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Abstract. As a tool to characterize instantaneous codes, Foldes and
Singhi determined the maximum number of certain subsets of the set of
the first n natural numbers in 2006. This motivated Czédli in 2009 to
determine the maximum number of the analogous subsets of a rectangular
grid. He called these subsets islands. The present paper summarizes the
directions about and the results on islands that came to existence soon.

1. Introduction

The topic we are going to survey goes back to two papers. First, to char-
acterize instanteneous codes by equalities, Foldes and Singhi [9] considered
certain families of subsets of {1, 2, . . . , n}. They proved that the minimum
number of eqations needed equals the maximum size of these families, see [9,
Theorem 4].

Second, soon afterwards, Czédli [3] studied analogous families of certain
subsets of the rectangular grid {1, . . . ,m}×{1, 2, . . . , n}. He coined the name
(2-dimensional) rectangular islands to these subsets. In this terminology, the
subsets of Foldes and Singhi are 1-dimensional islands. By the main result
of [3], the maximum number of rectangular islands on the m-by-n grid is

f(m,n) =

⌊
mn+m+ n− 1

2

⌋
. (1.1)

To be more precise, f(m,n) is the maximum size of a family of rectangular
islands on the m-by-n grid.
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1.1. Remark (added in July 30th, 2013). After the present paper was
submitted, new lattice theoretical approach of the island topic came to exis-
tence, see Czédli [2]. This approach is related to [4] and to [11].

The aim of the present paper is to overview the results and directions ap-
peared in several branches of mathematics after the above-mentioned two pa-
pers.

2. The definition of islands

First, we fix a finite grid, consisting of e.g. squares or equilateral trian-
gles. Its cells constitute the so-called board. The cells have neighbours. In
each particular cases, we have to define exactly, which cells are considered
neighbours.

We put a real number into each cell, these are the so-called heights. Actually
we have a real valued height function on the set of cells. We fix a shape
(consisting of cells), e.g. rectangle or triangle. We call this rectangle/triangle
an island if its cells have greater heights than the heights in the neighboring
cells.

We call a rectangle/triangle on a given board an island, if for the cell t, if
we denote its height by at, then for each cell t̂ neighbouring with a cell of the
rectange/triangle T, the inequality at̂ < min{at : t ∈ T} holds. For detailed
didactidal introduction for the maximum number of rectangular islands see
e.g. [10]. The collection of all islands for a given height function is called island
system. Also, we will use the following terminology: system of rectangular
islands, system of triangular islands, etc.

Figure 1. Rectangular and triangular islands

3. Proving results on the maximum number of islands

In this section, we present three proofs for formula (1.1) of Gábor Czédli [3]
for rectangular islands. The shown methods are applicable for further cases,
too.
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3.1. Lower bound. We prove by induction on the number of cells that

f(m,n) ≥
⌊
mn+m+ n− 1

2

⌋
.

If m = 1, n = 1 or m = n = 2, then it is easy to check that the statement is
true. Let m,n > 2. First, we put maximally many islands into the rectangles
of sizes (m − 2) × n, and 1 × n. Between these rectangles, we put one row
of cells with heights smaller then the minimum of the heights in the two
rectangles, furthermore we put even smaller heights outside of our m × n
rectangle. Followingly, we apply the induction hypothesis, i.e. the inequation
for smaller rectangles:

f(m,n) ≥ f(m− 2, n) + f(1, n) + 1 ≥

≥
⌊
(m− 2)n+ (m− 2) + n− 1

2

⌋
+

⌊
n+ 1 + n− 1

2

⌋
+ 1 =

=

⌊
(m− 2)n+ (m− 2) + n− 1 + 2n

2

⌋
+ 1 =

⌊
mn+m+ n− 1

2

⌋
.

3.2. Upper bound.

3.2.1. Method A: lattice method. The original method was based on lattice
theory, using the result of [5] that any two weak bases of a finite distributive
lattice have the same number of elements. This method produced the result
first. This proof can be read in [3], and provided several research directions in
lattice theory, e.g. [4, 6, 11].

A little bit later, two other proving methods appeared in [1]. In this paper
we present only these two proofs (method B and method C, as follows).

3.2.2. Method B: induction. If m = n = 1, then the statement is obviously
true. Let m > 1 or n > 1. The induction hypothesis: if u < m of v < n, then
for the rectangle R of size u× v, f(R) = f(u, v) ≤ 1

2(u+ 1)(v + 1)− 1.
Let I∗ denote such system of rectangular islands that contains maximally

many rectangular islands. Denote by max I∗ the set of all maximal rectangular
islands for I∗, i.e. those set of rectangular islands that have only one bigger
rectangular island. For rectangle of size u × v the number of grid points is
∥R∥ = (u+ 1)(v + 1). Now

f(m,n) = 1 +
∑

R∈max I∗ f(R) ≤ 1 +
∑

R∈max I∗
(
1
2∥R∥ − 1

)
=

= 1− |max I∗|+ 1
2

∑
R∈max I∗ ∥R∥ ≤ 1− |max I∗|+ 1

2(m+ 1)(n+ 1).

so we obtained f(m,n) ≤ 1− |max I∗|+ 1
2(m+ 1)(n+ 1).

If we have at least two maximal rectangular islands, then the proof is ready.
If we have only one maximal rectangular island, then one of the following

inequalities are true:
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f(m,n) ≤ 1−|max I∗|+ 1
2m(n+1) = 1−1+ 1

2m(n+1) ≤ 1
2(m+1)(n+1)−1.

f(m,n) ≤ 1−|max I∗|+ 1
2(m+1)n = 1−1+ 1

2(m+1)n ≤ 1
2(m+1)(n+1)−1.

If we have no maximal rectangular island, then we have only one rectangular
island, so the proof is also ready.

3.2.3. Method C: tree-graph method. Our rectangular islands constitute tree
graph by inclusion. In Figure 2, the islands are represented by grey rectangles,
labelled at their bottom right corner. The heights of cells are indicated at their
top left corners. The island Ri and, if exists, R

′
i occur at water level i.

Figure 2. Islands and the corresponding tree

First, we need a Lemma.

Lemma 1. Let T be a rooted tree such that any non-leaf node has at least 2
sons. Let ℓ be the number of leaves in T . Then |V | ≤ 2ℓ− 1.

Proof. Let us direct the tree-graph from its root to the direction of its leaves.
Then for the in-degrees and out-degrees the equation

∑
D+ =

∑
D− holds.

Now
∑

D+ = |V |−1 because each nod has father except for the root. Moreover∑
D− ≥ 2(|V |−ℓ) because all non-leaf nod has at least two sons. So

∑
D+ =

|V | − 1 =
∑

D− ≥ 2(|V | − ℓ), i.e. we obtained 2ℓ− 1 ≥ |V |.
�

As we mentioned, our rectangular islands constitute tree-graphs by inclu-
sion. For having at least binary tree-graph in all cases (condition of Lemma 1),
we introduce the so-called ”dummy island” in case the island shrinks when the
water level increases. Figure 3 is derived from Figure 2. The dummy islands
are depicted as thin, dark-grey rectangles.

We denote by s the number of the minimal rectangular islands, by d the
number of dummy islands. By Figures 2 and 3, each minimal rectangular
island covers at least four grid-points, each dummy island covers at least two
grid-points.

This way we have covered not more then all the grid-points of the square
grid, i. e.: 4s+ 2d ≤ (n+ 1)(m+ 1).

The number of leaves of is ℓ = s + d. Hence by Lemma the number of
islands is |V | − d ≤ (2ℓ− 1)− d = 2s+ d− 1 ≤ 1

2(n+ 1)(m+ 1)− 1.
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Figure 3. Islands and the corresponding tree with dummy
islands D4 and D′

4

4. Brick islands, higher dimensions

In [3] a question was raised about the analogous problem in higher dimen-
sions. Pluhár in [24] gave upper and lower bound for the maximum number
of brick islands.

5. The maximum number of triangular islands

Denote by tr(n) the maximum number of triangular islands in the equilat-
eral triangle of sidelength n. The following lower and upper bounds are proved
in [13]:

n2 + 3n

5
≤ tr(n) ≤ 3n2 + 9n+ 2

14
.

Furthermore, tr(n) = 3n2+9n+2
14 for infinitely many n. It is proved in [18]

that

lim
n→∞

tr(n)

n2
=

3

14
.

In [18] triangular islands were investigated not only on triangular, but also
on trapezoid and paralelogram board, with triangular grid.

5.1. Problem. On triangular grid, not only triangular islands could be con-
sidered, but also other shapes, e.g. diamonds, paralelograms, trapezoids,
hexagons.

6. The maximum number of square islands

It is proved in [14] that for the square grid of size (m − 1) × (n − 1) the
maximum number of square islands sq(m,n):

1

3
(mn− 2m− 2n) ≤ sq(m,n) ≤ 1

3
(mn− 1).

This upper bound is sharp, wheneverm = n = 2k for some k ∈ N.Analogous
upper and lower bounds are valid for the higher dimensional cases.
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However, similarly to the triangular case, the lower and upper bounds are
close, but exact formula for this case is also not proved.

7. Exact results

The proofs of the following statements can be found in [1].

7.1. Peninsulas (semi islands). Here we consider rectangular islands on
the square grid that reaches at least one side of the rectangular board. The
maximum number of such islands is:

p(m,n) = f(m,n) = ⌊(mn+m+ n− 1)/2⌋ .

7.2. Cylindric board, rectangular islands. We put square grid onto the
surface of a cylinder. Denote by h1(m,n) the maxium number of rectangular

islands: If n ≥ 2, then h1(m,n) =
⌊
(m+1)n

2

⌋
.

7.3. Cylindric board, cylindric and rectangular islands. It is possible
to create cylindric islands on sylindric board. Denote by h2(m,n) the maxium
number of rectangular or cylindric islands on the surface of a cylinder of height
m. Of course, in this case, the maximum number of cilindric islands is more

than in the previous case: If n ≥ 2, then h2(m,n) =
⌊
(m+1)n

2

⌋
+

⌊
(m−1)

2

⌋
.

7.4. Torus board, rectangular islands. We fold a torus from a rectangle
of size m× n. Denote by t(m,n) the maximum number or rectangular islands
on this board. If m,n ≥ 2, then t(m,n) =

⌊
mn
2

⌋
.

7.5. Islands in Boolean algebras. Here the board consists of all vertices of
a hypercube, i.e. the elements of a Boolean algebra B = {0, 1}n. We consider
two cells neighbouring if their Hamming distance is 1. Our islands are Boolean
algebras. We denote the maximum number of islands in the Boolean algebra
B = {0, 1}n by b(n). Then, b(n) = 1 + 2n−1.

8. The minimum sizes of maximum systems of islands

In general, a system of islands is maximal, if it cannot be extended to a
larger system of islands.

Systems of rectangular islands on a m×n rectangle R constitute a partially
ordered set IR with respect to set inclusion. Let

gr(m,n) = min {H : H ∈ max(IR)} .
In [17] Lengvárszky proved that gr(m,n) = m+ n− 1.

Also, he treated the triangular case in [18] and if IT is the partially ordered
set of triangular islands on the triangular board and if

gt(m,n) = min {H : H ∈ max(IT )} ,
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then he obtained that gt(n) = n. In [18], the minimum number of maximal
systems of triangular islands are also estimated on diamond, trapezoid and
paralellogram, giving possibility for further research.

The minimum cardinality of maximal systems of square islands on a n2

board is considered in [19]. Let

gs(n) = min {H : H ∈ max(IS)} .
In [19] Lengvárszky proved that gs(n) = n.

In [7] Eccles investigated the higher dimensional generalizations, and he
proved formula for the minimal size of cuboid islands gd(m1, . . . ,md) in a

cuboid of size m1 × · · · × md, namely: gd(m1, . . . ,md) =
∑d

i=1mi − (d − 1).

Moreover, he proved that in a cube of size md the minimal size of cubic islands
is given by g′d(m, . . . ,m) = m.

9. CD-independence and CDW-independence

It was observed that many subsets in island problems are CD-independent.
Let P = (P,≤) be a partially ordered set and a, b ∈ P . The elements a and

b are called disjoint and we write a ⊥ b if

either P has least element 0 ∈ P and inf{a, b} = 0,
or P is without 0 and the elements a and b have no common lowerbound.

Notice, that a ⊥ b implies x ⊥ y for all x, y ∈ P with x ≤ a and y ≤ b.
A nonempty set X ⊆ P is called CD-independent if for any x, y ∈ X, x ≤ y

or y ≤ x, or x ⊥ y holds. Maximal CD-independent sets (with respect to ⊆)
are called CD-bases in P. In some papers, e.g. in [20, 21, 25] CD-independent
sets are called laminar systems.

In [4] the authors showed that the CD-bases in a finite distributive lattice
have the same number of elements, and conversely, if all finite lattices in a
lattice variety have this property, then the variety must coincide with the
variety of distributive lattices. From the proof of the main result of [4] it is
clear that if we consider maximum number of islands of arbitrary connected
shape on the rectangular board, then it is bounded by above by the cardinality
of a maximal chain of the powerset of the set of the cells, i.e. by m× n.

In paper [11] it is shown that the CD bases of any poset P can be character-
ized as maximal chains in a related poset D(P ). A nonempty set D of nonzero
elements of P is called a disjoint set in P, if x ⊥ y holds for all x, y ∈ D, x ̸= y;
if the poset P contains 0-element, then {0} is considered to be a disjoint set,
too. Let D(P ) denote the set of all disjoint sets of P. It is proved in [11] that
if P is a complete lattice, then D(P ) is also a lattice having a weak distribu-
tive property. If P = (P,∧) is a semilattice with 0, then for any a, b ∈ P the
relation a ⊥ b means that a ∧ b = 0. Hence, a set {ai | i ∈ I} of nonzero
elements is a disjoint system if and only if ai ∧ aj = 0, for all i, j ∈ I, i ̸= j. A
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pair a, b ∈ P with least upperbound a ∨ b in P is called a distributive pair, if
(c∧ a)∨ (c∧ b) exists in P for any c ∈ P , and c∧ (a∨ b) = (c∧ a)∨ (c∧ b). We
say that (P,∧) is dp-distributive (distributive with respect to disjoint pairs), if
any a, b ∈ P with a∧b = 0 is a distributive pair. Two known lattice classes are
pointed out where the CD-bases in finite lattices have the mentioned property:
The first class is that one of graded, dp-distributive lattices, and the second
class is obtained by generalizing the properties of the so-called interval lattices
(having their origine in graph theory).

A family H ⊆ P is weakly independent if

H ≤
∨
i∈I

Hi =⇒ ∃i ∈ I : H ≤ Hi

holds for all H ∈ H,Hi ∈ H (i ∈ I). If H is both CD-independent and weakly
independent, then we say that H is CDW-independent.

It is proved in [6] that any two CDW-bases of a finite distributive lattice
have the same number of elements. Moreover, if a lattice variety contains a
nondistributive lattice, then there exists a finite lattice in this variety that has
two CDW-bases with different number of elements.

9.1. Problem. It is conjectured that the formula of Czédli for the maximum
number of rectangular islands (and other cases) can be proved by using the
main result of [4] or [6], but by our information, up to now nobody elaborated
the proof. We encourage the reader to do it, as different proofs might lead to
different research directions.

10. Height function with finite range

If we put only finitely many heights into the square cells of a rectangle,
we obtain a much more complicated problem for rectangular islands, which
is solved only for one dimension. Namely, assume that there are n cells in a
single row and each cell has to be of height at least 0 and at most h, and let
I(n, h) denote the maximum number of islands in this case. It was proved
in [12] that

I(n, h) = n−
⌊ n

2h

⌋
if we have n cells in one row. Notice that the whole board is not necessarily

an island, only if we do not use the height 0. Now from this formula it is easy
to see that if the height is at least 1 and at most h, then the maximum number
of islands is:

I ′(n, h) = n+ 1−
⌊ n

2h−1

⌋
as it appears in [22].
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In [22] the cases 2× n and 3× n are solved if if the height is at least 1 and
at most h. They obtained

I ′′(n, h) =

⌊
3n+ 1

2

⌋
+ 1 +

⌈ n

2h−2

⌉
for the 2× n case and

I ′′′(n, h) = 2n+ 2 +
⌈ n

2h−2

⌉
for the 3× n case.

10.1. Problem. The larger boards (m-by-n board with m ≥ 4) were found
problematic by [22].

11. Islands and cuts of lattice valued functions

A rectangular board equipped with a height fuction can be considered a
fuzzy relation, see [15]. Fuzzy relations in many cases model real life better
that crisp ones. Here we interpret the results of [15] with using the classical
,,height function” terminology only.

A height function h is a mapping from {1, 2, ...,m} × {1, 2, ..., n} to N, h :
{1, 2, ...,m} × {1, 2, ..., n} → N. Actually, a fuzzy relation in [15] is a mapping
from {1, 2, ...,m} × {1, 2, ..., n} to [0, 1], h : {1, 2, ...,m} × {1, 2, ..., n} → [0, 1],
but the results of [15] are valid if we consider co-domain N.

The co-domain of the height function is the lattice (N,≤), where N is the
set of natural numbers under the usual ordering ≤ and suprema and infima
are max and min, respectively.

For every p ∈ N, the cut of the height function, p-cut of h is an ordinary
relation hp on {1, 2, ...,m} × {1, 2, ..., n} defined by

(x, y) ∈ hp if and only if h(x, y) ≥ p.

We say that two rectangles {α, ..., β}×{γ, ..., δ} and {α1, ..., β1}×{γ1, ..., δ1}
are distant if they are disjoint and for every two cells, namely (a, b) from the
first rectangle and (c, d) from the second, we have (a− c)2 + (b− d)2 ≥ 4.

The height function h is called rectangular if for every p ∈ N, every nonempty
p-cut of h is a union of distant rectangles.

We denote by Irect(h) the system of islands defined by the height function
h.

In [15] it is proved that for every height function

h : {1, 2, ..., n} × {1, 2, ...,m} → N,

there is a rectangular height function

h∗ : {1, 2, ..., n} × {1, 2, ...,m} → N,
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such that Irect(h) = Irect(h∗).
Moreover, in [15] there is a representation theorem, namely:

let h : {1, 2, ...,m} × {1, 2, ..., n} → N be a rectangular height function. Then
there is a lattice L and an L-valued fuzzy relation Φ, such that the cuts of Φ
are precisely all islands of h.

It is proved in [16] that for every rectangular height function

h∗ : {1, 2, ..., n} × {1, 2, ...,m} → N,
there is a rectangular height function

h∗∗ : {1, 2, ..., n} × {1, 2, ...,m} → N,
such that Irect(h∗) = Irect(h∗∗) and in h∗∗ every island appears exactly in one
cut.

If a rectangular height function h∗∗ has the property that each island ap-
pears exactly in one cut, then we call it standard rectangular height function.

We denote by Λmax(m,n) the maximum number of different nonempty p-
cuts of a standard rectangular height function on the rectangular table of size
m×n. It is obtained in [16] that Λmax(m,n) = m+n−1. If m,n ≥ 3 and the
height function has maximally many rectangular islands, then the number of
different nonempty cuts are strictly less than Λmax(m,n).

It is an interesting fact proved in [16] that f m ≥ 3 and n ≥ 3 and a height
function h : {1, 2, ...,m} × {1, 2, ..., n} → N has maximally many rectangular
islands, then it has exactly two maximal islands.

We denote by Λcz
h (m,n) the number of different nonempty cuts of a standard

rectangular height function h in the case h has maximally many islands, i.e.,
when the number of islands is given by (1.1).

Let h : {1, 2, ...,m}×{1, 2, ..., n} → N be a standard rectangular height func-
tion having maximally many islands f(m,n). Then, Λcz

h (m,n) ≥ ⌈log2(m+ 1)⌉+
⌈log2(n+ 1)⌉ − 1, this lower bound is sharp, moreover if m,n ≥ 2, then
Λcz
h (m,n) ≤

⌊
m+n+3

2

⌋
, in addition for m,n ≥ 3 this bound is also sharp,

all proved also in [16]. This result might lead us closer to the solution to the
two-dimensional problem of height function with finite range, mentioned in
the former chapter.

12. Continuous case

Up to now in this paper, only discrete boards were considered. In [21],
Lengvárszky and Pach investigated continuous board; real-valued height func-
tion f is defined on a closed rectangle R ⊂ Rn. A rectangle S ⊂ R is a f -island,
if there exists an open set G ⊂ R containing S such that f(x) < infSf for ev-
ery x ∈ G \ S. The set of all f -islands for a fixed f are called a system of
rectangular islands. In [21] it is proved that the size of a maximal system of
rectangular islands is either countable or continuum, both exist.
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In paper [25] Pach et al. investigated the maximum number of continuous
islands of arbitrary form. From an obtained more general condition they
derived that the cardinality of maximal laminar i.e. CD-independent system
of closed discs in Rn is either countable or continuum. They also proved that
all island systems are laminar, but not every laminar system is a system of
islands for some height function. This paper looks for necessary conditions for
a laminar system in order to be a system of islands.

The paper [20] investigates island systems with continuous height functions.
It shows that these system of islands are strongly laminar, i.e. laminar with the
property that every two distinct sets in it have disjoint boundaries, however
not vice versa. It is shown also in this paper that in the discrete case, i.e. for
rectangular islands with integer cordinates for a maximal rectangular system
of islands with continuous height function |H| on an m × n grid we have⌈
min(m,n)

4

⌉
≤ |H| ≤

⌈
m
2

⌉ ⌈
n
2

⌉
holds. In the continous case this paper gives

sufficient conditions for maximal strongly laminar systems to have cardinality
countable or continuum.

13. Generalization

It is possible to generalize the notion of islands in such a way that formal
concepts and prime implicants of Boolean functions are covered, the details
can be read in [8].

An island domain is a pair (C,K), where C ⊆ K ⊆ P (U) for some nonempty
finite set U such that U ∈ C. By a height function we mean a map h : U → R.

We denote the cover relation of the poset (K,⊆) by≺, and we writeK1 ≼ K2

if K1 ≺ K2 or K1 = K2.
We say that S is a pre-island with respect to the triple (C,K, h), if every

K ∈ K with S ≺ K satisfies

minh (K) < minh (S) .

We say that S is an island with respect to the triple (C,K, h), if everyK ∈ K
with S ≺ K satisfies

h (u) < minh (S) for all u ∈ K \ S.

The paper gives necessary condition for a being a system of pre-islands, called
admissibility. This condition is not sufficient, hovewer the paper proves that
maximal pre-island systems and maximal admissible families are the same.
An island domain (C,K) is a connective island domain if

∀A,B ∈ C : (A ∩B ̸= ∅ and B * A) =⇒ ∃K ∈ K : A ⊂ K ⊆ A ∪B.

A result of [8] is that the following three conditions are equivalent for any
island domain (C,K):
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(i) (C,K) is a connective island domain.
(ii) Every system of pre-islands corresponding to (C,K) is CD-independent.
(iii) Every system of pre-islands corresponding to (C,K) is CDW-independent.

In connective island domains the systems of pre-islands are exactly the
admissible systems. A binary relation δ ⊆ C × C is defined that expresses the
fact that a set B ∈ C is in some sense close to a set A ∈ C:

AδB ⇔ ∃K ∈ K : A ≼ K and K ∩B ̸= ∅.

We say that A,B ∈ C are distant if neither AδB nor BδA holds. The island
domain (C,K) is called a proximity domain, if it is a connective island domain
and the relation δ is symmetric for nonempty sets, that is

∀A,B ∈ C \ {∅} : AδB ⇔ BδA.

It is proved in this paper that in proximity domains systems of islands are
exactly the distant families.

14. Didactical aspects

It is worth to introduce this topic to young students because there are
several elementary problems that they can treat by themselves. Some such
approaches can be found in [10], [12], [22] or [23].

Acknowledgement

The authors expresses her gratitude to all her coauthors in this topic.

References
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[17] Lengvárszky, Zs.: The minimum cardinality of maximal systems of rectangular is-
lands, European J. Combin., 30 (2009), no. 3, 216–219.
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[23] Máder, A., and Vajda, R.: Elementary Approaches to the Teaching of the Com-
binatorial Problem of Rectangular Islands, Int. J. Comput. Math. Learn., 15 (2010),
267–281.

[24] Pluhár, G.: The number of brick islands by means of distributive lattices, Acta Sci.
Math. (Szeged), 75 (2009), 3–11.
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