caravenna–Doney condition holds. Then

$$\lim_{x\to\infty} m(\log x)x^{\kappa}\mathbf{P}\{X>x\} = C_{\alpha}\frac{1}{\kappa}\mathbf{E}[(AX_{+}\vee B_{+})^{\kappa} - (AX_{+})^{\kappa}].$$

For $B \equiv 1$ we get back Korshunov's result.

э

イロト イポト イヨト イヨト

Theorem (Goldie (1991))

If $EA^{\kappa} = 1$, $EA^{\kappa} \log_{+} A < \infty$ then there is a unique solution X, and $P\{X > x\} \sim cx^{-\kappa}$.

Theorem (K)

Assume $\mathbf{E}A^{\kappa} = 1$, $F_{\kappa} \in D(\alpha)$, and the Caravenna–Doney condition holds. Then

$$\lim_{x\to\infty} m(\log x)x^{\kappa}\mathbf{P}\{X>x\} = C_{\alpha}\frac{1}{\kappa}\mathbf{E}[(AX_{+}\vee B_{+})^{\kappa} - (AX_{+})^{\kappa}].$$

For $B \equiv 1$ we get back Korshunov's result.

э

$\mathbf{E} \mathbf{A}^{\kappa} < \mathbf{1}$

Theorem (K)

Assume $\mathbf{E}A^{\kappa} < 1$, and F_{κ} is a nice subexponential distribution.

$$\lim_{x\to\infty}g(\log x)^{-1}x^{\kappa}\mathbf{P}\{X>x\}=\frac{\theta}{(1-\theta)^{2\kappa}}\mathbf{E}[(AX_{+}\vee B_{+})^{\kappa}-(AX_{+})^{\kappa}],$$

where $g(x) = F_{\kappa}(x+1) - F_{\kappa}(x)$.

In the special case $B \equiv 1$ we have the following.

Corollary

 $S_n = \log A_1 + \log A_2 + \ldots + \log A_n$, $M = \max\{0, S_1, S_2, \ldots\}$. Then

$$\mathbf{P}\{M > x\} \sim cg(x)e^{-\kappa X},$$

where $g(x) = F_{\kappa}(x+1) - F_{\kappa}(x)$.

Ε*A*^κ < 1

Theorem (K)

Assume $\mathbf{E}A^{\kappa} < 1$, and F_{κ} is a nice subexponential distribution.

$$\lim_{x\to\infty}g(\log x)^{-1}x^{\kappa}\mathbf{P}\{X>x\}=\frac{\theta}{(1-\theta)^{2\kappa}}\mathbf{E}[(AX_{+}\vee B_{+})^{\kappa}-(AX_{+})^{\kappa}],$$

where
$$g(x) = F_{\kappa}(x+1) - F_{\kappa}(x)$$
.

In the special case $B \equiv 1$ we have the following.

Corollary

 $S_n = \log A_1 + \log A_2 + \ldots + \log A_n$, $M = \max\{0, S_1, S_2, \ldots\}$. Then

$$\mathbf{P}\{M > x\} \sim cg(x)e^{-\kappa x},$$

where $g(x) = F_{\kappa}(x+1) - F_{\kappa}(x)$.

-

イロト 不得 とくほ とくほ とう