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Aradi Vértanúk Tere 1, 6720 Szeged, Hungary

katai@math.u-szeged.hu
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We present a new solution of the word problem of free algebras in varieties generated by
iterated semidirect products of semilattices. As a consequence, we provide asymptotical
bounds for free spectra of these varieties. In particular, each finite R-trivial (and, dually,
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each finite L-trivial) semigroup has a free spectrum whose logarithm is bounded above
by a polynomial function.
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1. Introduction

Let V be a variety and n ≥ 1 an integer. The free algebra of V over an n-element set
will be denoted by Fn(V). If V is locally finite, then the sequence fn(V) = |Fn(V)|,
n ≥ 1, consists of positive integers; it is called the free spectrum of V . If A is an
algebra generating a locally finite variety (for example, if A is finite), then the free
spectrum of A, fn(A), is just the free spectrum of the variety A generates. By
elementary facts from universal algebra, fn(A) is in fact the number of all n-ary
operations on A, the carrier set of A, induced by terms in the signature of A. These
operations are called the term operations of A. For example, n-ary term operations
of a semigroup are just the operations of its underlying set induced by non-empty
words over an n-element alphabet. Therefore, if |A| = m, then fn(A) ≤ mmn

. This
upper bound is attained for the two-element Boolean algebra: The free spectrum
of the variety of Boolean algebras is 22n

.
A closely related invariant of an algebra A generating a locally finite variety is its

pn-sequence, pn(A). Namely, an n-ary term operation of A is said to be essentially
n-ary if it depends on all of its variables, and pn(A) counts all such operations.
The pn-sequence of a locally finite variety V is just the pn-sequence of any algebra
generating V . We refer the reader to the survey [6] for an overview of basic results
on free spectra and pn-sequences and the development of the theory up to the early
nineties.

An important milestone in the theory of free spectra of locally finite varieties
came with the paper of Kearnes [10], who showed that the free spectrum of a general
finite algebra A is a great deal governed by the free spectrum of an associated
monoid, called the twin monoid of A. This clearly emphasized the need to focus
the attention to free spectra of (finite) semigroups and monoids and to try to
classify all possible spectra according to their asymptotic behavior. A first attempt
in this direction was made by Seif [13], who formulated an intriguing conjecture
demarcating between finite monoids whose free spectra are doubly exponential and
those which do not have this property. The quest for such a boundary traces back to
an old result of Higman [7] and Neumann [11], which states that for a finite group
G we have log fn(G) ∈ O(nc) if and only if G is step-c nilpotent, while fn(G) is
doubly exponential if G is not nilpotent.

Today, the theory of free spectra of semigroups and semigroup varieties shapes
into a steadily growing subject, see, for example, [3–5, 8, 9, 12]. In this paper, we
consider free objects in semigroup varieties SLt, t ≥ 1, generated by t times
iterated semidirect products of semilattices. Previously, these varieties and the
word problem of their free algebras were thoroughly investigated by Almeida [1]
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(see also [2, Sec. 10.3]). Here we provide an alternative solution to the equational
problem of SLt (that is, of word problems of Fn(SLt)) that is much more suit-
able for our main goal of obtaining (polynomial) upper bounds for log fn(SLt). We
present a procedure for an effective computation of a normal form for a word from
X+ with respect to the fully invariant congruence of X+ corresponding to the vari-
ety SLt. Also, we give asymptotic estimates for fn(SLt) and pn(SLt). Finally, we
note that by an old result of Stiffler [14] our results imply that log fn(S) is bounded
above by a polynomial function whenever S is a finite semigroup (or a monoid) in
which one of Green’s relations R, L is trivial, thereby confirming Seif’s conjecture
in this particular case.

2. Preliminaries

Let S and T be semigroups. A left action of T on S is a monoid homomorphism
ϕ : T1 → EndS. If t ∈ T 1 and s ∈ S we write ts as a short-hand for [ϕ(t)](s), and
if we write the operation of S additively (which does not mean that S is necessarily
commutative), then for all s, s′ ∈ S and t, t′ ∈ T 1 we have

t(s+ s′) = ts+ ts′,

(tt′)s = t(t′s),

1s = s.

If S happens to be a monoid with an identity element 0 then it is also required
that t0 = 0 for all t ∈ T 1. For each left action ϕ of T on S we define the semidirect
product S ∗ϕ T (which is often abbreviated to S ∗ T if the action is clear from the
context) as the semigroup defined on the set S × T by

(s, t)(s′, t′) = (s+ ts′, tt′).

If U and V are semigroup varieties, then U ∗V is defined to be the variety generated
by all semidirect products S ∗ T such that S ∈ U , T ∈ V . Even though the con-
struction of the semidirect product is in general not associative (that is, we do not
need to have (R ∗ S) ∗T ∼= R ∗ (S ∗T)), it is nevertheless an associative operation
on the set of all semigroup varieties.

If SL denotes the variety of all semilattices, we define a sequence of varieties
SLt, t ≥ 1, by SL1 = SL and SLi+1 = SL ∗ SLi for all i ≥ 1. These varieties (and
the corresponding pseudovarieties of finite semigroups, obtained by taking their
finite members), generated by t times iterated semidirect products of semilattices,
were thoroughly studied by Almeida [1], see also [2]. In this paper, we supply an
alternative solution of word problems for their free algebras, which will allow us to
construct systems of normal forms of elements of these free algebras and calculate
the free spectra and pn-sequences of varieties of the form SLt.

First of all, we recall the identity basis of SLt provided in [1]. As usual, X+

(X∗) denotes the free semigroup (free monoid) on the set X , and for w ∈ X∗, c(w)
is the content of w, the set of letters that occur in w.
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G. Horváth et al.

Theorem 2.1 (Almeida [1, 2]). Let the set Σt−1, t ≥ 1, consist of the following
two types of identities over a countably infinite alphabet X containing the letters
x, x1, x2:

ut−1 · · ·u1x
2 = ut−1 · · ·u1x, (1)

where u1, . . . , ut−1 ∈ X+ are such that x ∈ c(u1) ⊆ · · · ⊆ c(ut−1), and

ut−1 · · ·u1x1x2 = ut−1 · · ·u1x2x1, (2)

where u1, . . . , ut−1 ∈ X+ are such that x1, x2 ∈ c(u1) ⊆ · · · ⊆ c(ut−1). Then the
variety SLt is defined by Σt−1.

As it turns out, SLt is not finitely based whenever t ≥ 3.
Throughout the remainder of the paper, let X be a countably infinite alphabet.

We say that

u = w0, w1, . . . , wr = v ∈ X+ (3)

is a deduction of the identity u = v from a set of identities Σ if for each j ∈
{0, . . . , r − 1} there exist factorizations

wj = ajφj(uj)bj and wj+1 = ajφj(vj)bj , (4)

where each φj :X+ → X+ is a substitution, aj , bj ∈ X∗, and at least one of the
identities uj = vj , vj = uj belongs to Σ. A deduction is left absorbing if each
prefix aj occurring in (4) is the empty word. We say that the deduction (3) involves
no substitutions if all endomorphisms φj are the identity mapping. Some of the
relevant results of [1], which refine the previous theorem, may be summarized in
the following way.

Proposition 2.2. Let u, v ∈ X+. The identity u = v holds in SLt if and only
there exists a deduction of u = v from Σt−1 which is left absorbing and involves no
substitutions.

In other words, SLt satisfies u = v if and only if there is a deduction u =
w0, w1, . . . , wr = v such that each identity wj = wj+1 in the deduction (or wj+1 =
wj) is of one of the following forms:

ut−1 · · ·u1x
2w = ut−1 · · ·u1xw, (5)

with x ∈ c(u1) ⊆ · · · ⊆ c(ut−1), w ∈ X∗, and

ut−1 · · ·u1x1x2w = ut−1 · · ·u1x2x1w, (6)

such that x1, x2 ∈ c(u1) ⊆ · · · ⊆ c(ut−1) and w ∈ X∗. We call each identity of the
form (5) and (6) an elementary step on level t.
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3. The Word Problem and the Recurrence Formula

For u, v ∈ X+, let us write u ∼t v if SLt satisfies the identity u = v. By elementary
universal algebraic facts, ∼t is a fully invariant congruence on X+, and X+/∼t is
the SLt-free semigroup on X . Our goal is to give a characterization of relations ∼t,
t ≥ 1, which will suit our needs. Since SL ⊆ SLt for all t ≥ 1, we have that u ∼t v

implies c(u) = c(v); in fact, u ∼1 v if and only if c(u) = c(v). Also, the following
fact observed by Almeida [1, 2] will be used in the sequel.

Lemma 3.1. Let u, v, w ∈ X+ such that u ∼t v for some t ≥ 1 and c(w) ⊇ c(u) =
c(v). Then wu ∼t+1 wv.

For a word u ∈ X+ let mu ∈ X be the letter that is last to occur in u from
the left. Let fu be the longest prefix of u that does not contain mu; then c(fu) =
c(u)\{mu}. Accordingly, u factorizes as

u = fumubu

for some word bu ∈ X∗. This is the notation that we are going to use in the
following result, which describes the relation ∼t, t ≥ 2, and thus, by our earlier
remarks, provides a solution of the equational problem of varieties SLt.

Theorem 3.2. Let t ≥ 2 and u, v ∈ X+ such that c(u) = c(v). Then u ∼t v if and
only if the following conditions hold:

(i) mu = mv,

(ii) fu ∼t fv,

(iii) bu ∼t−1 bv.

Proof. (⇐) Since, by definition, c(fwmw) = c(w) ⊇ c(bw) holds for any word
w ∈ X+ the assumption bu ∼t−1 bv implies u = fumubu ∼t fumubv = fumvbv,
by (i), the previous lemma and the fact that c(u) = c(v). However, since ∼t is a
congruence, we have that (ii) implies fumvbv ∼t fvmvbv = v. Hence, u ∼t v.

(⇒) It suffices to prove this implication only for the case when u = v is an
elementary step on level t, because then a routine induction on the length of the
deduction of an identity holding in SLt proves the implication in the general case.

In fact, we consider only the case of an elementary step of type (5), while the
case of (6) is handled similarly. We have

u = ut−1 · · ·u1x
2w,

v = ut−1 · · ·u1xw,

where x ∈ X , u1, . . . , ut−1 ∈ X+, w ∈ X∗, such that x ∈ c(u1) ⊆ · · · ⊆ c(ut−1). We
distinguish two cases.

Case 1. c(ut−1) = c(u). Then mu occurs in ut−1, so fumu is a prefix of ut−1;
similarly, fvmv is a prefix of ut−1. This implies that mu = mv = mut−1 and,
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consequently, fu = fv = fut−1 . Therefore, ut−1 = fumus = fvmvs for some s ∈ X∗.
Now the pair of words

bu = (sut−2) · · ·u1x
2w,

bv = (sut−2) · · ·u1xw,

forms an elementary step on level t− 2, which shows that bu ∼t−1 bv.
Case 2. c(ut−1) �= c(u). Then, by the given conditions, c(ut−1 · · ·u1x

2) =
c(ut−1 · · ·u1x) = c(ut−1) �= c(u) = c(v), so both letters mu and mv occur in
w. If w′ is the shortest prefix of w with the property that c(ut−1) ∪ c(w′) = c(u),
then ut−1 · · ·u1x

2w′ is the shortest prefix of u with the same content as u, while
ut−1 · · ·u1xw

′ is the shortest prefix of v with the same content as v. Thus the
rightmost letter of w′ coincides with both mu and mv, and if w = w′w′′, then
bu = bv = w′′. Also, if w′ = smu = smv, then we have

fu = ut−1 · · ·u1x
2s,

fv = ut−1 · · ·u1xs.

Since the latter pair of words form an elementary step on level t, we conclude
fu ∼t fv, as required.

For the sake of brevity, denote by fn(t) = fn(SLt) and pn(t) = pn(SLt) the
free spectrum and the pn-sequence of SLt, respectively, where n, t ≥ 1. Recall (e.g.
from [6]) that these two sequences are connected by the following simple combina-
torial formula:

fn(t) =
n∑

k=0

(
n

k

)
pk(t). (7)

Also, the ∼t-class of a word w ∈ X+ will be denoted by [w]t. Then X+/∼t =
{[w]t :w ∈ X+} is a model for the free algebra of SLt over X (the same is true for
any finite subset of X), while pn(t) counts the classes [w]t such that c(w) is equal
to some fixed n-element subset of X .

Theorem 3.3. We have pn(1) = 1 and fn(1) = 2n − 1 for all n ≥ 1. For n, t ≥ 2,
the following recurrence formula holds:

pn(t) = npn−1(t)(fn(t− 1) + 1),

while p1(t) = t.

Proof. Let Xn be an arbitrary but fixed subset of X such that |Xn| = n. Let
En(t) = {[w]t : c(w) = Xn}; by our previous remarks, pn(t) = |En(t)|. On the other
hand, define the set Mn(t) = {(x, [w]t) :x ∈ Xn, c(w) = Xn\{x}}; clearly, we have
|Mn(t)| = npn−1(t), so that the direct product Mn(t) × (X∗

n/∼t−1) has precisely
npn−1(t)(fn(t− 1) + 1) elements (recall that X∗

n/∼t−1 has an extra element not in
X+

n / ∼t−1, which is the ∼t−1-class of the empty word). So, to prove the theorem,
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it suffices to establish a bijection ψ :En(t) → Mn(t) × (X∗
n/∼t−1). Indeed, if we

define

ψ([w]t) = (mw, [fw]t, [bw]t−1),

for all w ∈ X+ such that c(w) = Xn, then the previous theorem asserts that ψ is
a well-defined injection. Moreover, if x ∈ Xn, f ∈ X∗

n such that c(f) = Xn\{x}
and b ∈ X∗

n, then for u = fxb we have fu = f , mu = x and bu = b, so ψ([u]t) =
(x, [f ]t, [b]t−1), which means that ψ is surjective.

Finally, xi ∼t x
j cannot be true for 1 ≤ i < j ≤ t, since an elementary step is

applicable only to words of length ≥ t, so no elementary step can be applied to the
word xi. On the other hand, xt+1 ∼t x

t, which follows from a step of the form (5)
with ut−1 = · · · = u1 = x. This suffices to establish that p1(t) = t.

4. Computing the Normal Form

We are going to define a sequence of functions ϕt :X+ → X+, t ≥ 1, which will
yield our normal forms of words with respect to ∼t. For this purpose, we need to
fix a total order of X , and the simplest way to do this is to enumerate the letters
from X as X = {x1, x2, . . .} (whence we set Xn = {x1, . . . , xn}). The mappings ϕt

are defined recursively by the following rules applied to a word w ∈ X+.

(1) If c(w) = {xi1 , . . . , xik
} such that i1 < · · · < ik, then

ϕ1(w) = xi1 · · ·xik
.

(2) For any x ∈ X we have

ϕt(xk) = xmin(k,t)

for all k, t ≥ 1.
(3) If t ≥ 2 and |c(w)| ≥ 2, then

ϕt(w) = ϕt(fw)mwϕt−1(bw).

There is a particularly convenient way of visualizing the process of computing
ϕt(w) by using trees. Some of the vertices of the tree will be labeled only by words,
and some of them will be labeled by pairs (s, u), where s ≤ t is a positive integer
and u is a word. Initially, the root of the tree is labeled by (t, w). Now, whenever
a new vertex (s, u) is added to the tree such that s ≥ 2 and |c(u)| ≥ 2, we attach
three child-vertices to it, labeled by (s, fu), mu (no integer label) and (s − 1, bu),
respectively. At the end of this procedure, we are left with a tree in which each leaf
is labeled either by a single letter, or by a pair of the form (s, u) such that u = xk

i

for some k ≥ 1 and xi ∈ X , or by a pair of the form (1, u). We can finish this
process by attaching a single child-vertex labeled by xmin(k,s)

i to each leaf labeled
by (s, xk

i ), and a single child-vertex labeled by ϕ1(u) (see rule (1)) to any leaf
labeled by (1, u). Now, each leaf in the modified tree is labeled just by a word, and
if we read these labeling words together from the left to the right, the result will be
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Fig. 1. The labeled tree associated to the computation of ϕ2(x3
1x2x1x3x2

2x3x1).

ϕt(w). This is illustrated by an example in Fig. 1 for t = 2, w = x3
1x2x1x3x

2
2x3x1;

the corresponding labeled tree easily shows that ϕ2(w) = x2
1x2x1x3x1x2x3.

The following theorem shows that ϕt(w) is indeed a normal form for a word w
with respect to ∼t.

Theorem 4.1. (1) Let u, v ∈ X+. Then u ∼t v if and only if ϕt(u) = ϕt(v).

(2) For each w ∈ X+ we have w ∼t ϕt(w); in fact, ϕt(w) is the shortest word
in [w]t.

Proof. (1) First of all, it is quite easy to verify that c(ϕt(w)) = c(w) holds for all
w ∈ X+; so, if c(u) �= c(v), then neither u ∼t v, nor ϕt(u) = ϕt(v) can hold. Hence,
we may assume that c(u) = c(v). The statement is now proved by induction on t

and n = |c(u)| = |c(v)|.
If either t = 1 or n = 1, the assertion is evident; thus we assume that n, t ≥ 2.

By Theorem 3.2, u ∼t v is equivalent to fu ∼t fv, mu = mv and bu ∼t−1 bv.
By the induction hypothesis, fu ∼t fv holds if and only if ϕt(fu) = ϕt(fv), while
bu ∼t−1 bv is equivalent to ϕt−1(bu) = ϕt−1(bv). So, by rule (3) of the definition of
ϕt, we obtain ϕt(u) = ϕt(fu)muϕt−1(bu) = ϕt(fv)mvϕt−1(bv) = ϕt(v).

Conversely, assume that ϕt(u) = ϕt(v). Notice that for any w ∈ X+ we have
mϕt(w) = mw and, consequently, fϕt(w) = ϕt(fw) and bϕt(w) = ϕt−1(bw). Therefore,
we have mu = mv, ϕt(fu) = ϕt(fv) and ϕt−1(bu) = ϕt−1(bv). By the induction
hypothesis, we have fu ∼t fv and bu ∼t−1 bv. By Theorem 3.2, this implies u ∼t v.

(2) As in part (1) we note that the assertion is clear if n = |c(w)| = 1 or t = 1,
and proceed by induction on n and t, so that n, t ≥ 2. By induction hypothesis,
fw ∼t ϕt(fw) = fϕt(w) and bw ∼t−1 ϕt−1(bw) = bϕt(w). Also, we have already noted
that mw = mϕt(w). By Theorem 3.2, we must have w ∼t ϕt(w). Now let v ∈ [u]t,
that is, v ∼t u. Then, again by Theorem 3.2, fv ∈ [fu]t, so ϕt(fu) = fϕt(u) ∈ [fu]t
is not longer than fv. Similarly, ϕt−1(bu) = bϕt(u) ∈ [bu]t is not longer than bv. Of
course, mu = mv. Therefore, ϕt(u) = ϕt(fu)muϕt−1(bu) ∈ [u]t is not longer than
v = fvmvbv, as wanted.
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Because of the previous theorem, a model of the SLt-free algebra on X can be
constructed on the set {ϕt(w) :w ∈ X+} of all normal forms, where the operation
◦ is given by u ◦ v = ϕt(uv) for any two normal forms u, v. Now we estimate the
time complexity of the algorithm for computing the normal form of a product of
two normal forms.

Proposition 4.2. For any w ∈ X+
n we have |ϕt(w)| ≤ (

n+t
t

)−1. Given two normal
forms u, v (with respect to ∼t) such that c(u) = c(v) = Xn, the normal form of their
product can be computed in time O(n2t−1).

Proof. Let µ(n, t) denote the maximal length of the normal form of a wordw ∈ X+
n

with respect to ∼t. If n, t ≥ 2, by the rule (3) and the arguments given in the proof
of the previous theorem, we have

µ(n, t) = µ(n− 1, t) + µ(n, t− 1) + 1,

while µ(1, t) = t and µ(n, 1) = n. The solution of this recurrence is µ(n, t) =(
n+t

t

) − 1 ∈ O(nt).
Now let �(n, t) denote the number of leaves on the tree obtained in the process

of computing the normal form ϕt(w) for a word w such that c(w) = Xn. Again,
it is not difficult to extract the following recurrence formula from our previous
considerations:

�(n, t) = �(n− 1, t) + �(n, t− 1) + 1,

where �(n, 1) = �(1, t) = 1. The solution of this recurrence is �(n, t) = 2
(
n+t−2

t−1

)−1 ∈
O(nt−1). Since every non-leaf vertex of the tree is the parent-vertex of some leaf,
and no two leaves have the same parent, the number of vertices in the tree is
exactly 2�(n, t) ∈ O(nt−1). The number of non-leaf vertices coincides with the
number of rules (1)–(3) applied in the course of the algorithm computing ϕt(w),
and performing each such step requires a linear time with respect to the length of the
word that is processed at a particular step. We already know that |u|, |v| ∈ O(nt),
so that |uv| ∈ O(nt), and the same holds for any word processed in the course of
computing ϕt(uv). Since there are O(nt−1) steps involved, the total running time
required for calculating ϕt(uv) is O(n2t−1).

5. Upper Bounds for Free Spectra and pn-Sequences

Throughout this brief section, let “log” refer to the base-2 logarithm. We have
already remarked that fn(SL1) = 2n − 1 (so that log fn(SL1) ∈ O(n)) and
pn(SL1) = 1 holds for n ≥ 1. Using the formula given in Theorem 3.3, we con-
clude that pn(2) = pn−1(2) · n · 2n, which easily yields

pn(2) = n! · 2(n+1
2 ).
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Of course, it is not realistic to expect to obtain nice closed formulae for fn(t) and
pn(t) when t ≥ 3. Instead, we aim to determine only the asymptotic behavior of
these sequences.

Theorem 5.1. For each t ≥ 1 both log fn(t) and log pn(t) belong to the asymptotic
class O(nt).

Proof. First of all, it is not difficult to see (by an argument belonging essentially
to elementary calculus) that if log pn(t) ∈ O(nk) for some k ≥ 1, then we have
log fn(t) ∈ O(nk) as well. We prove the statement of the theorem by induction
on t. For t = 1, the assertion clearly holds; therefore, let t ≥ 2.

Rewrite the recurrence relation given in Theorem 3.3 as

log pn(t) = log pn−1(t) + logn+ log(fn(t− 1) + 1).

By the induction hypothesis, logn + log(fn(t − 1) + 1) ∈ O(nt−1), so for n large
enough we have

log pn(t) ≤ log pn−1(t) + Cnt−1

for some constant C > 0. By a simple telescoping of the above inequality, we
conclude that for some positive integer n0, all n ≥ n0 and a positive constant B,
the following inequality holds:

log pn(t) ≤ B + C

n∑
k=n0

kt−1.

Hence, log pn(t) ∈ O(nt) and thus log fn(t) ∈ O(nt).

Recall (e.g. from [2]) that a pseudovariety of finite semigroups is a class of
finite semigroups closed under taking homomorphic images, subsemigroups and
finite direct products. Let Sl denote the pseudovariety of all finite semilattices,
and for t ≥ 1, let Slt be the pseudovariety of finite semigroups generated by all t
times iterated semidirect products of members of Sl. In fact, Slt is just the class
of all finite members of SLt (see [1]). By a result of Stiffler [14],

⋃
t≥1 Slt coincides

with the pseudovariety R of all finite R-trivial semigroups, where R is the Green
relation on a semigroup relating elements which generate the same principal right
ideal (see [2]). Therefore, each finite R-trivial semigroup belongs to a variety of the
form SLt for a suitable t, which immediately implies the following conclusion.

Corollary 5.2. For any finite R-trivial semigroup S, log fn(S) ∈ O(nk) for some
k ≥ 1.

The same assertion holds if we replace the word “semigroup” by “monoid”
since the free spectrum of the semigroup variety generated by a monoid M and
that of the monoid variety generated by M are asymptotically equivalent. Also,
the above corollary holds for finite L -trivial semigroups as well, since the dual
semigroup of a L -trivial semigroup is R-trivial, and dual semigroups have identical
free spectra.
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