A triangular scheme for congruence distributivity

I. Chajda and E. K. Horváth*

Dedicated to Professor Béla Csákány on his seventieth birthday

Abstract. We introduce a triangular scheme for congruences which is satisfied in any congruence distributive algebra \mathcal{A} . A condition called Weak Triangular Principle is studied, which is equivalent to the distributivity of $\mathbf{Con} \, \mathcal{A}$ for an arbitrary algebra \mathcal{A} . It follows that if \mathcal{A} is congruence permutable then the Triangular Scheme is equivalent to the distributivity of $\mathbf{Con} \, \mathcal{A}$. We define the Triangular Principle as well, which is shown to hold in congruence distributive varieties.

MS Classification: 08A30, 08B10

Keywords: congruence distributivity, congruence permutability, Shifting Lemma, Triangular Scheme, Triangular Principle.

H.-P. Gumm [1] defined a certain rectangular scheme for relations of an algebra \mathcal{A} . He shows that if \mathbf{V} is a congruence modular variety then this scheme is satisfied by suitable relations of members of \mathbf{V} (the so called *Shifting Lemma* and *Shifting Principle*) and, conversely, if the scheme is satisfied by some congruences of an appropriate free algebra in \mathbf{V} then \mathbf{V} is congruence modular. We will show that a similar reasoning can be useful in the case of congruence distributivity.

Definition 1. An algebra $\mathcal{A} = (A, F)$ satisfies the *Triangular Scheme* if for any $x, y, z \in \mathcal{A}$ and every $\alpha, \beta, \gamma \in \mathbf{Con} \, \mathcal{A}$ with $\alpha \cap \beta \subseteq \gamma$ the following implication holds:

if
$$\langle x, y \rangle \in \gamma$$
, $\langle x, z \rangle \in \alpha$, $\langle z, y \rangle \in \beta$ then $\langle y, z \rangle \in \gamma$.

^{*} This research was partially supported by the project J98:MSM153100011 of the Czech Government and by the NFSR of Hungary (OTKA), grant no. T034137 and T026243.

Figure 1

Remark. The Triangular Scheme can be visualized as shown in Figure 1.

Triangular Lemma. Every congruence distributive algebra satisfies the Triangular Scheme.

P r o o f. Suppose that $\mathcal{A} = (A, F)$ is congruence distributive, $x, y, z \in \mathcal{A}$, $\alpha, \beta, \gamma \in \mathbf{Con} \, \mathcal{A}$ with $\alpha \cap \beta \subseteq \gamma$ and $\langle x, y \rangle \in \gamma$, $\langle x, z \rangle \in \alpha$, $\langle z, y \rangle \in \beta$. Then $\langle z, y \rangle \in \beta \cap (\alpha \circ \gamma) \subseteq \beta \cap (\alpha \vee \gamma)$ and, due to congruence distributivity, also $\langle z, y \rangle \in (\beta \cap \alpha) \vee (\beta \cap \gamma) \subseteq \gamma \vee (\beta \cap \gamma) = \gamma$.

For $\mathcal A$ congruence permutable the converse assertion also holds, cf. Corollary 2 later.

Now let us introduce the following concept:

Definition 2. Given $n \in \mathbb{N}$ and an algebra $\mathcal{A} = (A, F)$, we say that \mathcal{A} satisfies the Weak Triangular Principle for n if for any $x, y, z \in \mathcal{A}$ and every $\alpha, \beta, \gamma \in \mathbf{Con} \mathcal{A}$ with $\alpha \cap \beta \subseteq \gamma$ and $\Lambda_n = \gamma \circ \alpha \circ \gamma \circ \ldots$ (n factors) the following implication holds:

if
$$\langle x, z \rangle \in \alpha$$
, $\langle z, y \rangle \in \beta$, $\langle x, y \rangle \in \Lambda_n$ then $\langle z, y \rangle \in \gamma$.

If \mathcal{A} satisfies the Weak Triangular Principle for all $n \in \mathbb{N}$ then we simply say that \mathcal{A} satisfies the Weak Triangular Principle.

Remark. The Weak Triangular Principle can be visualized as shown in Figure 2.

Theorem 1. An algebra A satisfies the Weak Triangular Principle if and only if $\operatorname{Con} A$ is distributive.

Figure 2

Proof. (a) Let **Con** \mathcal{A} be distributive. Let $\alpha, \beta, \gamma \in \mathbf{Con} \mathcal{A}$ and $\alpha \cap \beta \subseteq \gamma$. Suppose $\langle x, z \rangle \in \alpha, \langle y, z \rangle \in \beta$ and $\langle x, y \rangle \in \Lambda_n$ for some $n \in N$. Then $\langle z, y \rangle \in \beta \cap (\alpha \circ \Lambda_n) \subseteq \beta \cap (\alpha \vee \gamma) = (\beta \cap \alpha) \vee (\beta \cap \gamma) \subseteq \gamma \vee (\beta \cap \gamma) = \gamma$, thus \mathcal{A} satisfies the Weak Triangular Principle.

(b) Suppose now that \mathcal{A} satisfies the Weak Triangular Principle but $\mathbf{Con} \mathcal{A}$ contains a sublattice isomorphic to M_3 or N_5 , i.e. there exist distinct $\alpha, \beta, \gamma \in \mathbf{Con} \mathcal{A}$ such that the situation of Figure 3 holds.

Figure 3

In both the cases, we have $\alpha \cap \beta \subseteq \gamma$. Let $\langle z, y \rangle \in \beta = \beta \cap (\alpha \vee \gamma)$. Then there exists $n \in \mathbb{N}$, such that $\langle z, y \rangle \in \beta \cap (\alpha \circ \Lambda_n)$ for $\Lambda_n = \gamma \circ \alpha \circ \gamma \circ \ldots$ (*n* factors) and, by the Weak Triangular Principle, we obtain $\langle z, y \rangle \in \beta \cap \gamma$. I.e., $\beta \subseteq \beta \cap \gamma$, a contradiction.

Remark. The distributivity of $\operatorname{Con} A$ is (by Theorem 1) equivalent to the implication depicted in Figure 4.

In the case of a k-permutable algebra \mathcal{A} we need not require the satisfaction of the Weak Triangular Principle for each $n \in \mathbb{N}$, for Theorem 2 yields almost

Figure 4

immediately the following

Corollary 1. Let A be a k-permutable algebra. Then $\operatorname{Con} A$ is distributive if and only if A satisfies the Weak Triangular Principle for n=k-1.

When k = 2, Corollary 1 yields the following assertion.

Corollary 2. Let A be a congruence permutable algebra. Then A is congruence distributive if and only if A satisfies the Triangular Scheme.

One can ask for an example of an algebra \mathcal{A} satisfying the Triangular Scheme but not the Weak Triangular Principle, i.e. whose congruence lattice is not distributive. A suitable one is given below.

Figure 5

Example. Let $A = \{a, b, c, d\}$ depicted as a rectangle in Figure 5. Let f denote the projection to the lower side of the rectangle, i.e., $f: A \to A$, $a \mapsto a$, $b \mapsto b$, $c \mapsto b$ and $d \mapsto a$. Similarly, let g denote the projection to the upper side

of the rectangle, i.e., $g:A\to A$, $a\mapsto d$, $b\mapsto c$, $c\mapsto c$ and $d\mapsto d$. We claim that the algebra $\mathcal{A}=(A,\{f,g\})$ satisfies the Triangular Scheme but not the Weak Triangular Principle.

Proof. The crucial step in the proof is the following observation:

each congruence collapsing at least one diagonal of the rectangle (i.e., $\{a,c\}$ or $\{b,d\}$) equals $\iota = A \times A$.

Now let ε , η , and ν be the equivalences on A with the respective partitions $\{\{a,b\},\{c,d\}\},\{\{b,c\},\{a\},\{d\}\}\}$ and $\{\{a,d\},\{b\},\{c\}\}\}$, cf. Figure 5. It is easy to see that $\iota=A\times A$, ω , ε , η and $\eta\vee\nu$ are congruences of $\mathcal A$ and they form a five-element nonmodular lattice. (In fact, the observation above implies easily that $\mathbf{Con}\,\mathcal A$ is the lattice depicted in Figure 6, but we do not need the full description of the congruence lattice.) Hence $\mathcal A$ is not congruence distributive and therefore the Weak Triangular Principle fails in virtue of Theorem 1.

Figure 6

Yet, the Triangular Scheme holds. This is evident if x, y, z from Figure 1 are not pairwise distinct. On the other hand, if $\{x, y, z\}$ is a three element subset of A then one side of the triangle of Figure 1 is a diagonal of the rectangle of Figure 5. Hence, still keeping the notations of Figure 1, our observation implies $\iota \in \{\alpha, \beta, \gamma\}$, which easily makes the Triangular Scheme valid.

Under the name *Shifting Principle H.-P.* Gumm [1] considers a condition in which not only congruences but tolerances also occur. Now the "congruence distributive counterpart" of this condition is introduced.

Definition 3. An algebra $\mathcal{A} = (A, F)$ satisfies the *Triangular Principle* if for each tolerance Φ and congruences β , γ the implication depicted in Figure 7 holds.

Figure 7

Theorem 2. In congruence distributive varieties (i. e. in the algebras of such varieties) the Triangular Principle holds.

P r o o f. Let **V** be a congruence distributive variety. Then we have Jónsson terms $t_0(x, y, z) \dots t_n(x, y, z)$ such that

$$t_0(x,y,z) = x, \quad t_n(x,y,z) = z,$$

$$t_i(x,y,x) = x \text{ for all i,}$$

$$t_i(x,x,y) = t_{i+1}(x,x,y) \text{ for } i \text{ even, and}$$

$$t_i(x,y,y) = t_{i+1}(x,y,y) \text{ for } i \text{ odd.}$$

Let $\beta, \gamma \in \mathbf{Con} \,\mathcal{A}$ and $\Phi \in \mathbf{Tol} \,\mathcal{A}, \, \mathcal{A} \in \mathbf{V}, \, a, b, c \in \mathcal{A}$, and suppose that $\Phi \cap \beta \subseteq \gamma$ and we have the situation according to Figure 8.

Figure 8

Consider the elements $d_i := t_i(a, b, c)$, i = 0, 1, ..., n. Now $d_0 = a$, $d_n = c$. If i is even, then $d_i = t_i(a, b, c)$ γ $t_i(a, a, c) = t_{i+1}(a, a, c)$ γ $t_{i+1}(a, b, c) = d_{i+1}$. Consequently, d_i γ d_{i+1} for i even. If i is odd, then we have to work a little bit more: first of all $d_i = t_i(a, b, c)$ Φ $t_i(a, c, c)$, and on the other hand, since $d_i = t_i(a, b, c)$ β

 $t_i(a,b,a) = a = t_i(a,a,a) \ \beta \ t_i(a,c,c)$, we have $(d_i,t_i(a,c,c)) \in \Phi \cap \beta \subseteq \gamma$. If we put i+1 instead of i, then in the same way we conclude $(d_{i+1},t_{i+1}(a,c,c)) \in \Phi \cap \beta \subseteq \gamma$. But in this case $d_i \ \gamma \ t_i(a,c,c) = t_{i+1}(a,c,c) = \gamma \ d_{i+1}$ and, by the transitivity of γ , we get that $d_i \ \gamma \ d_{i+1}$ holds. Hence, for all $i, d_i \ \gamma \ d_{i+1}$, so $(a,c) = (d_0,d_n) \in \gamma$, i. e. the Triangular Principle holds.

References

- [1.] H.-P. Gumm: Geometrical methods in congruence modular algebras, Memoirs of the Amer. Math. Soc. 286, 1983.
- [2] B. Jónsson: Algebras whose congruence lattices are distributive, Math. Scand. **21** (1967), 110-121.

Author's addresses:

Ivan Chajda
Department of Algebra and Geometry
Palacký University Olomouc
Tomkova 40
779 00 Olomouc
Czech Republic

e-mail: chajda@risc.upol.cz

Eszter K. Horváth Department of Algebra and Number Theory Aradi vértanúk Tere 1. 6720 Szeged Hungary

e-mail: horeszt@math.u-szeged.hu