
THESES

1. Introduction

Lattices are very important related algebraic structures. They often appear in
many branches of algebra, they are clear enough to consider easily, and rich enough
to characterize many types of algebraic properties. Here lattices occur in connection
with diagrammatic schemes and Maltsev conditions. Moreover, we carry out lattice
theoretic investigations on the shift of a lattice identity.

Traditionally in mathematics: “ An invariant is something that does not
change under a set of transformations. The property of being an invariant is in-

variance. ”(Wikipedia [Inv1].)
However, beside its strict meaning outlined above, the word ’invariant’ has also

a more general meaning in universal algebra. We obtain this meaning by replacing
transformation, which is a selfmap A → A of a set A by the notion of algebraic
operations. Thus we arrive at the notion of an invariant relation ([PK]).

2. Invariance groups of threshold functions

A threshold function is a Boolean function, i.e. a mapping {0, 1}n → {0, 1}
with the following property: There exist real numbers w1, ..., wn, t such that

f(x1, . . ., xn) = 1 iff
n∑

i=1

wixi ≥ t,

where wi is called the weight of xi for i = 1, 2, . . . , n, and t is a constant called the
threshold value.

There is a geometrical interpretation of threshold functions. The set {0, 1}n

can be considered to span a hypercube in the Euclidean space Rn. A Boolean
function is defined by assigning either 0 or 1 to the 2n vertices of the hypercube
{0, 1}n. In the n-dimensional space Rn the set of vertices where the value of the
function is 1 can be separated by a hyperplane from those vertices where the value
is 0. This is why threshold functions are also called linearly separable functions
([Sh]).
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Threshold functions are useful to study because they are not only models of
neurons for example, but also it is easy and relatively cheap to realize them by
electrical network ([Sh], [Mu]).

THEOREM 2.1 ([Ho1]). For every n-ary threshold function f there exists a

partition Cf of n such that the invariance group G of f consists exactly of those

permutations of Sn which preserve each block of Cf . Conversely, for every partition

C of n there exists a threshold function fC such that the invariance group G of fC

consists exactly of those permutations of Sn that preserve each block of C.

The proof of Theorem 2.1 is based on the following subsidiary statements, and
contains only elementary considerations. Let us define the relation ∼ on the set n

as follows: i ∼ j iff i = j or the transposition (i j) leaves f invariant.

Claim 2.1. The partition Cf defined by ∼ is convex.

Claim 2.2. Let γ = (j1 j2 . . . jk−1 l jk . . . jm) ∈ Sn be a cycle of length m + 1
with js ∈ Cp, 1 ≤ s ≤ m, l ∈ Cq , p �= q. Then γ �∈ G.

Lemma 2.1 ([Ho1]). If a cycle β ∈ Sn has entries from at least two blocks

of Cf , then β �∈ G.

Claim 2.3. For π ∈ SX , let π = γ1 . . . γr where the γi are disjoint cycles. If
there exists a γj with 1 ≤ j ≤ r and γj �∈ G, then π �∈ G.

Lemma 2.2 ([Ho1]). Let π ∈ SX be of the form π = π2π1, where π1, π2 ∈ SX ,
with M(π1) ∩ M(π2) = ∅ and π1 �∈ G. Then π �∈ G.

Claim 2.3. For π ∈ SX , let π = γ1 . . . γr where the γi are disjoint cycles. If
there exists a γj with 1 ≤ j ≤ r and γj �∈ G, then π �∈ G.

The following corollary is worth formulating.

Corollary 2.1 ([Ho1]). The invariance group of any threshold function is

isomorphic to a direct product of symmetric groups.

3. Proving primality by the operation-relation duality

We consider a k-ary relation as a set of unary functions r: k → A, k =
{1, 2, . . . , k}. We say that a k-ary relation D is diagonal, if there exists an equiva-
lence relation ρ

D
on k such that

D = {r: k → A| r(u) = r(v) if uρ
D
v, u, v ∈ k } .
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The collection of all diagonal relations on A forms the minimal closed class of
relations on A.

The following Proposition 3.1 and Lemma 3.1 and Lemma 3.1’ enable us to
present new proofs for primality theorems. (The dissertation details only one new
proof.)

Proposition 3.1 (Bodnarčuk–Kalužnin–Kotov–Romov [BKKR],

Geiger [Gei], Krauss [Kr1], [Kr2]). A finite algebra A = (A, F ) is primal, iff

every relation preserved by all operations in F is diagonal.

Lemma 3.1 ([Ho2]). Given an algebra A = (A, F ), the following two

conditions are equivalent:

(i) For each R ⊆ Ak, the relation [R] is diagonal.

(ii) For each x, y ∈ Ak, the relation [x, y] is diagonal.

Lemma 3.1′ ([Ho2]).The following three conditions are equivalent:

(i) The algebra A = (A, F ) is primal.

(ii) For each x, y, z ∈ Ak, we have z ∈ [x, y] whenever

((∀u, v ∈ k )(x(u) = x(v) ∧ y(u) = y(v) → z(u) = z(v))).

(iii) For each k ≥ 1 x, y, z ∈ Ak, and for any equivalence ρ on k if ρ ⊇ ρx ∩ ρy,

then Dρ ⊆ [x, y].

By Lemma 3.1 the problem of proving a primality theorem simplifies to the
investigation of some suitably chosen matrices. We demonstrate our method on the
S�lupecki Criterion in detail.

THEOREM 3.1 (S�lupecki [Sl]). Let A be a finite set with |A| > 2. If F contains

an essential operation f and all the unary operations, then the algebra A = (A, F )
is primal.

We can prove the functional completeness of the ternary discriminator ([Sz]),
the dual discriminator (for |A| ≥ 3) ([FP]), the n-ary (n ≥ 3) near-projections
([Cs1]) as well as the primality theorem of Foster ([F]) this way.

4. Diagrammatic schemes

Motivated by Gumm’s Shifting Lemma ([Gu1]), which asserts that congruence
modular varieties satisfy a nice rectangular congruence scheme, Chajda ([ChH1],
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Subdivision 4.2) investigated a triangular scheme, which is a consequence of con-
gruence distributivity. Congruence distributive varieties satisfy this scheme not
only for arbitrary three congruences, but also for one tolerance (i.e., compatible,
reflexive and symmetric binary relation) and two congruences; i.e., the analogue of
Gumm’s Shifting Principle is valid.

Definition 4.3. An algebra A = (A, F ) satisfies the Triangular Principle
if for each tolerance Φ and congruences β, γ the implication depicted in Figure 5
holds.

Φ ∩ β ⊆ γ
=⇒

Figure 1

THEOREM 4.3 ([ChH1]). In congruence distributive varieties (i. e. in the

algebras of such varieties) the Triangular Principle holds.

While the triangular scheme is not known to characterize congruence distribu-
tivity, an appropriate generalization called trapezoid scheme does ([CCH2], Subdi-
vision 4.3).

We introduce a new condition under the name Trapezoid Lemma as follows: for
any α, β, γ ∈ Con A (where A = (A, F ) is an algebra) if α∩β ⊆ γ, (x, u), (y, v) ∈ α,
(x, y) ∈ β and (u, v) ∈ γ, then (x, y) ∈ γ. The Trapezoid Lemma is depicted in
Figure 7.

The corresponding condition called Trapezoid Principle is defined similarly,
the only difference is that α should be replaced by Φ, which stands for an arbitrary
tolerance of A.

The following Proposition 4.2 presents some connections among our conditions
in case of a single algebra; for varieties of algebras in Theorem 4.4 we state more.
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α ∩ β ⊆ γ
=⇒

Figure 2

Proposition 4.2 [(CCH1)]. Let A be an algebra.

(1) If A satisfies the Trapezoid Lemma resp. the Trapezoid Principle, then it

satisfies the Rectangular Lemma and the Triangular Lemma resp. the Rectangu-

lar Principle and the Triangular Principle. Moreover, each of the three principles

implies the corresponding lemma.

(2) If Con A is distributive, then A satisfies the Trapezoid Lemma (and there-

fore the other two lemmas as well).

(3) If A satisfies the Trapezoid Principle, then Con A is distributive.

(4) If A satisfies the Rectangular Principle, then Con A is modular (cf. [Gu2],

Lemma 4.2).

(5) If A is congruence permutable, then Con A is distributive if and only if A

satisfies the Triangular Lemma (cf. [CzH1], Cor. 2).

THEOREM 4.4 ([CCH1]). Let V be a variety of algebras. Then the following

five conditions are equivalent.

(a) V is congruence distributive;

(b) the Trapezoid Principle holds in V;

(c) the Trapezoid Lemma holds in V;

(d) the Rectangular Lemma and the Triangular Lemma hold in V;

(e) there is a positive integer n and there are quaternary terms d0, d1, . . . , dn

such that the identities

(e1) d0(x, y, u, v) = x, dn(x, y, u, v) = y,

(e2) di(x, y, x, y) = di+1(x, y, x, y) for i even,

(e3) di(x, y, z, z) = di+1(x, y, z, z) for i odd, and

(e4) di(x, x, y, z) = x for all i

hold in V.
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These examples show that instead of identities in congruence lattices, diagram-
matic statements are reasonable to consider. This phenomenon can be extended to
lattice Horn sentences as well (congruence semidistributivity, ([ChH2], Subdivision
4.4).

5. Shifting lattice identities

Let

λ : p(x1, . . . , xn) ≤ q(x1, . . . , xn)

be a lattice identity. (Notice that by a lattice identity we always mean an inequality,
i.e. we use ≤ but never =.) If y is a variable, then let S(λ, y) denote the Horn
sentence

q(x1, . . . , xn) ≤ y =⇒ p(x1, . . . , xn) ≤ y.

If y /∈ {x1, . . . , xn}, then λ is clearly equivalent to S(λ, y). However, we are inter-
ested in the case when y ∈ {x1, . . . , xn}, say y = xi (1 ≤ i ≤ n). Then S(λ, xi) is a
consequence of λ. When S(λ, xi) happens to be equivalent to λ, then S(λ, xi) will
be called a shift of λ. If S(λ, xi) is equivalent to λ only within a lattice variety V,
then we say that S(λ, xi) is a shift of λ in V. In this chapter some known lattice
identities will be shown to have a shift while some others have no shift.

Following Huhn ([Hu1]) and ([Hu2]), a lattice L is said to be n-distributive
(n ≥ 1) if the identity

distn : β

n∑
i=0

αi ≤
n∑

j=0

⎛
⎝β

∑
i∈{0,...,n}\{j}

αi

⎞
⎠

holds in L.

THEOREM 5.1 ([CCH2]). S(distn, α0) is a shift of distn in the variety of mod-

ular lattices. However, if n ≥ 2, then distn has no shift (in the variety of all

lattices).

The next group of lattice identities we consider is taken from McKenzie [Mc].
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These identities are as follows:

ζ0 : (x + y(z + xy))(z + xy) ≤ y + (x + z(x + y))(y + z),

ζ1 : x(xy + z(w + xyz)) ≤ xy + (z + w)(x + w(x + z)),

ζ2 : (x + y)(x + z) ≤ x + (x + y)(x + z)(y + z),

ζ3 : (x + yz)(z + xy) ≤ z(x + yz) + x(z + xy), and

ζ4 : y(z + y(x + yz)) ≤ x + (x + y)(z + x(y + z)).

Notice that ζ3 is Gedeonová’s p-modularity, ([Ged1]).

THEOREM 5.2 ([CCH2]). S(ζ0, y), S(ζ1, y), S(ζ2, x), and S(ζ3, y) are shifts of

ζ0, ζ1, ζ2 and ζ3, respectively. On the other hand, ζ4 has no shift.

The Fano identity (cf. e.g. Herrmann and Huhn ([HH])) is the following:

χ2 : (x + y)(z + t) ≤ (x + z)(y + t) + (x + t)(y + z)

THEOREM 5.3 ([CCH2]). The Fano identity has no shift — not even in the

variety of modular lattices.

6. Tolerances and tolerance lattices

Let dist(x, y, z) resp. mod(x, y, z) denote the distributive law

x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z)

resp. the modular law

x ∧ (y ∨ (x ∧ z)) ≤ (x ∧ y) ∨ (x ∧ z).

For an algebra A, the set of tolerances and the lattice of congruences of A will be
denoted by Tol A and Con A, respectively. We say that dist(tol,tol,tol) holds in
A if Γ ∧ (Φ ∨ Ψ) ⊆ (Γ ∧ Φ) ∨ (Γ ∧ Ψ) is valid for any Γ, Φ, Ψ ∈ Tol A, where the
meet resp. the join is the intersection resp. the transitive closure of the union. The
meaning of mod(tol,tol,tol) is analogous. We should emphasize here that Φ ∨ Ψ is
not the join in Tol A, the lattice of tolerance relations of A. With the help of
Jónsson terms ([J1]) we proved the next theorem:
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THEOREM 6.1 ([CzH2]). If V is a congruence distributive resp. congruence

modular variety, then dist(tol,tol,tol) resp. mod(tol,tol,tol) holds in all algebras of

V.

Two important consequences are formulated in Corollary 6.1 and Proposition
6.1.

Corollary 6.1 (Gumm [Gu1]). If V is a congruence modular variety, then it

satisfies Gumm’s Shifting Principle, i.e. for any A∈ V, α, γ ∈ Con A and Φ ∈ Tol A

if (x, y), (u, v) ∈ α, (x, u), (y, v) ∈ Φ, (u, v) ∈ γ and α ∩ Φ ⊆ γ, then (x, y) ∈ γ.

Denoting the transitive closure by ∗, the following proposition is an essential
step towards the Maltsev conditions in Chapter 7:

Proposition 6.1 ([CzH2]). If mod(tol,tol,tol) or dist(tol,tol,tol) holds in an

algebra A, then Γ ∩ Φ∗ ⊆ (Γ ∩ Φ)∗ for any Γ, Φ ∈ Tol A.

A lattice L with 0 is called 0-modular, cf. Stern ([St]), if there is no N5 sublattice
of L including 0. The lattice L with 0 satisfies the general disjointness property (GD)
if a ∧ b = 0 and (a ∨ b) ∧ c = 0 imply a ∧ (b ∨ c) = 0. If for each a ∈ L the set
{x ∈ L : a ∧ x = 0} has greatest element, then L is called a pseudocomplemented
lattice.

The following Theorem 6.2 and 6.3 are the main results about tolerance lattices
in congruence modular varieties.

THEOREM 6.2 ([CHR]). A be an algebra in a congruence modular va-

riety V. Then the following statements hold:

(i) The map h: Tol A → Con A, Φ �→ Φ∗, is a surjective lattice homomorphism

and Tol A is a 0-1 modular lattice having the (GD) property.

(ii) Tol A is pseudocomplemented if and only if Con A is pseudocomple-

mented.

THEOREM 6.3 ([CHR]). Let A be an algebra. If A has a majority term, then:

(i) Tol A is a 0-modular pseudocomplemented lattice.

(ii) The tolerances Γ, Φ are complements of each other in Tol A if and only if

they form a factor congruence pair of A.

7. Maltsev conditions for congruence lattice identities in modular vari-

eties
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It is a 34 year old problem if all congruence lattice identities are equivalent
to Maltsev conditions. In other words, we say that a lattice identity λ can be
characterized by a Maltsev condition if there exists a Maltsev condition M such
that, for any variety V, λ holds in congruence lattices of all algebras in V if and
only if M holds in V; and the problem is if all lattice identities can be characterized
this way. This problem was raised first in Grätzer ([Gr1]), where the notion of
a Maltsev condition was defined. A strong Maltsev condition for varieties is a
condition of the form ”there exist terms h0, . . . , hk satisfying a set Σ of identities”
where k is fixed and the form of Σ is independent of the type of algebras considered.
By a Maltsev condition we mean a condition of the form ”there exists a natural
number n such that Pn holds” where the Pn are strong Maltsev conditions and Pn

implies Pn+1 for every n. The condition ”Pn implies Pn+1” is usually expressed by
saying that a Maltsev condition must be weakening in its parameter. (For a more
precise definition of Maltsev conditions cf. [T].) The problem was repeatedly asked
by several authors, including Taylor ([T]), Jónsson ([J2]) and Freese and McKenzie
([FM]).

Certain lattice identities have known characterizations by Maltsev conditions.
The first two results of this kind are Jónsson’s characterization of (congruence)
distributivity by the existence of Jónsson terms, cf. Jónsson ([J1]), and Day’s char-
acterization of (congruence) modularity by the existence of Day terms, cf. Day
([D1]). Since Day’s result will be needed in the sequel, we formulate it now. For
n ≥ 2 let (Dn) denote the strong Maltsev condition ”there are quaternary terms
m0, . . . , mn satisfying the identities

m0(x, y, z, u) = x, mn(x, y, z, u) = u,

mi(x, y, y, x) = x for i = 0, 1, . . . , n,

mi(x, x, y, y) = mi+1(x, x, y, y) for i = 0, 1, . . . , n, i even,

mi(x, y, y, z) = mi+1(x, y, y, z) for i = 0, 1, . . . , n, i odd”.

Now Day’s celebrated result says that a variety V is congruence modular iff the
Maltsev condition ”(∃n)(Dn)” holds in V.

Jónsson terms and Day terms were soon followed by some similar character-
izations for other lattice identities, given for example by Gedeonová ([Ge2]) and
Mederly ([Me]), but Nation ([N]) and Day ([Da2]) showed that these Maltsev con-
ditions are equivalent to the existence of Day terms or Jónsson terms; the reader is
referred to Jónsson ([Jo2]) and Freese and McKenzie ([FM]) for more details.
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The next milestone is Chapter XIII in Freese and McKenzie’s book ([FM]). Let
us call a lattice identity λ in n2 variables a frame identity if λ implies modularity
and λ holds in a modular lattice iff it holds for the elements of every (von Neumann)
n-frame of the lattice. Freese and McKenzie showed that frame identities can be
characterized by Maltsev conditions. Although that time there was a hope that
their method combined with [HC] gives a Maltsev condition for each λ that implies
modularity, cf. [FM], Pálfy and Szabó ([PSz]) destroyed this expectation.

The goal of the present chapter is to prove that each lattice identity implying
modularity is equivalent to a Maltsev condition. Moreover, this Maltsev condition is
very easy to construct. A lattice identity λ is said to imply modularity in congruence
varieties, in notation λ |=c mod if for any variety V if all the congruence lattices
Con A, A ∈ V, satisfy λ, then all these lattices are modular.

Given a lattice term p and k ≥ 2, we define pk via induction as follows. If p is
a variable, then let pk = p. If p = r ∧ s, then let pk = rk ∩ sk. Finally, if p = r ∨ s,
then let pk = rk ◦ sk ◦ rk ◦ sk ◦ . . . with k factors on the right. When congruences
or, more generally, reflexive compatible relations are substituted for the variables
of pk, then the operations ∩ and ◦ will be interpreted as intersection and relational
product, respectively.

Our first result about Maltsev conditions is Theorem 7.1.

THEOREM 7.1 ([CzH3]). Let λ : p ≤ q be a lattice identity such that λ |=c

modularity. Then for any variety V the following two conditions are equivalent.

(a) For all A ∈V, λ holds in the congruence lattice of A.

(b) V satisfies the Maltsev condition ”there is an n ≥ 2 such that M(p3 ⊆ qn)
and (Dn) hold”.

An algebra A is said to satisfy the tolerance intersection property , TIP for
short, if for any two tolerances (i.e. reflexive symmetric compatible relations) Γ
and Φ of A we have

Γ∗ ∩ Φ∗ = (Γ ∩ Φ)∗

where ∗ stands for transitive closure. In the proof of Theorem 7.1 we already proved
the following statement:

THEOREM 7.2 ([CHL]). Every algebra in a congruence modular variety satis-

fies TIP.

Next we improve Theorem 7.1 by giving the simplest (and in this sense hope-
fully the best) Maltsev condition associated with λ when λ |=c modularity.
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For a term p = p(x1, . . . , xk) in the binary operations ∩,∨, ◦, in short for a
{∩,∨, ◦}-term, and for n ≥ 2 we define two kinds of derived {∩, ◦}-terms, pn and
p2,2 via induction as follows. If p is a variable, then let pn = p2,2 = p. If p = r ∩ s,
then let pn = rn ∩ sn and p2,2 = r2,2 ∩ s2,2. Similarly, if p = r ◦ s, then let
pn = rn ◦ sn and p2,2 = (r2,2 ◦ s2,2) ∩ (s2,2 ◦ r2,2). Finally, if p = r ∨ s, then let
pn = rn◦sn◦rn◦sn◦· · · with n factors on the right and p2,2 = (r2,2◦s2,2)∩(s2,2◦r2,2).

THEOREM 7.4 ([CHL]). Let p ⊆ q be a congruence inclusion formula with

q being ◦-free. (I.e. p is a {∩,∨, ◦}-term and q is a lattice term.) Then for any

congruence modular variety V the following conditions are equivalent.

(i) p ⊆ q holds for congruences of V,

(ii) p2 ⊆ q holds for congruences of V,

(iii) p2,2 ⊆ q holds for congruences of V,

(iv) the Maltsev condition

(∃n ≥ 2)
(
M(p2 ⊆ q2 ◦ q2 ◦ · · · ◦ q2)

)

(where q2 ◦ q2 ◦ · · · ◦ q2 denotes a product of n factors) holds in V.

As a corollary, we obtain the desired improvement of Theorem 7.1:

Corollary 7.2 ([CHL]). Let λ : p ≤ q be a lattice identity such that λ |=c

modularity. Then for any variety V the following three conditions are equivalent.

(a) For all A ∈V, λ holds in the congruence lattice of A.

(b’) V satisfies the Maltsev condition ”there is an n ≥ 2 such that M(p2 ⊆ qn)
and (Dn) hold”.

(c) V satisfies the Maltsev condition ”there is an n ≥ 2 such that M(p2 ⊆
q2 ◦ q2 ◦ · · · ◦ q2) (with n factors) and and (Dn) hold”.
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