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Abstract. We introduce a triangular scheme for congruences
which is satisfied in any congruence distributive algebra A. A
condition called Weak Triangular Principle is studied, which
is equivalent to the distributivity of Con A for an arbitrary
algebra A. It follows that if A is congruence permutable then the
Triangular Scheme is equivalent to the distributivity of Con A.
We define the Triangular Principle as well, which is shown to

hold in congruence distributive varieties.
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H.-P. Gumm [1] defined a certain rectangular scheme for relations of an algebra
A. He shows that if V is a congruence modular variety then this scheme is satisfied
by suitable relations of members of V (the so called Shifting Lemma and Shifting
Principle) and, conversely, if the scheme is satisfied by some congruences of an
appropriate free algebra in V then V is congruence modular. We will show that a

similar reasoning can be useful in the case of congruence distributivity.

Definition 1. An algebra A = (A, F') satisfies the Triangular Scheme if for
any x,v, z € A and every a, 3,7 € Con A with an 3 C v the following implication
holds:

if (z,4) €7, (x,2) € @, (z,y) € B then (y, 2) € 7.
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Figure 1

Remark. The Triangular Scheme can be visualized as shown in Figure 1.

Triangular Lemma. Fvery congruence distributive algebra satisfies the Tri-

angular Scheme.

P r o o f. Suppose that A= (A, F) is congruence distributive, z,y,z €
A, a,8,7 € Con A with anN g C v and (z,y) € v, (z,2) € a, (2,y) € 8. Then
(z,y) € BN (aoy) C BN (aVy) and, due to congruence distributivity, also

(zy) € (BNa)V(BNY) CyV(BNy)=17. o

For A congruence permutable the converse assertion also holds, cf. Corollary
2 later.

Now let us introduce the following concept:

Definition 2. Given n € N and an algebra A = (A, F'), we say that A satisfies
the Weak Triangular Principle for n if for any x,y, z € A and every «, 3,7 € Con A
withanpg Cyand A, =yoao~vyo...(n factors) the following implication holds:

if (z,2) € a, (2,y) € B, (z,y) € A, then (z,y) € ~.

If A satisfies the Weak Triangular Principle for all n € N then we simply say that
A satisfies the Weak Triangular Principle.

Remark. The Weak Triangular Principle can be visualized as shown in Figure

Theorem 1. An algebra A satisfies the Weak Triangular Principle if and only
if Con A is distributive.



Figure 2

P roof. (a)Let ConA be distributive. Let «, 3,7 € Con A and anNf C ~.
Suppose (x,2) € a,(y,z) € § and (z,y) € A, for some n € N. Then (z,y) €
BN(aoAy) CAN(aVy)=(BNa)V(BNy) CyV(BN7y)=r, thus A satisfies
the Weak Triangular Principle.

(b) Suppose now that A satisfies the Weak Triangular Principle but Con A
contains a sublattice isomorphic to M3 or Ns, i.e. there exist distinct o, 3,7 €
Con A such that the situation of Figure 3 holds.
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In both the cases, we have aN g C 7. Let (z,y) € =GN (aV~y). Then there
exists n € N, such that (z,y) € BN (aoA,) for A, = yoao~vyo... (n factors)
and, by the Weak Triangular Principle, we obtain (z,y) € 5N~. Le.,, 5 C BN~, a

contradiction. o
Remark. The distributivity of Con A is (by Theorem 1) equivalent to the

implication depicted in Figure 4.

In the case of a k-permutable algebra A we need not require the satisfaction

of the Weak Triangular Principle for each n € N, for Theorem 2 yields almost
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Figure 4

immediately the following

Corollary 1. Let A be a k-permutable algebra. Then Con A is distributive
if and only if A satisfies the Weak Triangular Principle for n =k — 1.

When k = 2, Corollary 1 yields the following assertion.

Corollary 2. Let A be a congruence permutable algebra. Then A is congruence

distributive if and only if A satisfies the Triangular Scheme.

One can ask for an example of an algebra A satisfying the Triangular Scheme
but not the Weak Triangular Principle, i.e. whose congruence lattice is not dis-

tributive. A suitable one is given below.
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Example. Let A = {a,b,c,d} depicted as a rectangle in Figure 5. Let f
denote the projection to the lower side of the rectangle, ie., f : A — A, a — a,

b+— b, c— band d+— a. Similarly, let g denote the projection to the upper side

4



of the rectangle, ie., g : A — A, a+— d, b+— ¢, c— cand d — d. We claim
that the algebra A = (A, {f, g}) satisfies the Triangular Scheme but not the Weak

Triangular Principle.

P r o o f. The crucial step in the proof is the following observation:

each congruence collapsing at least
one diagonal of the rectangle (i.e.,
{a,c} or {b,d}) equals . = A x A.

Now let e, 7, and v be the equivalences on A with the respective partitions
{{a,b},{c,d}}, {{b,c},{a},{d}} and {{a,d}, {b},{c}}, cf. Figure 5. It is easy to
see that « = A X A, w, ¢, n and 1 V v are congruences of A and they form a
five-element nonmodular lattice. (In fact, the observation above implies easily that
Con A is the lattice depicted in Figure 6, but we do not need the full description of
the congruence lattice.) Hence A is not congruence distributive and therefore the

Weak Triangular Principle fails in virtue of Theorem 1.
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Figure 6

Yet, the Triangular Scheme holds. This is evident if z,y, z from Figure 1 are
not pairwise distinct. On the other hand, if {z,y, 2z} is a three element subset of A
then one side of the triangle of Figure 1 is a diagonal of the rectangle of Figure 5.
Hence, still keeping the notations of Figure 1, our observation implies ¢ € {a, 3,7},

which easily makes the Triangular Scheme valid. o

Under the name Shifting Principle H.-P. Gumm [1] considers a condition in
which not only congruences but tolerances also occur. Now the ”congruence dis-

tributive counterpart” of this condition is introduced.

Definition 3. An algebra A = (A, F) satisfies the Triangular Principle if for

each tolerance ® and congruences (3, v the implication depicted in Figure 7 holds.
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Theorem 2. In congruence distributive varieties (i. e. in the algebras of such

varieties) the Triangular Principle holds.

P r oo f. Let V be a congruence distributive variety. Then we have Jénsson
terms to(x,y, 2) ...t (z,y, z) such that
to(z,y,2) =z, tp(x,y,2) =z
ti(x,y,x) = x for all i,
ti(x,z,y) = tir1(x, z,y) for i even, and

ti(z,y,y) = tiy1(,y,y) for i odd.

Let 8,7 € Con A and ® € Tol A, A € V, a,b,c € A, and suppose that
® N B C v and we have the situation according to Figure 8.

Figure 8

Consider the elements d; := t;(a,b,c), i = 0,1,...,n. Now dy = a, d, = c.
If i is even, then d; = t;(a,b,¢c) v ti(a,a,c) = tiz1(a,a,¢) v tizq1(a,b,c) = diy.
Consequently, d; v d;11 for i even. If i is odd, then we have to work a little bit more:

first of all d; = t;(a,b,c) ® t;(a,c,c), and on the other hand, since d; = t;(a, b, c) [
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ti(a,b,a) = a=t;(a,a,a) B t;(a,c,c), wehave (d;, t;(a,c,c)) € DNG C ~. If we put
i+ 1 instead of 7, then in the same way we conclude (d;;1,%;+1(a,c,c)) € NG C .
But in this case d; v t;(a,c,c) = tiy1(a,c,c) =7 d;41 and, by the transitivity of
v, we get that d; v d;11 holds. Hence, for all i, d; v d;y1, so (a,c) = (do,dy) € 7,

i. e. the Triangular Principle holds. o
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