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Abstract

The paradoxical results of Csörgő and Simons for mutually beneficial sharing among any fixed
number of St. Petersburg gamblers are extended to games played by a possibly biased coin, with p as
the probability of ‘heads.’ The extension is not straightforward because, unlike in the classical case
with p = 1/2, admissibly pooled winnings generally fail to stochastically dominate individual ones
for more than two gamblers. Best admissible pooling strategies are determined when p is rational,
and the algebraic depth of the problem for an irrational p is illustrated by an example.
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1. Results and discussion

Peter offers to let Paul toss a possibly biased coin until it lands heads and pays him rk

ducats if this happens on the kth toss, k ∈ N = {1, 2, . . .}, where r = 1/q for q = 1 − p and
p ∈ (0, 1) is the probability of ‘heads’ at each throw. This is the generalized St. Petersburg(p)
game, in which P {X = rk} = qk−1p, k ∈ N, for Paul’s gain X. Following Csörgő and Simons
(2002, 2006), we assume that Peter plays exactly one such game with each of n ≥ 2 players,
Paul1, Paul2, . . . , Pauln, whose independent individual winnings are X1, X2, . . . , Xn.

The n players may agree to use a pooling strategy pn = (p1,n, p2,n, . . . , pn,n), before they
play, where p1,n, p2,n, . . . , pn,n ≥ 0 and

∑n
j=1 pj,n = 1. Under this strategy Paul1 receives

p1,nX1+p2,nX2+· · ·+pn,nXn, Paul2 receives pn,nX1+p1,nX2+· · ·+pn−1,nXn, Paul3 receives
pn−1,nX1 + pn,nX2 + p1,nX3 + · · · + pn−2,nXn, . . ., and Pauln receives p2,nX1 + p3,nX2 +
· · · + pn,nXn−1 + p1,nXn ducats. This strategy is fair to every Paul in the sense that their
winnings are equally distributed and each receives the same added value equal to

Ap(pn) = E[ p1,nX1 + · · ·+ pn,nXn, X1]

=
∫ ∞

0

[
P {p1,nX1 + · · ·+ pn,nXn > x} − P {X1 > x}] dx,

(1)

whenever the integral is defined, so that comparison is possible. We refer to Csörgő and
Simons (2002, 2006) for a detailed exposition and discussion of the comparison operator
E[· , ·]. We call a strategy pn = (p1,n, . . . , pn,n) admissible if each of its components is either
zero or a nonnegative integer power of q = 1 − p. Individualistic strategies (1, 0, . . . , 0) are
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thus admissible for each p, otherwise the powers in nonzero components are positive integers.
The entropy of a pooling strategy is Hr(pn) =

∑n
j=1 pj,n logr 1/pj,n, where logr denotes the

base r logarithm and 0 logr 1/0 = 0. We say that the random variable U is stochastically
larger than the random variable V , written U ≥D V , if P {U > x} ≥ P {V > x} for all x ∈ R.

Theorem 1. For any p ∈ (0, 1) and n ∈ N, the added value Ap(pn) exists as an improper
Riemann integral if and only if pn is admissible, in which case Ap(pn) = p

q Hr(pn).

Csörgő and Simons (2006) proved this theorem for the classical St. Petersburg(1/2)
game, played with an unbiased coin. However, in that case they proved the following stronger
result: the independent St. Petersburg(1/2) variables X1, . . . , Xn can be defined on a rich
enough probability space that carries, for each admissible strategy pn = (p1,n, . . . , pn,n), a
St. Petersburg(1/2) random variable Xpn and a nonnegative random variable Ypn such that
Tpn = p1,nX1+· · ·+pn,nXn = Xpn +Ypn almost surely. This implies the stochastic inequality
Tpn

≥D X1. Hence the integrand in A1/2(pn) is nonnegative and thus A1/2(pn) is trivially
finite as a Lebesgue integral. As the next result shows, stochastic dominance is preserved for
two players for an arbitrary St. Petersburg parameter p ∈ (0, 1).

Theorem 2. For any p ∈ (0, 1), if p2 = (qa, qb) is an admissible pooling strategy for some
a, b ∈ N, then Tp2 = qaX1 + qbX2 is stochastically larger than X1.

Surprisingly, however, for n ≥ 3 gamblers stochastic dominance generally fails to hold for
admissible strategies. Our example to demonstrate this is when p = (n−1)/n, q = 1−p = 1/n,
so that r = 1/q = n is also the number of Pauls. Then P {X = nk} = (n− 1)/nk, k ∈ N, and
the averaging pooling strategy pn = p¦n = (1/n, 1/n, . . . , 1/n) is admissible. For this strategy
the weighted sum is Tp¦n = (X1 + · · ·+Xn)/n, so that for n = 2 Theorem 2 says in particular
that S2 = 2Tp¦2 = X1 + X2 is stochastically larger than 2X1. This is not true for n ≥ 3.

Theorem 3. If p = (n − 1)/n, q = 1/n and n ≥ 3, then neither Sn = X1 + · · · + Xn nor
nX1 is stochastically larger than the other.

In view of Theorem 2, the integrand in (1) is nonnegative whenever p2 is admissible, so
that the integral Ap(p2) described in Theorem 1 strengthens to that of a Lebesgue integral
when n = 2. While the same conclusion holds for n ≥ 3, Theorem 3 rules out so simple a
line of reasoning.

Theorem 4. For every p ∈ (0, 1) and every admissible strategy pn = (p1,n, . . . , pn,n) the
integral Ap(pn) in (1) is finite as a Lebesgue integral.

Theorem 1 characterizes the pooling strategies that yield added values. However, admis-
sible strategies do not exist for all, in fact, for most parameters p ∈ (0, 1). Call a parameter p

admissible, if for p there exists an admissible strategy which is not individualistic. Theorem
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1 then says that p is admissible if and only if for q = 1 − p there exist positive integers
a1 ≥ a2 ≥ · · · ≥ ak, for some k ∈ N, such that qa1 + qa2 + · · ·+ qak = 1. In this case, r = 1/q

is an algebraic integer. If a1 > a2, then q is also an algebraic integer, thus q is an algebraic
unit. The set of algebraic numbers is countable, so there are at most a countable number of
admissible parameters p. When q = 1−p is rational for an admissible p ∈ (0, 1), the equation
implies q = 1/m for some integer m ≥ 2. Thus the set of rational admissible parameters
is {(m − 1)/m : m ≥ 2}. In particular, it is interesting that the classical p = 1/2 is the
smallest such St. Petersburg parameter. It follows that the set of all admissible parameters
p is countable. Nevertheless, it can be shown that this set is dense in the interval (0, 1).

When a given number of our Pauls happen to have admissible strategies, a natural
question is: which is the best? In the latter rational case when p = (m − 1)/m for some
integer m ≥ 2, and so r = 1/q = m ≥ 2 is an integer, the answer is given by the next result,
in which bxc = max{k ∈ Z : k ≤ x} is the integer part, dxe = min{k ∈ Z : k ≥ x} is the
integer ceiling and 〈x〉 = x− bxc = x + d−xe is the fractional part of a number x ∈ R.

Theorem 5. If p = (r − 1)/r and n = rblogr nc + (r − 1)rn for some integers r ≥ 2 and
0 ≤ rn ≤ rblogr nc − 1, then

Ap(pn) =
p

q
Hr(pn) ≤ p

q
logr n− δp(n) =: A∗p,n (2)

for every admissible strategy pn, where δp(u) = 1+(r−1)〈logr u〉−r〈logr u〉, u > 0. Moreover,
the bound A∗p,n is attainable by means of the admissible strategy

p∗n = (p∗1,n, . . . , p∗n,n) = (rp∗n, . . . , rp∗n, p∗n, . . . , p∗n) with p∗n =
1

rdlogr ne ,

where the number of p∗n s and rp∗n s are, respectively,

m1,p(n) =
rn− rdlogr ne

r − 1
and m2,p(n) =

rdlogr ne − n

r − 1
.

Apart from reorderings of the components of p∗n, the point of maximum is unique.

It is easy to see that if n is not in the form rblogr nc+ (r− 1)rn, then 0 must be included
among the components of the strategy, which does not increase the entropy. So it is enough
to investigate the number of players in the form above. The continuous function δp(·) is
nonnegative, its maximum is given in formula (3.4) of Csörgő and Simons (1996).

Theorem 5 is not applicable for an irrational p. On the other hand, in every admissible
situation Ap(pn) = (r − 1)Hr(pn) by Theorem 1, and the trivial upper bound Hr(pn) ≤
logr n = Hr(p¦n) is valid for the entropy of every pn, where p¦n = (1/n, 1/n, . . . , 1/n). However
equality cannot hold in general because p¦n is not admissible for every admissible parameter
p. Apart from those cases which can be reduced to the rational case, that is when q = 1−p =
1/k
√

m for some integers m, k ≥ 2, the problem of the best admissible strategy is unsolved.
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For the irrational case the simplest example is the equation q2 + q = 1, the solution of
which is q = τ := (

√
5 − 1)/2 ≈ 0.618, the ratio of golden section. Thus, pertaining to the

irrational parameter p? = (3 − √5)/2 ≈ 0.382, the vector (τ2, τ) is an admissible strategy
for two players. From this strategy we can generate admissible strategies for an arbitrary
number of players. Indeed, substituting τ3 + τ2 = τ for τ , and τ4 + τ3 = τ2 for τ2, we
obtain (τ3, τ2, τ2) and (τ4, τ3, τ), both admissible strategies for three Pauls. Continuing this
algorithm, each time substituting τm+2 + τm+1 for τm if the exponent m is present, after l

steps we obtain admissible strategies for 2 + l gamblers, l ∈ N. However, even if we allow all
possible branches generated by this algorithm, the result is incomplete in the sense that there
are admissible strategies, such as (τ8, τ5, τ5, τ5, τ3, τ3, τ3) for seven Pauls, that are avoided.
Consider all the strategies that can be generated by the branching algorithm from (τ2, τ),
and for every n ≥ 2 call the best among these conditionally optimal, denoted by p?

n. Let fn

be the nth Fibonacci number, so that with f0 = 1, f1 = 1 and fn+1 = fn−1 + fn, n ∈ N. We
can show that the conditionally optimal strategy for fn + k players, k ∈ {0, 1, . . . , fn−1 − 1},
each playing a St. Petersburg(p?) game, is

p?
fn+k =

(
τn+1, . . . , τn+1

︸ ︷︷ ︸
k times

, τn, . . . , τn

︸ ︷︷ ︸
fn−2+k times

, τn−1, . . . , τn−1

︸ ︷︷ ︸
fn−1−k times

)
,

with the corresponding added value Ap(p?
fn+k) = τn[k(2−τ)+nfn−2 τ+(n−1)fn−1]. Because

of the inherent number-theoretic difficulties, we do not know whether these conditionally
optimal strategies are optimal in general.

Finally, we show that an extended form of our branching algorithm has an interesting
property concerning stochastic domination. For any admissible parameter p ∈ (0, 1), let
(qa1 , qa2 , . . . , qan) and (qb1 , qb2 , . . . , qbm) be admissible strategies for n and m Pauls for any
n,m ≥ 2. Substituting qak+b1 + qak+b2 + · · · + qak+bm = qak for qak , where k ∈ {1, . . . , n}
is arbitrary, we obtain a strategy (qd1 , qd2 , . . . , qdn+m−1) for n + m − 1 gamblers, where
the sequence d1 ≥ d2 ≥ · · · ≥ dn+m−1 is a nonincreasing rearrangement of the sequence
a1, . . . , ak−1, ak+b1 , . . . , ak+bm , ak+1, . . . , an. We say that a strategy pn = (p1,n, . . . , pn,n) is
stochastically dominant if p1,nX1 + · · · + pn,nXn ≥D X1. The last theorem states that the
branching algorithm preserves stochastic dominance. Choosing first n = m = 2, it may be
used in conjunction with Theorem 2 as a starting point.

Theorem 6. If the admissible strategies (qa1 , qa2 , . . . , qan) and (qb1 , qb2 , . . . , qbm) are both
stochastically dominant, then so is the generated strategy (qd1 , qd2 , . . . , qdn+m−1).

All our results here are for fixed numbers of players. Csörgő and Simons (2005) proved for
an arbitrary sequence of strategies pn = (p1,n, . . . , pn,n) that (p1,nX1 + · · ·+pn,nXn)/Hr(pn)
converges in probability to p/q, as n →∞, whenever Hr(pn) →∞.

2. Proofs

The first two lemmas are needed for the proof of Theorem 1, while the third lemma is
used in the proof of Theorem 5. These lemmas are the generalizations of Lemmas 3, 4 and 5
in Csörgő and Simons [hereafter abbreviated as Cs–S] (2006).
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Lemma 1. If X1, X2 are independent St. Petersburg(p) random variables and c1 and c2

positive constants, then E(min(c1X1, c2X2)) < ∞.

Proof. We know from Cs–S (1996, 2005) that 1 − Fp(x) = P {X > x} = qblogr xc =
r〈logr x〉/x for all x ≥ r, and 1 otherwise. Hence, if x ≥ r max(c1, c2), then the inequality
P {min(c1X1, c2X2) > x} = P {c1X1 > x}P {c2X2 > x} < c1c2r

2/x2 holds and, therefore,
E(min(c1X1, c2X2)) =

∫∞
0

P {min(c1X1, c2X2) > x}dx < ∞.

Lemma 2. If X is a St. Petersburg(p) random variable and b ≥ 1, then
∫ b

0

P{X > x}dx = (r − 1)blogr bc+ r〈logr b〉 = 1 + (r − 1) logr b− δp(b),

where the function δp(·) is defined in Theorem 5.

Proof. Notice that 1 = 1 − Fp(x) = P {X > x} = qblogr xc even for x ∈ [1, r). So what we
need to prove is that

∫ b

1
qblogr xc dx = (r− 1)blogr bc+ r〈logr b〉− 1 for b > 1. If c = logr b > 0,

then
∫ rc

1

qblogr xc dx =
∫ c

0

qbycry log r dy = (log r)
∫ c

0

r〈y〉dy = (log r)

[
bcc

∫ 1

0

rydy +
∫ c

bcc
r〈y〉dy

]

= bcc(r − 1) + (log r)
∫ 〈c〉

0

ry dy = (r − 1)bcc+ r〈c〉 − 1,

where log = loge is the natural logarithm, which is the desired equation.

Lemma 3. If r ∈ {2, 3, . . .}, then the number of the smallest strictly positive components of
an admissible strategy pn = (p1,n, . . . , pn,n) is divisible by r.

Proof. Let the smallest strictly positive component be 1/rk for some k ∈ N. Since∑n
j=1 pj,nrk = rk, the sum must be divisible by r, so the number of terms equal to 1 in

the sum, which is the number of the components 1/rk in pn, is also divisible by r.

Proof of Theorem 1. With the extended Lemmas 1 and 2, the proof is an easy generaliza-
tion of that in the classical case p = 1/2 in Cs–S (2006), so we only sketch the differences.

For a given strategy pn = (p1,n, . . . , pn,n), the integral Ap(pn) in (1) is defined in the
improper Riemann sense if and only if Ap(pn, b) → Ap(pn) as b →∞, where

Ap(pn, b) =
∫ b

0

[
P {p1,nX1 + · · ·+ pn,nXn > x} − P {X1 > x}]dx.

It can be shown that Ap(pn, b) = (r−1)Hr(pn)+Rr(pn, b)+o(1) as b →∞, where Rr(pn, b) =
δp(b)−

∑n
j=1 pj,n δp(b/pj,n). Notice that δp(urk) = δp(u), u > 0, for every k ∈ Z. Thus if pn

is admissible, then

Rr(pn, b) = δp(b)−
n∑

j=1

pj,n δp

(
b

pj,n

)
= δp(b)−

n∑

j=1

pj,n δp(b) = 0,

and hence Ap(pn, b) = (r− 1)Hr(pn) + o(1) as b →∞, which is the “if part” of the theorem.
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Conversely, suppose that Ap(pn) in (1) exists, so that Ap(pn, b) → Ap(pn) as b → ∞.
Using the above periodicity property of δp(·), we get Rr(pn, rkb) = Rr(pn, b) for every k ∈ Z.
Fixing b > 0 and letting k →∞, so that rkb →∞, we get Rr(pn, b) = Ap(pn)−(r−1)Hr(pn).
Let D = D+ −D−, where D+ and D− are the right-side and left-side differential operators,
respectively. Then one can prove that

Dδp(s) =
{ r−1

rk , for s = rk when k ∈ Z,

0, for all other s > 0,

from which, for all j ∈ {1, . . . , n} for which pj,n > 0, we find that

D pj,n δp

(
b

pj,n

)
=

{ r−1
rk , for b = rk pj,n when k ∈ Z,

0, for all other b > 0.

Consequently, we have

DRr(pn, b)
∣∣
b=1

= r − 1− (r − 1)
∑

j∈A

pj,n,

where A is the set of indices j ∈ {1, . . . , n} for which pj,n is an integer power of r. Since, on
the other hand, DRr(pn, b) = 0, this implies

∑
j∈A pj,n = 1, and thus completes the proof.

Proof of Theorem 2. Let qa+qb = 1 for some a, b ∈ N. Then P {X1 ≤ rk} = Fp(rk) = 1−qk

for every k ∈ N. We estimate the probability P {T2 ≤ rk}, where T2 = qaX1 + qbX2. If
T2 ≤ rk, then

(1) X1, X2 ≤ rk, or

(2) X1 = rk+1, . . . , rk+a−1 and X2 ≤ rk−1, or

(3) X2 = rk+1, . . . , rk+b−1 and X1 ≤ rk−1.

We obtain

P
{
T2 ≤ rk

} ≤ (
1− qk

)2 +
(
1− qk−1

)
qk

(
1− qa−1

)
+

(
1− qk−1

)
qk

(
1− qb−1

)

=
(
1− qk

)2 +
(
1− qk−1

)
qk

(
2− 1

q

)
= 1− qk−1 + q2k

(
1
q
− 1

)2

.

Since the distribution function of X1 jumps only in the points x = rk, it is enough to show
that P

{
T2 < rk

} ≤ P {X1 < rk} = P {X1 ≤ rk−1} = 1− qk−1. This is true, because

P
{
T2 < rk

}
= P

{
T2 ≤ rk

}− P
{
T2 = rk

}

≤ 1− qk−1 + q2k

(
1
q
− 1

)2

− P
{
X1 = rk, X2 = rk

}

= 1− qk−1,

completing the proof.
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Proof of Theorem 3. We prove that stronger statement that the graphs of the distribution
functions of Sn and nX1 cross each other infinitely often. More exactly we show that both
P {nX1 ≤ nk} > P {Sn ≤ nk} and P {nX1 < nk} < P {Sn < nk} hold whenever k ≥ 3.

Notice that the inequality Sn ≤ nk holds if and only if X1 ≤ nk−1, X2 ≤ nk−1, . . . ,

Xn ≤ nk−1. This implies for arbitrary k ≥ 2 that

P
{
Sn ≤ nk

}
= P

{
n⋂

j=1

{
Xj ≤ nk−1

}
}

=
(

n− 1
n

+
n− 1
n2

+ · · ·+ n− 1
nk−1

)n

=
(

1− 1
nk−1

)n

.

Clearly, P
{
nX1 ≤ nk

}
= P

{
X1 ≤ nk−1

}
= 1− 1/nk−1, so P

{
nX1 ≤ nk

}
> P

{
Sn ≤ nk

}
.

Now consider the probabilities P {nX1 < nk} and P {Sn < nk}. When k = 2, both of
them are zero. So, assume k ≥ 3. Noticing that P {Sn < nk} = P {Sn ≤ nk} −P {Sn = nk},

P
{
Sn = nk

}
= P

{
X1 = nk−1, X2 = nk−1, . . . , Xn = nk−1

}
=

(
n− 1
nk−1

)n

,

and P {nX1 < nk} = P {nX1 ≤ nk−1} = P {X1 ≤ nk−2}, we have

P
{
Sn < nk

}
=

(
1− 1

nk−1

)n

−
(

n− 1
nk−1

)n

> 1− 1
nk−2

= P {nX1 < nk},

where the inequality holds for n ≥ 3 and k ≥ 3 by elementary calculations.

Proof of Theorem 4. Let n ≥ 2 be the number of Pauls. By Theorem 1, for every admissible
strategy q = 1−p satisfies the equation qa1 +qa2 +· · ·+qam = 1, where a1, a2, . . . , am ∈ N and
m ∈ {2, 3, . . . , n}. Without loss of generality we assume that the zeros, if any, are the last com-
ponents of the strategy, so that pn = (qa1 , qa2 , . . . , qam , 0, . . . , 0). Then Tm :=

∑n
j=1 pj,nXj =

qa1X1 + · · ·+ qamXm. We estimate the probability P {Tm ≤ rk}. If the event {Tm ≤ rk} oc-
curs, then we must have all the inequalities X1 ≤ rk+a1−1, X2 ≤ rk+a2−1, . . . , Xm ≤ rk+am−1.
Hence,

P
{
Tm ≤ rk

} ≤ (
1− qk+a1−1

)(
1− qk+a2−1

) · · · (1− qk+am−1
)

= 1− qk
(
qa1−1 + qa2−1 + · · ·+ qam−1

)
+ q2kC2 + · · ·+ qmkCm

= 1− qk−1 + q2kC2 + · · ·+ qmkCm ,

where the constants C2, C3, . . . , Cm do not depend on k.

Since pn is admissible, the integral
∫∞
0

[
P {Tm > x} − P {X1 > x}] dx exists as an

improper Riemann integral. Hence it suffices to show that the integral of the negative part
g−m(x) of the function gm(x) := P {Tm > x} − P {X1 > x} is finite. Notice that

gm(x) = P {X1 ≤ x} − P {Tm ≤ x} ≥ P {X1 < x} − P {Tm ≤ x} =: hm(x)

for all x > 0. Clearly, the function hm(x) takes a minimum value on the interval (rk−1, rk]
at x = rk, for which the estimate above yields

hm(rk) = P
{
X1 < rk

}− P
{
Tm ≤ rk

} ≥ 1− qk−1 − (
1− qk−1 + q2kC2 + · · ·+ qmkCm

)

= −(
q2kC2 + · · ·+ qmkCm

)
.
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Therefore, setting C1 =
∫ 1

0
h−m(x) dx, we obtain

∫ ∞

0

g−m(x) dx ≤
∫ ∞

0

h−m(x)dx ≤ C1 +
∞∑

k=1

∫ rk

rk−1

(
q2k|C2|+ · · ·+ qmk|Cm|

)
dx

= C1 +
∞∑

k=1

rk

(
1− 1

r

)(
q2k|C2|+ · · ·+ qmk|Cm|

)

= C1 + (1− q)
∞∑

k=1

(
qk|C2|+ · · ·+ q(m−1)k|Cm|

)
< ∞,

which proves the theorem.

Proof of Theorem 5. This is based on the proof of Theorem 2 in Cs–S (2006), so we skip
the details. Without loss of generality we assume that pn is ordered: p1,n ≥ p2,n ≥ · · · ≥ pn,n.
The proof is by induction on rn. For rn = 0 the statement is true. Now suppose that all the
statements of the theorem hold for rn−1 ≥ 0, and consider the case n = rblogr nc+(r− 1)rn.
If pn,n = 0, then we have at least r− 1 zeros. Deleting them, we get a strategy p̂n−(r−1), and
we are done in view of the fact that the bound A∗p,n in (2) is nondecreasing in n. In the other
case, when pn,n = 1/rk for some k ∈ N, we have at least r of these smallest components by
Lemma 3. Changing r of these to a single component 1/rk−1, we obtain a strategy p̂n−(r−1)

for which Hr(pn)−Hr

(
p̂n−(r−1)

)
= 1/rk−1. Using the induction hypothesis and the formula

A∗p,n = (r − 1)blogr nc + (r − 1)rn/rblogr nc, the proof can be completed as in Cs–S (2006).
The uniqueness assertion of the theorem follows by the same induction argument.

Lemma 4. If U, V,W are independent random variables and U ≥D V , then U+W ≥D V +W .

Proof. Let F,G and H be the distribution functions of U, V and W , respectively. By
assumption, F (x) ≤ G(x) for all x ∈ R. The random variables U + W and V + W have the
distribution functions F∗H(·) and G∗H(·), where ∗ denotes Lebesgue–Stieltjes convolution.
Thus

F∗H(x) =
∫ ∞

−∞
F (x− y)dH(y) ≤

∫ ∞

−∞
G(x− y)dH(y) = G∗H(x),

which proves the statement.

Proof of Theorem 6. Let Y1, . . . , Ym, X1, . . . , Xn be independent St. Petersburg(p) vari-
ables. From the assumption we get qak+b1Y1 + qak+b2Y2 + · · · + qak+bmYm ≥D qakXk. By
Lemma 6 this implies

qa1X1 + · · ·+ qak−1Xk−1 + qak+b1Y1 + · · ·+ qak+bmYm + qak+1Xk+1 + · · ·+ qanXn

≥D qa1X1 + · · ·+ qak−1Xk−1 + qakXk + qak+1Xk+1 + · · ·+ qanXn.

Now the assumption and obvious transitivity together imply the theorem.
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