
THE NUMBER OF SQUARE ISLANDS ON A
RECTANGULAR SEA

ESZTER K. HORVÁTH, GÁBOR HORVÁTH, ZOLTÁN NÉMETH,
AND CSABA SZABÓ
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1. Introduction

Recently, the notion of islands on a grid caught the attention of
several researchers. The original combinatorial problem was raised in
connection with instantaneous (prefix-free) codes, see [3]. For every
square (cell) of a rectangular grid a positive real number aij is given,
its height. The height of the bottom (above sea level) is constant 0
on each cell. Now a rectangle R is called a rectangular island iff there
is a possible water level such that R is an island of the lake in the
usual sense. There are other examples requiring only m × n cells; for
example, aij may mean a colour on a gray-scale (before we convert the
picture to black and white), transparency (against X-rays), or melting
temperature can be modelled with the three dimensional version of the
problem.

Czédli [2] has considered a rectangular lake whose bottom is divided
into (m + 2) × (n + 2) cells. In other words, we identify the bottom
of the lake with the table {0, 1, . . . , m + 1} × {0, 1, . . . , n + 1}. In his
paper, he shows that the maximum number of rectangular islands is
b(mn+m+n−1)/2c. Pluhár [6], generalizing the earlier methods gave
upper and lower bounds in higher dimensions. In [5] the dual problem
of Czédli is investigated: the minimal size of a maximal system of
islands is presented. Czédli’s work is continued on different surfaces
(torus, cylinder) in [1].

In [4], the maximum number of triangular islands on the triangular
grid is investigated. There, the methods for finding the proper lower
and upper bounds are highly non-trivial and different from the rectan-
gular cases. This gave us the motivation to investigate the number of
square islands on a rectangular grid.

For n ∈ N let n = [1, n] = {1, . . . , n}. For m,n ∈ N the set m × n
will be called a table of size m×n. We will consider m×n as a collection
of cells : (i, j) will mean the j-th cell in the i-th row. We identify
m×n by the rectangular grid { 0, 1, . . . , m }×{ 0, 1, . . . , n }, and the cell
(i, j) is identified by the set { (i− 1, j − 1) , (i, j − 1) , (i− 1, j) , (i, j) }
of four gridpoints. Geometrically m × n is identified with a rectangle
of sidelengths m and n, and the cell (i, j) is identified with the unit
subsquare whose upper-right vertex is gridpoint (i, j).

Two cells are called neighbouring cells if the distance of their centers
is at most

√
2. That is, two cells are neighbouring if their corresponding

unit subsquares intersect by a side or by a vertex, i.e. if they have a
common gridpoint.

By a height function of m× n we mean a mapping h : m× n → R,
(i, j) 7→ aij. Let R be an arbitrary subsquare of m×n. We say that R
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is a square island of the height function h if h((i, j)) < min(h|R) holds
for each (i, j) ∈ (m×n) \R such that (i, j) is neighbouring with some
cell of R. The set of square islands of h will be denoted by Isqr(h). We
are looking for max |Isqr(h)|, where h runs through all possible height
functions.

In Section 2 we prove that for the rectangular grid (m− 1)×(n− 1)
the maximum number of square islands max |Isqr(h)| satisfies the fol-
lowing inequalities:

1

3
· (mn− 2m− 2n) ≤ max |Isqr(h)| ≤ 1

3
· (mn− 1) .

Then in Section 3 we generalize our two dimensional results to higher
dimensions.

The key of all proofs for the upper estimates is an ingenious obser-
vation of Czédli: in the rectangular case the number of islands can
be measured by the area of the rectangle, and this was the case for
triangular islands, as well.

Let Sqm,n denote the set of subsquares in m×n and T1, T2 ∈ Sqm,n

be two squares of m × n. We say that T1 and T2 are far from each
other , if they are disjoint and no cell of T1 is neighbouring with any cell
of T2. Obviously, the role of T1 and T2 is symmetric in the definition.
The following statement is from Section 2 of [2].
Lemma 1. Let H be a subset of Sqm,n. The following two conditions
are equivalent:
(i) There exists a height function h such that H = Isqr(h).
(ii) For any T1, T2 ∈ H either T1 ⊆ T2 or T2 ⊆ T1 or T1 and T2 are

far from each other. Moreover, if m = n, then m× n ∈ H.
In the sequel, subsets H of Sqm,n satisfying the (equivalent) con-

ditions of Lemma 1 will be called systems of square islands. Let
Lm×n denote the set of gridpoints contained in the rectangle (m− 1)×
(n− 1). Indeed, these gridpoints form an m by n grid. For a rectangle
(or square) T let L(T ) denote the set of gridpoints contained in T .
Lemma 1 can be reformulated on the following way:
Lemma 2. Let H be a subset of Sqm,n. The following two conditions
are equivalent:
(i) There exists a height function h such that H = Isqr(h).
(ii) For any T1, T2 ∈ H either L(T1) ⊆ L(T2) or L(T2) ⊆ L(T1) or

L(T1) and L(T2) are disjoint. Moreover, if m = n, then m× n ∈
H.

Proof. We only have to observe, that two squares T1 and T2 are far if
and only if L(T1) ∩ L(T2) = ∅. ¤
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2. Estimating the number of islands

Let f (m,n) denote the maximum number of square islands on the
rectangular grid (m− 1)×(n− 1), or equivalently on gridpoints Lm×n.
In this Section we prove the following inequalities:

1

3
· (mn− 2m− 2n) ≤ f (m,n) ≤ 1

3
· (mn− 1) .

First in Subsection 2.1 we inductively construct a setH = S(m−1)×(n−1)

of squares on the rectangular grid (m− 1) × (n− 1) (or equivalently
on gridpoints Lm×n) satisfying condition (ii) of Lemma 1 (or equiva-
lently Lemma 2). Hence S(m−1)×(n−1) is a system of square islands. Let
s (m,n) = |S(m−1)×(n−1)|. Clearly, s(m,n) is a lower bound for f (m,n),
that is s (m,n) ≤ f (m,n) holds. We prove that 1

3
· (mn− 2m− 2n) ≤

s (m,n) in Subsection 2.2, which finishes the proof of the lower bound.
Secondly, we prove the upper bound in Subsection 2.3 by calculating

the number of gridpoints covered by the maximal elements of an arbi-
trary set of rectangular islands. We shall see that our upper bound is
sharp, when m = n = 2k for some positive integer k.

2.1. Constructing the set S(m−1)×(n−1). Let m, n be arbitrary pos-
itive integers. For the table T = (m− 1) × (n− 1) (i.e. where Lm×n

is an m × n grid) we define a system of square islands, ST . Then we
calculate the number s (m,n) =

∣∣S(m−1)×(n−1)

∣∣.
We define ST by induction on m and n. For technical reasons we

define S(m−1)×(0) = S(0)×(n−1) as the emptyset and hence we define
s(m, 0) = s (0, n) = 0. First we define our system of islands when
m = n = 2i (for some positive integer i), then for m = 2i, n = 2j (for
some positive integers i 6= j) and finally for arbitrary positive integers
m, n of not the above form.

If m = 1 or n = 1, then let S(m−1)×(n−1) = ∅. Now, let T be a
square of 2i × 2i gridpoints, i.e. m = n = 2i. Into this square we draw
four subsquares of 2i−1 × 2i−1 gridpoints as shown in Figure 1. Let us
denote these squares by T1, T2, T3 and T4. Now, let

S(m−1)×(n−1) = {T } ∪ ST1 ∪ ST2 ∪ ST3 ∪ ST4 .

Let T = (m− 1) × (n− 1) such that m = 2i, n = 2j, for some
positive integers i 6= j. Let us assume that i < j, the other case
can be handled similarly. Into T we draw 2j−i-many equilateral sub-
squares of 2i × 2i gridpoints as shown in Figure 2. Let these squares
be T1, T2, . . . , T2j−i . Now, let

S(m−1)×(n−1) = ST1 ∪ ST2 ∪ · · · ∪ ST
2j−i

.
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Figure 1. Construction of S(m−1)×(n−1) for m = n = 8.

Figure 2. Construction of S(m−1)×(n−1) for m = 4, n = 16.

Finally, let m and n be arbitrary positive integers not of the above
form, i.e. at least one of m and n is not a power of 2. Let the binary
form of m be akak−1 . . . a1a0, i.e. m =

∑k
i=0 ai · 2i. Similarly, let the

binary form of n be blbl−1 . . . b1b0, i.e. n =
∑l

j=0 bj · 2j. Let us divide
the sides of the grid Lm×n into segments of legths ai · 2i and bj · 2j

(for 0 ≤ i ≤ k and 0 ≤ j ≤ l). This defines a (rectangular) tiling
on Lm×n (and thus on T = (m− 1) × (n− 1)) by taking the direct
products of the appropriate intervals. A general rectangle is of the form
(ai · 2i) × (bj · 2j). Figure 3 shows this tiling for m = 6, n = 14. Let
us denote by Ti,j the subrectangle of gridpoints 2i × 2j, if ai = bj = 1.
Now, if m 6= n then let

S(m−1)×(n−1) =
⋃

0≤i≤k

ai=1

⋃

0≤j≤l

bj=1

STi,j
,
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if m = n, then let

S(m−1)×(n−1) = {T } ∪
⋃

0≤i≤k

ai=1

⋃

0≤j≤l

bj=1

STi,j
.

Figure 3. Construction of S(m−1)×(n−1) for m = 6, n = 14.

2.2. Lower bound. Let

ε (m,n) =

{
1, if m = n and is not a power of 2,
0, otherwise,

We remind the reader that s (m,n) =
∣∣S(m−1)×(n−1)

∣∣. From our con-
struction it is easy to see that s satisfies the following properties:

s (m, 1) = s (1, n) = 0,(1)

s
(
2i, 2i

)
= 4 · s (

2i−1, 2i−1
)

+ 1,(2)

s
(
2i, 2j

)
= 2|j−i| · s (

2min{ i,j }, 2min{ i,j }) ,(3)

s (m,n) =
k∑

i=0

l∑
j=0

aibj · s
(
2i, 2j

)
+ ε (m,n) ,(4)

where the binary form of m is akak−1 . . . a1a0 and the binary form of n
is blbl−1 . . . b1b0.

Theorem 3. Let the binary form of m be akak−1 . . . a1a0 and let the
binary form of n be blbl−1 . . . b1b0. Then

s (m,n) =
1

3
·mn− 1

3
·

k∑
i=0

l∑
j=0

aibj · 2|i−j| + ε (m,n) .
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Proof. By induction on i we can easily deduce from (2) that

s
(
2i, 2i

)
=

1

3
· (4i − 1

)
.

By applying (3) we immediately obtain for i < j that

s
(
2i, 2j

)
=

1

3
· (2i+j − 2j−i

)
,

similarly for j < i we have

s
(
2i, 2j

)
=

1

3
· (2i+j − 2i−j

)
.

The formula s (2i, 2j) = 1
3
· (2i+j − 2|i−j|) summarizes our previous two

remarks.
Now let the binary form of m be akak−1 . . . a1a0 and let the binary

form of n be blbl−1 . . . b1b0. Then

s (m,n) =
k∑

i=0

l∑
j=0

aibj · s
(
2i, 2j

)
+ ε (m,n)

=
1

3
·

k∑
i=0

l∑
j=0

aibj ·
(
2i+j − 2|i−j|) + ε (m,n) ,

=
1

3
·mn− 1

3
·

k∑
i=0

l∑
j=0

aibj · 2|i−j| + ε (m,n) .

¤
Lemma 4. Let the binary form of m be akak−1 . . . a1a0 and let the
binary form of n be blbl−1 . . . b1b0. Then

k∑
i=0

l∑
j=0

aibj · 2|i−j| ≤ 2 · (m + n) .

Proof. We have
k∑

i=0

l∑
j=0

aibj · 2|i−j| ≤
k∑

i=0

ai · 2−i ·
l∑

j=i

bj · 2j +
l∑

j=0

bj · 2−j ·
k∑

i=j

ai · 2i

≤
k∑

i=0

ai · 2−i · n +
l∑

j=0

bj · 2−j ·m

≤ 2 · (m + n) .

¤



8 E. K. HORVÁTH, G. HORVÁTH, Z. NÉMETH, AND CS. SZABÓ

Corollary 5.

f (m,n) ≥ 1

3
· (mn− 2m− 2n) .

Proof. Let the binary form of m be akak−1 . . . a1a0 and let the binary
form of n be blbl−1 . . . b1b0. Then we have

f (m,n) ≥ s (m,n)

=
1

3
·mn− 1

3
·

k∑
i=0

l∑
j=0

aibj · 2|i−j| + ε (m,n)

≥ 1

3
· (mn− 2m− 2n) .

¤

2.3. Upper bound.

Theorem 6. The following inequality holds:

f(m,n) ≤ 1

3
· (mn− 1) .

Proof. We prove the statement by induction on m and n. For m ≤ 2
or for n ≤ 2 the statement is clear. The induction hypothesis is, that
for any rectangle T with uv-many gridpoints, such that u ≤ m, v ≤ n,
(u, v) 6= (m,n), we have f(u, v) ≤ 1

3
·(uv − 1). We define µ(u, v) := uv,

which is exactly the number of gridpoints of the rectangle of sidelengths
u−1, v−1. Let the two sides of the rectangle T contain uT and vT -many
gridpoints. Let

ε∗ (m,n) =

{
1, if m = n,
0, if m 6= n,

Let H∗ be a system of square islands of (m− 1) × (n− 1), such that
|H∗| = f (m,n). Let maxH∗ be the set of maximal islands in H∗ \
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{ (m− 1)× (n− 1) }. Now,

f(m,n) = ε∗ (m,n) +
∑

T∈maxH∗
f(uT , vT )

≤ ε∗ (m,n) +
∑

T∈maxH∗

1

3
· (uT vT − 1)

= ε∗ (m,n) +
∑

T∈maxH∗

1

3
· (µ(uT , vT )− 1)

= ε∗ (m,n)− 1

3
· |max(H∗)|+

∑
T∈maxH∗

µ(uT , vT )

3

≤ ε∗ (m,n)− 1

3
· |max(H∗)|+ µ(m,n)

3

= ε∗ (m,n)− 1

3
· |max(H∗)|+ mn

3
.

Recall that ε∗ (m,n) = 0, whenever m 6= n and ε∗ (m,n) = 1 if
m = n. Thus, if m 6= n or |max(H∗)| ≥ 4 then we obtained that

f(m,n) ≤ 1

3
· (mn− 1) .

For the remaining cases we assume that m = n. We use induction
on m.

If |max(H∗)| = 1, then the maximum number of the square islands
is f (m− 1,m− 1) + 1. In this case by the induction hypothesis

f (m,m) = f (m− 1,m− 1) + 1 =
1

3
· ((m− 1)2 − 1

)
+ 1

=
1

3
· (m2 − 2m + 3

) ≤ 1

3
· (m2 − 1

)
.

If |max(H∗)| = 2, then the maximum number of the square islands
is f(k, k) + f(m − k,m − k) + 1 for some k where 2 ≤ k ≤ m − 2. In
this case by the induction hypothesis

f (m,m) = f (k, k) + f (m− k, m− k) + 1

=
1

3
· (k2 − 1 + (m− k)2 − 1

)
+ 1

=
1

3
· (m2 − 2mk + 2k2 + 1

)

≤ 1

3
· (m2 − 1

)
.



10 E. K. HORVÁTH, G. HORVÁTH, Z. NÉMETH, AND CS. SZABÓ

If |max(H∗)| = 3, then at least one gridpoint does not belong to any
of the maximal islands, consequently,

f(m,m) = 1 +
∑

T∈maxH∗
f(uT , vT )

≤ 1 +
∑

T∈maxH∗

1

3
· (uT vT − 1)

= 1 +
∑

T∈maxH∗

1

3
· (µ(uT , vT )− 1)

= 1− 1

3
· |max(H∗)|+

∑
T∈maxH∗

µ(uT , vT )

3

≤ 1− 1

3
· 3 +

µ(m,n)− 1

3

=
1

3
· (mn− 1) .

¤
Remark 7. We note that our upper bound is sharp, whenever m = n =
2k for some k.

3. Higher dimensions

Now, let us consider dimension d, for d ≥ 3. We use the definitions
from [6]. For n ∈ N let n = [1, n] = {1, . . . , n}. For m1,m2, . . .md ∈ N
the set m1×m2×· · ·×md will be called a (d dimensional) table of size
m1 ×m2 × · · · ×md. We consider m1 ×m2 × · · · ×md as a collection
of cells.

As with the two-dimensional case, we identify m1×m2×· · ·×md by
the rectangular grid { 0, 1, . . . ,m1 } × · · · × { 0, 1, . . . , md }. Geometri-
cally m1×m2×· · ·×md is identified with a d-dimensional rectangular
cuboid of sidelengths m1, . . . ,md. A cell (i, j) is identified with the
corresponding unit subcube, or with the set of its 2d-many vertices.

Two cells are called neighbouring cells if the distance of their centers
is at most

√
d. That is, two cells are neighbouring if their corresponding

unit subcubes intersect by an at most (d− 1)-dimensional face, i.e. if
they have a common gridpoint.

By an array of size m1×m2×· · ·×md we mean a mapping A : m1×
m2× · · · ×md → R, (h1, h2, . . . , hd) 7→ ah1,h2,...hd

. Given A, for a cube
R of the table m1 ×m2 × · · · ×md let min(A|R) denote the minimum
of {ah1h2...,hd

: (h1, h2, . . . , hd) ∈ R}. We say that R is a cube island of
the array A if R is a d-dimensional subcube of the table and ah1h2...hd

<
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min(A|R) holds for each (h1, h2, . . . , hd) ∈ (m1×m2×· · ·×md)\R such
that (h1, h2, . . . , hd) is neighbouring with some cell of R. Let Lm1×···×md

denote the set of gridpoints contained in the table (m1 − 1) × · · · ×
(md − 1). These gridpoints form an m1 × · · · × md grid. The set of
cube islands of A will be denoted by Isqr(A). For a given table of size
(m1 − 1) × (m2 − 1) × · · · × (md − 1) (or equivalently on gridpoints
Lm1×···×md

). Notice that Lemmas 1 and 2 can be reformulated easily
for higher dimensions.

Let f(m1,m2, . . . , md) denote the maximum number of cube islands.
Using the ideas and proofs we presented in Section 2, we prove the
following upper and lower bounds:

f (m1, . . . ,md) ≤ 1

2d − 1
· (m1 · · ·md − 1) ,

f (m1, . . . ,md) ≥ 1

2d − 1
·
(
m1 · · ·md − 2 ·

∑
mj1mj2 · · ·mjd−1

)
,

where the sum is over the d− 1 element subsets of { 1, 2, . . . , d }.
We prove the lower bound in Theorem 8, the upper bound in Theo-

rem 9. Considering that the proof for higher dimensional cases is pretty
similar to the proof for the two dimensional case, we only sketch the
proofs of these theorems. We note, that our upper bound is sharp,
whenever m1 = · · · = md = 2k for some positive integer k.

Theorem 8.

f (m1, . . . ,md) ≥ 1

2d − 1
·
(
m1 · · ·md − 2 ·

∑
mj1mj2 · · ·mjd−1

)
,

where the sum is over the d− 1 element subsets of { 1, 2, . . . , d }.

Proof. Since the proof is quite similar to the two dimensional case,
we just state the key observations without further explanations. Let
t (j1, . . . , jd) =

∑d
i=1 ji − d ·min { j1, . . . , jd } and let

ε (m1, . . . , md) =

{
1, if m1 = · · · = md and is not a power of 2,
0, otherwise.

The extension of the two dimensional construction in Section 2.1 to
higher dimension is straightforward. The number of cubes used is de-
noted by s. It is a lower bound of f and its recursive description is as
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follows:

0 = s (m1, . . . ,md) , if mi = 1 for some 1 ≤ i ≤ d,

s
(
2j, . . . , 2j

)
= 2d · s (

2j−1, . . . , 2j−1
)

+ 1,

s
(
2j1 , . . . 2jd

)
= 2t(j1,...,jd) · s (

2min{ j1,...,jd }, 2min{ j1,...,jd }) ,

s (m1, . . . md) =
∑

0≤j1≤k1

· · ·
∑

0≤jd≤kd

a
(1)
j1
· · · a(d)

jd
· s (

2j1 , . . . , 2jd
)

+ ε (m1, . . . , md) ,

where the binary form of mi is a
(i)
ki

. . . a
(i)
0 (i.e. mi =

∑ki

ji=0 a
(i)
ji
· 2ji) for

every 1 ≤ i ≤ d.
Similarly to the two dimensional case, by induction on j we have

s
(
2j, . . . , 2j

)
=

1

2d − 1
· (2d·j − 1

)
.

Similarly as in Subsection 2.2 we have for j1 ≤ · · · ≤ jd that

s
(
2j1 , . . . , 2jd

)
=

1

2d − 1
· (2j1+···+jd − 2j2+···+jd−(d−1)·j1)

=
1

2d − 1
· (2j1+···+jd − 2t(j1,...,jd)

)
.

Let the binary form of mi be a
(i)
ki

. . . a
(i)
0 for every 1 ≤ i ≤ d. Now,

s (m1, . . . , md) =
∑

0≤j1≤k1

· · ·
∑

0≤jd≤kd

a
(1)
j1
· · · a(d)

jd
· s (

2j1 , . . . , 2jd
)

+ ε (m1, . . . , md)

=
1

2d − 1
·

∑

0≤j1≤k1

· · ·
∑

0≤jd≤kd

a
(1)
j1
· · · a(d)

jd
· (2j1+···+jd − 2t(j1,...,jd)

)

+ ε (m1, . . . , md)

=
1

2d − 1
·m1 · · ·md

− 1

2d − 1
·

∑

0≤j1≤k1

· · ·
∑

0≤jd≤kd

a
(1)
j1
· · · a(d)

jd
· 2t(j1,...,jd)

+ ε (m1, . . . , md) .
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As we proved in Lemma 4, we have

∑

0≤j1≤k1

· · ·
∑

0≤jd≤kd

a
(1)
j1
· · · a(d)

jd
· 2t(j1,...,jd) ≤

d∑
i=1

k∑
j1=0

a
(i)
ji
· 2−(d−1)·ji ·

k∑
j1,...ji−1,ji+1,...,jd=ji

a
(1)
j1
· · · a(d)

jd

a
(i)
ji

· 2j1+···+jd−ji

≤ 2 ·
∑

mj1mj2 · · ·mjd−1
,

where the last sum is over the d − 1 element subsets of { 1, 2, . . . , d }.
This finishes the proof of Theorem 8. ¤

Theorem 9.

f (m1, . . . , md) ≤ 1

2d − 1
· (m1 · · ·md − 1) .

Proof. The proof is quite similar to the two dimensional case, hence we
just state the key observations without further explanations.

We prove the statement by induction on m1, . . . ,md. If mi ≤ 2 for
all but one 1 ≤ i ≤ d, then the statement is clear. The induction
hypothesis is, that for any table T with u1 . . . ud-many gridpoints, such
that ui ≤ mi for every 1 ≤ i ≤ d, (u1, . . . , ud) 6= (m1, . . .md), we
have f(u1, . . . , ud) ≤ 1

2d−1
· (u1 · · · ud − 1). We define µ(u1, . . . , ud) :=

u1 · · · ud, which is exactly the number of grid points of the table of
sidelengths u1 − 1, . . . , ud − 1. Let the sides of the table T contain
uT,1, uT,2, . . . , uT,d-many gridpoints. Let

ε∗ (m1, . . . ,md) =

{
1, if m1 = · · · = md,
0, otherwise.

Let H∗ be a system of cube islands of (m1 − 1)× · · ·× (md − 1), such
that |H∗| = f (m1, . . . ,md). Let maxH∗ be the set of maximal islands
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in H∗ \ { (m1 − 1)× · · · × (md − 1) }. Now,

f(m1, . . . , md) = ε∗ (m1, . . . ,md) +
∑

T∈maxH∗
f(uT,1, . . . , uT,d)

≤ ε∗ (m1, . . . , md) +
∑

T∈maxH∗

1

2d − 1
· (uT,1 · · · uT,d − 1)

= ε∗ (m1, . . . ,md) +
∑

T∈maxH∗

1

2d − 1
· (µ(uT,1, . . . , uT,d)− 1)

= ε∗ (m1, . . . ,md)− 1

2d − 1
· |max(H∗)|

+
∑

T∈maxH∗

µ(uT,1, . . . , uT,d)

2d − 1

≤ ε∗ (m1, . . . , md)− 1

2d − 1
· |max(H∗)|+ µ(m1, . . . , md)

2d − 1

= ε∗ (m1, . . . ,md)− 1

2d − 1
· |max(H∗)|+ m1 · · ·md

2d − 1
.

Recall that ε∗ (m1, . . . , md) = 1, whenever m1 = m2 = · · · = md,
otherwise ε∗ (m1, . . . ,md) = 0. Thus if mi 6= mj for some 1 ≤ i < j ≤ d
or |max(H∗)| ≥ 2d then we obtained that

f(m1, . . . , md) ≤ 1

2d − 1
· (m1 · · ·md − 1) .

For the remaining cases we assume that m1 = m2 = · · · = md ≥ 3.
Let m = m1 and let t = |max(H∗)|. We only need to consider the
case t ≤ 2d − 1. We use induction on m. The maximum side length of
the cubes in max(H∗) is denoted by m− k. All the other side lengths
are at most k, we denote them by k1, k2, . . . , kt−1. Then the maximum
number of cube islands is 1 + f (m− k, . . . ,m− k) + f (k1, . . . , k1) +
· · ·+ f (kt−1, . . . , kt−1). Now,

f(m, . . . , m) = 1 +
∑

T∈maxH∗
f(uT,1, . . . , uT,d)

≤ 1 +
∑

T∈maxH∗

1

2d − 1
· (uT,1 · · · uT,d − 1)

= 1− 1

2d − 1
· |max(H∗)|+ (m− k)d + kd

1 + · · ·+ kd
t−1

2d − 1

≤ 2d − 1− t + (m− k)d + (t− 1) · kd

2d − 1
.
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Let g (x) = (m− x)d +(t− 1) ·xd. For x ∈ [1,m/2] we have g′′ (x) > 0,
i.e. g is convex in the interval [1,m/2], thus g (x) ≤ max { g (1) , g (m/2) }
for x ∈ [1,m/2]. Now,

g (1) = (m− 1)d + (t− 1)

≤ md + t− 1− d · (m− 1)d−1

≤ md + t− 1− 3 · 2d−1

≤ md + t− 2d,

g (m/2) = t · (m/2)d

= md − md

2d
· (2d − t

)

≤ md + t− 2d,

hence

f(m, . . . , m) ≤ 2d − 1− t + (m− k)d + (t− 1) · kd

2d − 1

≤ 2d − 1− t + md + t− 2d

2d − 1

=
1

2d − 1
· (md − 1

)
.

¤
Remark 10. Our upper bound is sharp, whenever m1 = · · · = md = 2k

for some k. We conjecture that f (m1, . . . , md) = s (m1, . . . , md) always
holds, but we think that the verification would require a fair amount
of technical estimations, including the distinction of several cases and
subcases and might not be worth of the effort and space. This is also
suggested by the fact that in most cases the arrengement of the squares
is not unique.
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