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YET TWO ADDITIONAL LARGE NUMBERS OF
SUBUNIVERSES OF FINITE LATTICES

DELBRIN AHMED AND ESZTER K. HORVÁTH

Abstract. By a subuniverse, we mean a sublattice or the empty-
set. We prove that the fourth largest number of subuniverses of an
n-element lattice is 43 ·2n−6 for n ≥ 6, and the fifth largest number
of subuniverses of an n-element lattice is 85 · 2n−7 for n ≥ 7. Also,
we describe the n-element lattices with exactly 43 · 2n−6 (n ≥ 6)
and 85 · 2n−7 (n ≥ 7) subuniverses.

1. Introduction and our result

These years witness an intensive research of finite algebras (so far:
lattices and semilattices) that have many subalgebras or congruences;
see Czédli [1], [2], [3], [4], and Czédli and the second author [5]. This
work is a natural continuation of [5], where the first, second and third
largest numbers of subuniverses have been determined. All lattices
occurring in this paper will be assumed to be finite. For a lattice L,
Sub(L) will denote its sublattice lattice; Sub(L) consists of all subuni-
verses of L. A subset X of L is in Sub(L) iff X is closed with respect
to join and meet. Note that ∅ ∈ Sub(L); moreover for X ∈ Sub(L), X
is a sublattice of L if and only if X is nonempty.

Following [5], for a natural number n ∈ N+ := {1, 2, 3, . . . }, let

NS(n) := {| Sub(L)| : L is a lattice of size |L| = n}.
For further notions and notations see [3] and [5]. For the lattice N6,
see Figure 1. Our main result is the following

Theorem 1.1. The following assertions hold.

(i) The fourth largest number in NS(n) is 43 · 2n−6 for n ≥ 6.
Furthermore, for n ≥ 6, an n-element lattice L has exactly
43 · 2n−6 subuniverses if and only if L ∼= C0 +gluN6 +gluC1,
where C0 and C1 are chains.

(ii) The fifth largest number in NS(n) is 85·2n−7 for n ≥ 7. Further-
more, for n ≥ 7, an n-element lattice L has exactly 85·2n−7 sub-
universes if and only if L ∼= C0 +glu B4 +glu B4 +glu C1, where
C0 and C1 are chains.
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For basic lattice theory see e.g. Grätzer [6]. We recall some notions
and tools from [5] and [3]. Let us call an element u ∈ L isolated if u is
doubly irreducible and L = ↓u ∪ ↑u. In other words, if u ∈ L \ {0, 1}
has a unique lower cover and a unique upper cover, and, in addition,
x ‖ u holds for no x ∈ L. An interval [u, v] will be called an isolated
edge if it is a prime interval, that is, u ≺ v, and L = ↓u∪↑v. The next
lemma is from [5], and we will use it very often in this paper.

Lemma 1.2. [5] If K is a sublattice and H is a subset of a finite lattice
L, then the following three assertions hold.

(i) With the notation t := |{H ∩ S : S ∈ Sub(L)}|, we have that
| Sub(L)| ≤ t · 2|L|−|H|.

(ii) | Sub(L)| ≤ | Sub(K)| · 2|L|−|K|.
(iii) Assume, in addition, that K has neither an isolated element,

nor an isolated edge. Then | Sub(L)| = | Sub(K)|·2|L|−|K| if and
only if L is (isomorphic to) C0 +glu K +glu C1 for some chains
C0 and C1.

Following [3], let F be a set of binary operation symbols. By a
binary partial algebra A of type F we mean a structure A = (A;FA)
such that A is a nonempty set, FA = {fA : f ∈ F}, and for each f ∈ F ,
fA is a map from a subset Dom(fA) of A2 to A. A subuniverse of A
is a subset X of A such that X is closed with respect to all partial
operations, that is, whenever x, y ∈ X, f ∈ F and (x, y) ∈ Dom(fA),
then fA(x, y) ∈ X. The set of subuniverses of A will be denoted by
Sub(A). Let S = (S;∨S,∧S) be a partial lattice ; the reader may want
to see Grätzer [6] for more about (weak) partial lattices; however, we
use this term here to mean that S is a partial algebra with two binary
operations. A subuniverse of S is a subset Y of S such that whenever
a, b ∈ Y and a ∨S b is defined in S, then a ∨S b ∈ Y, and the same is
true for ∧S. We say that the partial lattice S is a partial sublattice of
the lattice L = (L;∨L,∧L), if S is a subposet of L and whenever a ‖ b
for a, b ∈ S and their join a ∨S b exists, then a ∨S b = a ∨L b, and the
same is true for ∧S. Without any danger of confusion, from now on we
use the notation L for a lattice (and S for a partial lattice) again.

In order to give an example for a partial lattice, which will be used
later, we define H1 as follows; see also Figure 2.

For x ‖ y in Figure 2, (x, y) ∈ Dom(∧) if
and only if {x, y} ⊆ {o, i, a, b, c} and (x, y) ∈
Dom(∨) if and only if {x, y} ⊆ {o, i, a, b, c}
or {x, y} = {d, i}; whenever x ∧ y or x ∨ y is
defined, then it is defined by Figure 2.

 (1.1)

We need a special case of Lemma 2.3 from [3]; for the convenience of
the reader, we formulate and prove the needed special case of it here:
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Lemma 1.3. If |L| = n for the lattice L and S is a partial sublattice
of L with |S| = k and with | Sub(S)| = m, then | Sub(L)| ≤ m · 2n−k.

Proof. First, we show that any subuniverse of L is an extension of a
subuniverse of S. Let X ∈ Sub(L), and let the restriction of X to S be
Y := X∩S. If a, b ∈ Y and a∨b is defined in S, then a∨S b = a∨Lb ∈ X
because a, b ∈ Y ⊆ X and X is closed under ∨L. However a∨S b ∈ S, so
a∨S b ∈ S ∩X = Y. We obtained that Y is closed under ∨S. Similarly,
Y is closed under ∧S. So, Y is a subuniverse of S, and X is an extension
of Y. Clearly, any Y ∈ Sub(S) has 2n−k extensions for a subset of L,
and the number of subuniverses cannot be more than this. Since we
have m choices for Y, we obtain | Sub(L)| ≤ m · 2n−k. �

2. A preparatory lemma

Figure 1. B4, N5B4 and N6

Figure 2. N ′6, N7 and H1

Lemma 2.1. For the lattices and a partial lattice given in Figure 1,
Figure 2 and (1.1), the following assertions hold.

(i) | Sub(N6)| = 43 = 21.5 · 26−5,
(ii) | Sub(N5B4)| = 69 = 17.25 · 27−5,

(iii) | Sub(N ′6)| = 37 = 18.5 · 26−5.
(iv) | Sub(H1)| = 79 = 19.75 · 27−5.
(v) | Sub(N7)| = 83 = 20.75 · 27−5.
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Proof. The notation given by Figure 1 and Figure 2 will be used.
For (i), observe that

|{S ∈ Sub(N6) : d 6∈ S}| = 32, by (2.4) of [5],

|{S ∈ Sub(N6) : d ∈ S, {a, b, c} ∩ S = ∅}| = 4, and

|{S ∈ Sub(N6) : d ∈ S, {a, b, c} ∩ S 6= ∅}| = 7,

whereby | Sub(N6)| = 32 + 4 + 7 = 43 proves (i).
For (ii), observe that

|{S ∈ Sub(N5B4) : d 6∈ S}| = 46, by 2.1 (iii) and 2.2 (ii) of [5],

|{S ∈ Sub(N5B4) : d ∈ S, b 6∈ S}| = 20, and

|{S ∈ Sub(N5B4) : d ∈ S, b ∈ S}| = 3,

whereby | Sub(N5B4)| = 46 + 20 + 3 = 69 proves (ii).
For (iii), observe that

|{S ∈ Sub(N ′6) : c 6∈ S}| = 23, by 2.1 (iii) and 2.2 (ii) of [5],

|{S ∈ Sub(N ′6) : d ∈ S, {a, b} ∩ S 6= ∅}| = 6, and

|{S ∈ Sub(N ′6) : {a, b} ∩ S = ∅}| = 8,

whereby | Sub(N ′6)| = 23 + 6 + 8 = 37 proves (iii).
For (iv), notice that H1 is a partial lattice, but not a lattice, so

subuniverses are those subsets that are closed with respect to all partial
operations, see also [3]. Observe that

|{S ∈ Sub(H1) : d 6∈ S}| = 46, by 2.1 (iii) and 2.2 (ii) of [5],

|{S ∈ Sub(H1) : {d, v} ⊆ S}| = 23, and

the remaining subuniverses are the following: {b, d}, {o, b, d}, and all

the elements of P ({o, a, c}) with d,

whereby | Sub(H1)| = 46 + 23 + 2 + 8 = 79 proves (iv).
For (v), observe that

|{S ∈ Sub(N7) : d 6∈ S}| = 64, by (2.4) of [5],

|{S ∈ Sub(N7) : d ∈ S, {a, b, b′, c} ∩ S = ∅}| = 4, and

|{S ∈ Sub(N7) : d ∈ S, {a, b, b′, c} ∩ S 6= ∅}| = 15,

whereby | Sub(N7)| = 64 + 4 + 15 = 83 proves (v).

Remark 2.2. A computer program is available for counting subuni-
verses (and to prove the above Lemma) on the webpage of G. Czédli:
http://www.math.u-szeged.hu/˜czedli/

�
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3. The rest of the proof

A k-element antichain will be called a k-antichain, as in [5]. We also
need the following well-known facts from the folklore.

Lemma 3.1. For every join-semilattice S generated by {a, b, c}, there
is a unique surjective homomorphism ϕ from the free join-semilattice
Fjsl(ã, b̃, c̃), given in Figure 3, onto S such that ϕ(ã) = a, ϕ(b̃) = b,
and ϕ(c̃) = c.

Figure 3. Fjsl(ã, b̃, c̃) and Flat(ã, b̃, c̃)

Lemma 3.2 (Rival and Wille [7, Figure 2]). For every lattice K gen-
erated by {a, b, c} such that a < c, there is a unique surjective ho-

momorphism ϕ from the finitely presented lattice Flat(ã, b̃, c̃), given in

Figure 3, onto K such that ϕ(ã) = a, ϕ(b̃) = b, and ϕ(c̃) = c.

Proof of Theorem 1.1. We prove part (i); this argument will be less
detailed because of space considerations.

Let L be an n-element lattice. We obtain from from Lemma 1.2 (iii)
and from 2.1(i) that if

L ∼= C0 +glu N6 +glu C1 for finite chains C0 and C1, (3.1)

then | Sub(L)| = 21.5 · 2n−5. We know from [5] that the third largest
number in NS(n) is 23 · 2n−5. Hence, in order to complete the proof of
Theorem 1.1 (i), it suffices to exclude the existence of a lattice L such
that

|L| = n, 21.5 · 2n−5 ≤ | Sub(L)| < 23 · 2n−5,
but L is not of the form given in (3.1).

(3.2)

Suppose, for a contradiction, that L is a lattice satisfying (3.2). Then,
by Theorem 1.1 of [5] and Lemma 3.3 of [5],

L has at least two 2-antichains but it has no 3-antichain. (3.3)

We prove that

L cannot have two non-disjoint 2-antichains. (3.4)

Suppose to the contrary that {a, b} and {c, b} are two distinct 2-
antichains in L. Since there is no 3-antichain in L, we can assume that
a < c. With K := [{a, b, c}], let ϕ : Flat(ã, b̃, c̃) → K be the unique
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lattice homomorphism from Lemma 3.2, and let Θ be the kernel of ϕ.
We follow the notations of Figure 3.

First we investigate the case when Θ does not collapse e1 and at least
one of e4 or e6. By duality, we can assume that e4 is not collapsed. Since
e1 generates the monolith congruence, i. e. the smallest nontrivial
congruence of the N5 sublattice of Flat(ã, b̃, c̃), no other edge of the N5

sublattice is collapsed. Now, e4 is perspective to e5, e9 is perspective to
e8. Hence, N5B4 is a sublattice of L and we conclude that | Sub(L)| ≤
17.25 · 2n−5 by Lemma 1.2 (ii) and by Lemma 2.1 (ii).

So, if Θ does not collapse e1, then it collapses both e4 and e6. Since in
this case e1 also generates the monolith congruence of the N5 sublattice
of Flat(ã, b̃, c̃), no other edge of this N5 sublattice is collapsed. Hence
{a, b, c} generates a pentagon sublattice N5 of L. We know from [5] that
| Sub(N5)| = 23, and we also have assumed in (3.2) that | Sub(L)| <
23 · 2n−5. Thus, it follows from Lemma 1.2 (iii) that L cannot be of
form (3.2)

L ∼= C0 +glu N5 +glu C1 for finite chains C0 and C1. (3.5)

Let o and i stand for the least and the largest elements of the above-
mentioned N5 sublattice, respectively. By rewording (3.5), we can ex-
clude that

↓o is a chain, ↑i is a chain, and [o, i] = N5. (3.6)

Thus, at least one of the three parts of (3.6) fails. If ↓o is not
a chain, then we have a sublattice of the form either B4 +glu B4 or
B4 +glu C2 +gluB4, but then the number of sublattices could be at most
21.25 · 2n−5 by (iv) and (v) of Lemma 2.2 of [5] and by Lemma 1.2 (ii).
By duality, the case ↑i is not a chain is also excluded. The situation
that there exists an element d ∈ [o, i] \N5 together with the absence of
3-antichains imply that d must be comparable either with b or with a
and c. But then L has either N6 or N ′6 as a sublattice and Lemma 1.2
and Lemma 2.1 (i) and (iii) yields that L has either at most 21.5 · 2n−5

or at most 18.5 · 2n−5 sublattices. In case L has N6 sublattice, by
Lemma 1.2 (iii), 21.5 · 2n−5 appears only when L is of form (3.1), but
this has been excluded in (3.2). By duality, we are left with the case
when there exists an element d ∈ L \ N5 such that d is neither above
i nor below o and i ‖ d then the number of subuniverses is at most
19.75 · 2n−5 by Lemma 2.1(iv) and Lemma 1.3.

Second, we investigate the case when Θ does collapse e1. Since a ‖ b
and c ‖ b, none of the thick edges e8, . . . , e11 is collapsed by Θ. Observe
that at least one of e4 and e6 is not collapsed by Θ, since otherwise
〈ã, c̃〉 would belong to Θ = ker(ϕ) by transitivity and a = c would be
a contradiction. By duality, we can assume that e4 is not collapsed by
Θ. Since e2, e3, and e5 are perspective to e10, e9, and e4, respectively,
these edges are not collapsed either. So, with the exception of e1, no
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edge among the elements denoted by big circles in Figure 3 is collapsed.
Thus, the ϕ-images of the “big” elements form a sublattice (isomorphic
to) C(2)×C(3) in L. Hence, | Sub(L)| ≤ 19 ·2n−5 by Lemma 1.2 (ii) and
2.2(iii) of [5], which contradicts our assumption that L satisfies (3.2).
This proves (3.4).

Similarly to (3.5) of [5], the same claim here also holds (because of
(3.3) and (3.4)), namely

if x, y, z ∈ L such that |{x, y, z}| = 3 and x ‖ y,
then either {x, y} ⊆ ↓z, or {x, y} ⊆ ↑z,

(3.7)

and its proof is also the same.
Next, by (3.3) and (3.4), we have a four-element subset {a, b, c, d} of

L such that a ‖ b and c ‖ d. By duality and (3.7), we can assume that
{a, b} ⊆ ↓c. Applying (3.7) also to {a, b, d}, we obtain that {a, b} is
included either in ↑d, or in ↓d. Since the first alternative would lead to
d < a < c and so it would contradict c ‖ d, we have that {a, b} ⊆ ↓d.
Thus, {a, b} ⊆ ↓c ∩ ↓d = ↓(c ∧ d), and we obtain that u := a ∨ b ≤
c∧ d =: v. Let S := {a∧ b, a, b, u, v, c, d, c∨ d}. Depending on u = v or
u < v, S is a sublattice isomorphic to B4 +glu B4 or B4 +glu C

(2) +glu B4.
Using Lemma 2.1 of [5] together with (iv) and (v) of Lemma 2.2 of [5],
we obtain that | Sub(L)| ≤ 21.25 · 2n−5. This inequality contradicts
(3.2) and completes the proof of part(i) of Theorem 1.1.

We prove part (ii). Let L be an n-element lattice. We obtain from
Lemma 1.2 (iii) and Lemma 2.2. (iv) of [5] that if

L ∼= C0 +glu B4 +gluB4 +glu C1 for finite chains C0 and C1, (3.8)

then | Sub(L)| = 21.25 · 2n−5. In order to complete the proof of (ii)
of Theorem 1.1, it suffices to exclude the existence of a lattice L such
that

|L| = n, 21.25 ·2n−5 ≤ | Sub(L)| < 21.5 ·2n−5,
but L is not of the form given in (3.8).

(3.9)

Suppose, for a contradiction, that L is a lattice satisfying (3.9). Now
(3.3) holds by the same reason as in the case (i), i.e., by Theorem 1.1
(i) and (ii) of [5] and Lemma 3.3 of [5].

We claim here that (3.4) also holds. Suppose to the contrary that
{a, b} and {c, b} are two distinct 2-antichains in L. Since there is no
3-antichain in L, we can assume that a < c. With K := [{a, b, c}],
let ϕ : Flat(ã, b̃, c̃) → K be the unique lattice homomorphism from
Lemma 3.2, and let Θ be the kernel of ϕ. We follow the notations
of Figure 3. If Θ does not collapse e1 and at least one of e4 or e6, then
| Sub(L)| ≤ 17.25 · 2n−5 by Lemma 1.2 (ii) and by Lemma 2.1(ii).

So, if Θ does not collapse e1, then it collapses both e4 and e6. Since
in this case e1 also generates the monolith congruence of the N5 sub-
lattice of Flat(ã, b̃, c̃), no other edge of this N5 sublattice is collapsed.
Hence, N5 is a sublattice of L. Clearly, {a, b, c} generates a pentagon
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N5. Keeping (3.9) in mind and applying Lemma 1.2 (iii) for K := N5,
we obtain that L cannot be of form (3.5).

Let o and i stand for the least and the largest elements of the men-
tioned N5 sublattice, respectively.

Similarly to case (i), again, if ↓o is not a chain, then we would have
a sublattice of form either B4 +glu B4 or B4 +glu C1 +gluB4, but then
the number of subuniverses could be at most 21.25 · 2n−5 by Lemma
1.2 (ii), moreover 21.25 · 2n−5 can appear only in case that L is of form
(3.8). Hence, ↓o is a chain. We obtain, by duality, for later reference
that

↓o and ↑i are chains. (3.10)

So there exists an element d ∈ L\N5 such that d is neither above the
top of this N5, nor below the bottom of this N5. If we suppose i ‖ d; in
this case the number of subuniverses is at most 19.75 · 2n−5 by Lemma
2.1(iv) and Lemma 1.3. The case o ‖ d is the same by duality. Since

neither {a, b, d}, nor {c, b, d} is a 3-antichain (3.11)

by (3.3), it follows that d is comparable to a or b and, also, d is compa-
rable to c or b. We claim that d ‖ b. Suppose, for a contradiction, that
d 6 ‖ b. (Note, for later reference, that the only assumption on d is that
d ∈ L\ (N5∪↓o∪↑i).) By duality, we can assume that d < b. Consider
the element v := a∨b. If we had v = i, then {o, i, a, b, c, d} ∼= N ′6 would
easily lead to | Sub(L)| ≤ 18.5 · 2n−5 via Lemmas 1.2 and 2.1, whereby
v < i. We have that v 6≤ b, because otherwise we would obtain that
a ≤ b. Since v ≥ b would lead to v = b ∨ v ≥ a ∨ b = i, it follows that
v ‖ b. Now if v 6= c, then we have that

a ∨ b = i, a ∧ b = o, c ∨ b = i, c ∧ b = o, a ∨ d = v, and v ∨ b = i.
(3.12)

The seven-element partial lattice {o, i, a, b, c, d, v} defined by these equal-
ities has 19.5 · 27−5 subuniverses, whence | Sub(L) ≤ 19.5 · 2n−5 by
Lemma 1.3. So, this case cannot occur. On the other hand, if v = c,
then the six-element partial lattice {o, i, a, b, c, d} defined by the equal-
ities

a ∨ b = i, a ∧ b = o, c ∨ b = i, c ∧ b = o, a ∨ d = i (3.13)

has 21 · 26−5 subuniverses, whence | Sub(L)| ≤ 21 · 2n−5 by Lemma 1.3,
and this case is excluded again. Now, we can conclude that d ‖ b. In
fact, taking the assumptions on d into account and using that i ‖ d has
previously been excluded , we have proved that

if x ∈ L \N5 is not in ↓o ∪ ↑i, then x ‖ b and o < x < i. (3.14)

Next, armed with d ‖ b, (3.11) implies that {a, c, d} is a chain. There
are two subcases depending on d ∈ [a, c] or d /∈ [a, c].

If a < d < c, then {o, i, a, b, c, d} forms a sublattice isomorphic to
N6. To ease the notation, we write N6 = {o, i, a, b, c, d}. Using (3.2),
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the equality | Sub(N6)| = 21.5 · 26−5 from Lemma 2.1, and Lemma 1.2
(iii), we get that L is not of the form C0 +glu N6 +glu C1 with C0 and
C1 being chains. Hence, there is an element
e ∈ L\N6 violating this form. If e ∈ ↓o, then ↓o is not a chain, whence
B4 +gluN6 or B4 +glu C

(2) +glu N6 is a sublattice of L. But it is straight-
forward to compute that | Sub(B4 +gluN6)| = 17.6875·2|B4 +glu N6|−5 and

| Sub(B4 +glu C
(2) +gluN6)| = 17.46875·2|B4 +glu C(2) +glu N6|−5, whence we

can use Lemma 1.2 to exclude that ↓o is not a chain. So, by duality,

both ↓o and ↑i are chains. (3.15)

In particular, e /∈ ↓o ∪ ↑i, and we obtain from (3.14) that e ‖ b. But
{b, d, e} is not a 3-antichain, so we can assume that e < d. No if a < e,
then we have a sublattice {o < a < e < d < c < i, o < b < i} such
that b is the complement of each of a, e, d, and c. This seven-element
sublattice has only 20.75 · 27−5 subuniverses, which excludes the case
a < e in the usual way. So, a ‖ e. Then

b ∧ x = o for every x ∈ {a, e, d, c} and b ∨ y = i for every y ∈ {a, d, c},
(3.16)

and either a∨ e = d, or a∨ e =: u < d, u∧ b = o, and u∨ b = i. At the
first alternative, (3.16) together with a∨ e = d defines a seven-element
partial sublattices {o, i, a, b, c, d, e} with only 18.5 · 27−5 subuniverses,
which is excluded in the usual way. At the second alternative, (3.16)
together with a ∨ e =: u < d, u ∧ b = o, and u ∨ b = i defines an
eight-element partial sublattice {o, i, a, b, c, d, e, u} with only 18 · 27−5

subuniverses, which is excluded again. We have just excluded that
a < d < c.

Now that d is not in [a, c], duality allows us to assume that o < d <
a < c. Let u := d ∨ b. We can assume that u < i, since otherwise
d ∨ b = i and after interchanging a and d, we are in the previous case.
Clearly,

b ∨ d = u, b ∨ a = i, b ∨ c = i, a ∨ u = i,
c ∨ u = i, b ∧ d = o, b ∧ a = o, and b ∧ c = o,

(3.17)

and these equations define a seven-element partial sublattice {o, i, a, b, c, d, u}
with 17.75 ·27−5, subuniverses, whereby this case is excluded. After ex-
cluding all these cases, we have shown the validity of (3.4).

Similarly to the case (i) we have here also that (3.7) holds.
So again, by (3.3) and (3.4), we have a four-element subset {a, b, c, d}

of L such that a ‖ b and c ‖ d. By duality and (3.7), we can assume
that {a, b} ⊆ ↓c. Applying (3.7) also to {a, b, d}, we obtain that {a, b}
is included either in ↑d, or in ↓d. Since the first alternative would lead
to d < a < c and so it would contradict c ‖ d, we have that {a, b} ⊆ ↓d.
Thus, {a, b} ⊆ ↓c ∩ ↓d = ↓(c ∧ d), and we obtain that u := a ∨ b ≤
c∧ d =: v. Let S := {a∧ b, a, b, u, v, c, d, c∨ d}. Depending on u = v or
u < v, S is a sublattice isomorphic to B4 +gluB4 or B4 +glu C

(2) +glu B4.
Using Lemma 1.2 together with (iv) and (v) of Lemma 2.2 of [5], we
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obtain that | Sub(L)| ≤ 21.25 · 2n−5 and | Sub(L)| = 21.25 · 2n−5 holds
only when L is of form (3.8). �
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