Publications and citations

 

Eszter K. Horváth

MR Author ID:

356424

 

pdf linkekkel

 

 

Scientific papers

 

[1] E. K. Horváth, Invariance groups of threshold functions, Acta Cybernetica ,11 (1994), 325-332.MR1402734    PDF

 

[2] E. K. Horváth, The Slupecki criterion by duality, Discussiones Mathematicae (General Algebra and Applications), 21 (2001), 5-10. MR1868612    PDF

 

[3] G. Czédli, E. K. Horváth and L. Klukovits, Associativity in monoids and categoriesActa Univ. Palacki. Olomouc, Fac. rer. nat. Mathematica,  40 (2001), 47-53.MR1904684    PDF

 

[4] I. Chajda and E. K. Horváth, A triangular scheme for congruence distributivity, Acta Sci. Math. (Szeged), 68 (2002), 29-35. MR1916565    PDF

1.       K. A. Kearnes and E.W. Kiss, The triangular principle is equivalent to the triangular scheme, Algebra Universalis 55 (2005), 373-383.

2.      A. Figallo Jr. and A. Ziliani, A Note on Hilbert Algebras, Southeast Asian Bulletin of Mathematics (2008) 32: 667-676.

 

[5] G. Czédli and E. K. Horváth, Congruence distributivity and modularity permit tolerances, Acta Univ. Palacki Olomouc, Fac. rer. nat., Mathematica, 41 (2002) 39-42. MR1967338 PDF

 

3.      I. Chajda and S. Radeleczki, 0-conditions and congruence schemes, Acta Math. Univ. Comenianae (N.S.) 72 (2003), 177-184.

4.      I. Chajda and S. Radeleczki, Congruence schemes and their applications, CMUC (Commentationes Math. Univ. Carolinae), 46 (2005), 1-14.

5.      P. Lipparini, A local proof for a tolerance intersection property, Algebra Universalis, 54 (2005), 273-277.

6.      P. Lipparini, From congruence identities to tolerance identities, Acta Sci.Math. (Szeged), 73 (2007), 35-51.

7.      P. Lipparini, Tolerance intersection properties and subalgebras of squares,  Logic Colloquium 2004 (edited by A. Andretta, K. Kearnes and D. Zambella), Cambridge University Press 2007 (ISBN: 0521884241), pp.109-122.

8.      B. Skublics, Congruence modularity at 0, Algebra Universalis, 66 (1-2), (2011), 63-67.

9.      O. M. Mamedov, A. Molkhasi, On congruence schemes and compatible relations of algebras, Transaction of NAS of Azerbaijan, 29 (4)  (2011),  101-106.

10.  O. M. Mamedov, A. Molkhasi, Some properties of the 4- and 5-majority algebras, Transactions of NAS of Azerbaian 31 (1), (2011), 87-96.

11.  P. Lipparini, Representable tolerances in varieties, Acta Sci Math (Szeged) 79 (1-2), (2013) 3-16.

12.  J. Czelakowski, The equationally-defined commutator: A study in equational logic and algebra, Springer International Publishing, 2015. (ISBN 9783319212005)

 

 

[6] G. Czédli and E. K. Horváth, All congruence lattice identities implying modularity have Mal'tsev conditions, Algebra Universalis, 68 (2002), 29-35. IF: 0.324 MR2026828    PDF

 

13.  K. A. Kearnes and E. W. Kiss, The triangular principle is equivalent to the triangular scheme, Algebra Universalis 55 (2005), 373-383.

14.  P. Lipparini, a local proof for a tolerance intersection property, Algebra Universalis 54 (2005), 273-277.

15.  P. Lipparini, From congruence identities to tolerance identities, Acta Sci. Math. (Szeged) 73 (2007), 31-51.

16.  P. Lipparini, Tolerance intersection properties and subalgebras of squares,  Logic Colloquium 2004 (edited by A. Andretta, K. Kearnes and D. Zambella), Cambridge University Press 2007 (ISBN: 0521884241), 109-122.

17.  R. McKenzie and J. Snow, Congruence modular varieties: commutator theory and its uses: Structural Theory of Automata, Semigroups, and Universal Algebra, Book Series: NATO Science  Series, Series II: Mathematics, Physics and Chemistry, Volume: 207 (2005), Pages: 273-329 (ISBN 978-1-4020-3817-4).

18.  B. Skublics, Congruence modularity at 0, Algebra Universalis 66 (1-2), (2011), 63-67.

19.  P. Lipparini, Representable tolerances in varieties, Acta Sci. Math. (Szeged) 79 (1-2), (2013), 3-16.

20.  K. Balog and B. Skublics, On congruence distributivity of ordered algebras with constants, Discussiones Mathematicae General Algebra and Applications 31 (2011), 47-59.

 

[7] G. Czédli and E. K. Horváth, Reflexive relations and Mal'tsev conditions for congruence lattice identities in modular varieties, Acta Univ. Palacki. Olomouc., Fac. rer. nat. Mathematica, 41 (2002), 43-53. MR1967339    PDF

 

21.  P. Lipparini, Representable tolerances in varieties, Acta Sci. Math. (Szeged) 79, 1-2 (2013), 3-16.

 

[8] I. Chajda, G. Czédli and E. K. Horváth, The shifting Lemma and shifting lattice identities, Algebra Universalis, 50 (2003), 51-60. IF: 0.285 MR2026826 PDF

 

22.  K. A. Kearnes and E.W. Kiss, The triangular principle is equivalent to the triangular scheme, Algebra Universalis 55 (2005), 373-383.

 

[9] I. Chajda, G. Czédli and E. K. Horváth, Trapezoid lemma and congruence distributivity, Math. Slovaca, 53 (2003), No3, 247-253. MR2026826    PDF

 

23.  K. A. Kearnes and E.W. Kiss, The triangular principle is equivalent to the triangular scheme, Algebra Universalis 55 (2005), 373-383.

24.  O. M. Mamedov, A. Molkhasi, On congruence schemes and compatible relations of algebras, Transaction of NAS of Azerbaijan, 29 (4), (2009), 101-106.

25.  O. M. Mamedov, A. Molkhasi, Some properties of the 4- and 5-majority algebras, Transactions of NAS of Azerbaijan, 31 (1), (2011), 87-96.

[10] G. Czédli, E. K. Horváth and S. Radeleczki, On tolerance lattices of algebras in congruence modular varieties, Acta Math. Hungarica, 100 (1-2) (2003), 9-17. IF: 0.330 MR1984855    PDF

 

26.  H.-J. Bandelt and V. Chepoi, The algebra of metric betweenness I: Subdirect representation and retraction, European Journal of  Combinatorics , 28/6 (2007), 1640-1661.

27.  Joanna Grygiel, Minimal distributive lattices with a given skeleton, Contributions to general algebra (Heyn, Klagenfurt), 16 (2005), 99-105.

28.  K. Kaarli and V. Kuchmei, Order affine completeness of lattices with Boolean congruence lattices, Czechoslovak Math. J. 57 (132) (2007), 1049-1065.

29.  P. Lipparini: A local proof for a tolerance intersection property, Algebra Universalis 54 (2005), 273-277.

30.  P. Lipparini, From congruence identities to tolerance identities, Acta Sci. Math. (Szeged), 73 (2007), 31-51.

31.  P. Lipparini, Tolerance intersection properties and subalgebras of squares, in: Logic Colloquium 2004 (edited by A. Andretta, K. Kearnes and D. Zambella), Cambridge University Press 2007 (ISBN: 0521884241), 109-122.

32.  P Lipparini, Representable tolerances in varieties, Acta Sci. Math. (Szeged), 79 (1-2), (2013), 3-16.

33.  M. Tiwari, S. Bagora, Some Remarks on Distributive Lattices, International Journal of Mathematics and Applied Statistics, 2 (1), (2011), 37-43.

[11] G. Czédli, E. K. Horváth and P. Lipparini, Optimal Mal'tsev conditions for congruence modular varieties, Algebra Universalis, 53 (2005) 267-279 IF:0.480 MR2048299    PDF

34.  R. McKenzie and John Snow, Congruence modular varieties: commutator theory and its uses: Structural Theory of Automata, Semigroups, and Universal Algebra, Book Series: NATO Science Series, Series II: Mathematics, Physics and Chemistry, Volume: 207 (2005), 273-329.

35.  B. Skublics, Congruence modularity at 0, Algebra Universalis, 66 (1-2), (2011), 63-67.

36.  K. Balog and B. Skublics: On congruence distributivity of ordered algebras with constants, Discussiones Mathematicae General Algebra and Applications, 31 (2011), 47-59.

37.  J. Czelakowski, The equationally-defined commutator: A study in equational logic and algebra, Springer International Publishing, 2015.  (ISBN 9783319212005)

38.  I. Chajda, S. Radeleczki, Notes on tolerance factorable classes of algebras, Acta Sci. Math. (Szeged), 80 (3-4) (2014), 389-397.

[12] I. Chajda and E. K. Horváth, A scheme for congruence semidistributivity Discussiones Math. 23 (2003) 13-18. MR2070042    PDF

[13] E. K. Horváth,  Z. Németh, G. Pluhár, The number of triangular islands on a triangular grid , Periodica Mathematica Hungarica, 58 (2009), 25--34,  manuscript title: Full segments on the triangular grid  IF: 0.315 MR2487243    PDF

39.  G. Czédli and E.T. Schmidt, CDW-independent subsets in distributive lattices, Acta Sci. Math. (Szeged ) 75 (2009), 49-53.

40.  G. Czédli, M. Hartmann and E.T. Schmidt, CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009), 127-134.

41.  G. Czédli,  The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics, 30  (2009), 208—215.

42.  Zs. Lengvárszky, Notes on systems of triangular islands, Acta Sci. Math. (Szeged), 75 (2009), 369—376.

43.  Zs. Lengvárszky, The size of maximal systems of square islands, European Journal of Combinatorics, 30 (2009), 889-892.

44.  A. Máder, R. Vajda, Elementary Approaches to the Teaching of the Combinatorial Problem of Rectangular Islands, International Journal of Computers for Mathematical Learning (ISSN: 1382-3892), 15 (3), (2010), 267-281.

45.  Zs.Lengvárszky, P. P. Pach: A note on systems of rectangular islands: The continouos case, Acta Sci. Math. (Szeged), 77 (1-2), (2011), 27-34.

46.  A. Máder, G. Makay: The maximum number of rectangular islands, The Teaching of Mathematics, (ISSN: 1451-4966), 14 (1), (2011), 31-44.

47.  P. P. Pach, G. Pluhár, A. Pongrácz, Cs. Szabó: The possible number of islands on the sea, Journal of Mathematical Analysis and Applications (ISSN: 0022-247X), 375 (1), (2011) 8-13.

48.  T. Eccles, The minimum sizes of maximal systems of brick islands, Acta Sci. Math. (Szeged), 78 (2012), 375-387. (2012)

49.  G. Czédli, CD-independent subsets in meet-distributive lattices, Acta Mathematica Hungarica, (2013), 1-17.

50.  Zs. Lengvárszky, Systems of islands with continuous height functions, Journal of the Australian Mathematical Society, 94 (3), (2013), 385-396.

 

[14] E. K. Horváth,  G. Horváth, Z. Németh, Cs. Szabó, The number of square islands on a rectangular sea, Acta Sci. Math. (Szeged) 76 (2010) 35-48 MR2668404    PDF

 

51.  G. Czédli and E.T. Schmidt: CDW-independent subsets in distributive lattices, Acta Sci. Math. (Szeged ) 75 (2009), 49-53.

52.  G. Czédli, M. Hartmann and E.T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009), 127-134.

53.  Zs. Lengvárszky , P. P. Pach A note on systems of rectangular islands: the continuous case, acta Sci.Math, (Szeged), 77 (1-2), (2011), 27-34.

54.  T. Eccles : The minimum sizes of maximal systems of brick islands, Acta Sci. Math. (Szeged),78 (3-4), (2012), 375-387.

55.  A. Máder, G. Makay, The maximum number of rectangular islands, The Teaching of Mathematics (ISSN: 1451-4966), 14 (1) (2011) 31-44.

56.  Zs. Lengvárszky, Systems of islands with continuous height functions, Journal of the Australian Mathematical Society, 94 (3), (2013), 385-396.

57.  G. Czédli: CD-independent subsets in meet-distributive lattices, Acta Mathematica Hungarica, 143(1), (2014), 232-248.

 

[15] E. K. Horváth, B. Seselja, A. Tepavcevic, Cut approach to islands in rectangular fuzzy relations, Fuzzy Sets and Systems, 161 (2010) 3114–3126 IF: 1.875 MR2734466

58.  A. Máder, G. Makay, The maximum number of rectangular islands, The Teaching of Mathematics, 14 (1), (2011), 31-44.

59.  G. Czédli, CD-independent subsets in meet-distributive lattices, Acta Mathematica Hungarica, 143(1), (2014), 232-248.

60.  Zs. Lengvárszki, Systems of islands with continuous height functions, Journal of the Australian Mathematical Society, 94 (3), (2013), 385-396.

 

[16] J. Barát, P. Hajnal, E. K. Horváth, Elementary proof techniques for the maximum number of islands, European Journal of Combinatorics, 32 (2011) 276–281,  manuscript title: Islands, lattices and trees   IF: 0.677 MR2738547    PDF

 

61.  G. Czédli and E.T. Schmidt, CDW-independent subsets in distributive lattices, Acta Sci. Math. (Szeged ) 75 (2009), 49-53.

62.  A. Máder, R. Vajda, Elementary Approaches to the Teaching of the Combinatorial Problem of Rectangular Islands, International Journal of Computers for Mathematical Learning, 15 (3), 267-281.

63.  T. Eccles , The minimum sizes of maximal systems of brick islands, Acta Sci. Math.(Szeged), 78 (3-4), (2012), 375-387.

64.  A. Máder, G. Makay, The maximum number of rectangular islands, The Teaching of Mathematics, 14 (1), (2011), 31-44.

65.  G. Czédli, CD-independent subsets in meet-distributive lattices, 143 (1), (2013), 232-248.

66.  Zs. Lengvárszky, Systems of islands with continouos height functions, Journal of the Australian Mathematical Society, 94 (3), (2013), 385-396.

 [17] E. K. Horváth, S. Radeleczki, Notes on CD-independent subsets, Acta Sci. Math. (Szeged), 78 (1-2), (2012), 3-24. MR3100391    PDF

 

67.  G. Czédli, CD-independent subsets in meet-distributive lattices, Acta Mathematica Hungarica, 143(1), (2014),  232-248.

68.  S. Kerkhoff, F. M. Schneider, Directed tree decompositions, Lecture Notes in Computer Science (ISSN: 0302-9743), 8478 (2014), 80-95.

69.  G. Czédli, The asymptotic number of planar, slim, semimodular lattice diagrams, Order, 33 (2016), 1-7.

 

 

[18] E. K. Horváth, B. Seselja, A. Tepavcevic, Cardinality of height function’s range in case of maximally many rectangular islandscomputed by cuts, Cent. Eur. J. Math., 11(2), (2013), 296-307. IF: 0.519 MR3000646    PDF

 

70.  G. Czédli, CD-independent subsets in meet-distributive lattices, Acta Mathematica Hungarica, 143 (1), (2014),  232-248.

 

[19] E. K. Horváth, Islands: from coding theory to enumerative combinatorics and to lattice theoryoverview and open problems, Miskolc Mathematical Notes, 14 (3), (2013), 927-939. IF:0.357 MR3153976    PDF

 

71.  G. Czédli: CD-independent subsets in meet-distributive lattices, Acta Mathematica Hungarica,  143: (1) pp.232-248. (2014).

 
[20] S. Foldes, E. K. Horváth, S. Radeleczki, T. Waldhauser: A general framework for island systems, Acta Sci. Math. (Szeged) 81(2015), 3-24. MR3381870     PDF
 

72.  G. Czédli: CD-independent subsets in meet-distributive lattices, Acta Mathematica Hungarica, 143 (1), (2014), 232-248.

 

[21] E. K. Horváth, G. Makay, R. Pöschel, T. Waldhauser, Invariance groups of finite functions and orbit equivalence of permutation groups, Open Math.13 (2015), 83-95. IF: *0.578 MR3314166

 

73.  E. Lehtonen: On functions with a unique identification minor, Order, 33 (1), (2016), 71-80.

 

[22] E. K. Horváth, B. Seselja, A. Tepavcevic, A note on lattice variant of thresholdness of Boolean functions, Miskolc Matematical Notes, 17 (1), (2016), 293-304. IF:*0.229 MR3527885    PDF

 

[23] E. K. Horváth, B. Seselja, A. Tepavcevic: Isotone lattice-valued Boolean functions and cuts, Acta Sci. Math. (Szeged) 81 (2015), 375-380. MR3443757    PDF

 

[24] E. K. Horváth, B. Seselja, A. Tepavcevic: Cut approach to invariance groups of lattice-valued functions, Soft Computing, 21 (4), (2017), 853-859. IF:*1.271 PDF

 

[25.] Delbrin Ahmed, Gábor Czédli and Eszter K. Horváth: Geometric constructibility of polygons lying on a circular arc, Mediterranean Journal of Mathematics, DOI: 10.1007/s00009-018-1166-0, published online May 31, 2018.

 

[26.] G. Czdli and E. K. Horvath: The three largest numbers of subuniverses of lattices, manuscript  PDF

 

[27.] D. Ahmed and E. K. Horváth: Yet two additional large numbers of subuniverses of finite lattices, to appear in Discussiones Mathematicae, General Algebra and Applications, PDF

 

Didactic papers

 

[1.] E. K. Horváth, A. Máder, A. Tepavcevic: One dimensional Czédli-type islands, The College Mathematics Journal (CMJ), Vol 42, No 5, November 2011, 374-378.    PDF

 

Books, lecture notes

 

 

[I.] Kalmárné Németh Márta, Kámán Tamás, Katonáné Horváth Eszter: Diszkrét matematikai feladatok, Polygon 2003.

 
[II.] E. K. Horváth: Survey on islands – a possible research topic, even for students, Interesting Mathematical problems in Sciences and in Everyday Life, 2011, eds János Karsai and Róbert Vajda. 

 

 

Theses

 

Lattices and invariants, PhD Theses, 2005. Szeged.