Eszter K. Horváth, Szeged

Co-authors: Stephan Foldes, Sándor Radeleczki, Tamás Waldhauser

Trojanovice, Sept 6.

Islands

Discrete, "digitalized" islands, rectangular case

1	2	1	2	1
1	5	7	2	2
1	7	5	1	1
2	5	7	2	2
1	2	1	1	2
1	1	1	1	1

Island domain

$$U \in \mathcal{C} \subseteq \mathcal{K} \subseteq \mathcal{P}(U)$$

Let $h: U \to \mathbb{R}$ be a height function and let $S \in \mathcal{C}$ be a nonempty set.

We denote the cover relation of the poset (K, \subseteq) by \prec , and we write $K_1 \preceq K_2$ if $K_1 \prec K_2$ or $K_1 = K_2$.

We say that S is a *island* with respect to the triple (C, K, h), if every $K \in K$ with $S \prec K$ satisfies

 $h(u) < \min h(S)$ for all $u \in K \setminus S$

Island domain

$$U \in \mathcal{C} \subseteq \mathcal{K} \subseteq \mathcal{P}(U)$$

Let $h: U \to \mathbb{R}$ be a height function and let $S \in \mathcal{C}$ be a nonempty set.

We denote the cover relation of the poset (K, \subseteq) by \prec , and we write $K_1 \preceq K_2$ if $K_1 \prec K_2$ or $K_1 = K_2$.

We say that S is a *island* with respect to the triple (C, K, h), if every $K \in K$ with $S \prec K$ satisfies

 $h(u) < \min h(S)$ for all $u \in K \setminus S$.

Island domain

$$U \in \mathcal{C} \subseteq \mathcal{K} \subseteq \mathcal{P}(U)$$

Let $h: U \to \mathbb{R}$ be a height function and let $S \in \mathcal{C}$ be a nonempty set.

We denote the cover relation of the poset (K, \subseteq) by \prec , and we write $K_1 \preceq K_2$ if $K_1 \prec K_2$ or $K_1 = K_2$.

We say that S is a *island* with respect to the triple (C, K, h), if every $K \in K$ with $S \prec K$ satisfies

 $h(u) < \min h(S)$ for all $u \in K \setminus S$.

$$(\mathcal{C},\mathcal{K})$$
 $\delta \subseteq \mathcal{C} \times \mathcal{C}$

$$A\delta B \Leftrightarrow \exists K \in \mathcal{K}: A \leq K \text{ and } K \cap B \neq \emptyset.$$
 (1)

It is easy to verify that relation δ satisfies the following properties for all $A, B, C \in \mathcal{C}$ whenever $B \cup C \in \mathcal{C}$:

$$A\delta B \Rightarrow B \neq \emptyset;$$

$$A \cap B \neq \emptyset \Rightarrow A\delta B;$$

$$A\delta(B \cup C) \Leftrightarrow (A\delta B \text{ or } A\delta C).$$

$$(\mathcal{C},\mathcal{K})$$
$$\delta\subseteq\mathcal{C}\times\mathcal{C}$$

$$A\delta B \Leftrightarrow \exists K \in \mathcal{K}: A \leq K \text{ and } K \cap B \neq \emptyset.$$
 (1)

It is easy to verify that relation δ satisfies the following properties for all $A,B,C\in\mathcal{C}$ whenever $B\cup C\in\mathcal{C}$:

$$A\delta B \Rightarrow B \neq \emptyset;$$

$$A \cap B \neq \emptyset \Rightarrow A\delta B;$$

$$A\delta(B \cup C) \Leftrightarrow (A\delta B \text{ or } A\delta C).$$

$$(\mathcal{C},\mathcal{K})$$

 $\delta\subseteq\mathcal{C}\times\mathcal{C}$

$$A\delta B \Leftrightarrow \exists K \in \mathcal{K} : A \leq K \text{ and } K \cap B \neq \emptyset.$$
 (1)

It is easy to verify that relation δ satisfies the following properties for all $A, B, C \in \mathcal{C}$ whenever $B \cup C \in \mathcal{C}$:

$$A\delta B \Rightarrow B \neq \emptyset;$$

$$A \cap B \neq \emptyset \Rightarrow A\delta B;$$

$$A\delta(B \cup C) \Leftrightarrow (A\delta B \text{ or } A\delta C)$$

$$(\mathcal{C}, \mathcal{K})$$
$$\delta \subseteq \mathcal{C} \times \mathcal{C}$$

$$A\delta B \Leftrightarrow \exists K \in \mathcal{K}: A \leq K \text{ and } K \cap B \neq \emptyset.$$
 (1)

It is easy to verify that relation δ satisfies the following properties for all $A, B, C \in \mathcal{C}$ whenever $B \cup C \in \mathcal{C}$:

$$A\delta B \Rightarrow B \neq \emptyset;$$

 $A \cap B \neq \emptyset \Rightarrow A\delta B;$
 $A\delta(B \cup C) \Leftrightarrow (A\delta B \text{ or } A\delta C).$

Distant families

We say that $A, B \in \mathcal{C}$ are distant if neither $A\delta B$ nor $B\delta A$ holds.

A nonempty family $\mathcal{H} \subseteq \mathcal{C}$ will be called a *distant family*, if any two incomparable members of \mathcal{H} are distant.

Lemma If $\mathcal{H} \subseteq \mathcal{C}$ is a distant family, then \mathcal{H} is CDW-independent. Moreover, if $U \in \mathcal{H}$, then U is admissible.

Distant families

We say that $A, B \in \mathcal{C}$ are distant if neither $A\delta B$ nor $B\delta A$ holds.

A nonempty family $\mathcal{H}\subseteq\mathcal{C}$ will be called a *distant family*, if any two incomparable members of \mathcal{H} are distant.

Lemma If $\mathcal{H} \subseteq \mathcal{C}$ is a distant family, then \mathcal{H} is CDW-independent. Moreover, if $U \in \mathcal{H}$, then U is admissible.

Distant families

We say that $A, B \in \mathcal{C}$ are distant if neither $A\delta B$ nor $B\delta A$ holds.

A nonempty family $\mathcal{H}\subseteq\mathcal{C}$ will be called a *distant family*, if any two incomparable members of \mathcal{H} are distant.

Lemma If $\mathcal{H} \subseteq \mathcal{C}$ is a distant family, then \mathcal{H} is CDW-independent. Moreover, if $U \in \mathcal{H}$, then U is admissible.

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$,

or if \mathbb{P} is without 0, then a and b have no common lowerbound

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$,

or if \mathbb{P} is without 0, then a and b have no common lowerbound

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$,

or if \mathbb{P} is without 0, then a and b have no common lowerbound.

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$,

or if \mathbb{P} is without 0, then a and b have no common lowerbound.

CDW-independence

Definition

A family $\mathcal{H} \subseteq \mathcal{P}(U)$ is weakly independent if

$$H \subseteq \bigcup_{i \in I} H_i \implies \exists i \in I : H \subseteq H_i$$
 (2)

holds for all $H \in \mathcal{H}, H_i \in \mathcal{H} (i \in I)$.

If \mathcal{H} is both CD-independent and weakly independent, then we say that \mathcal{H} is CDW-independent.

CDW-independence

Definition

A family $\mathcal{H} \subseteq \mathcal{P}(U)$ is weakly independent if

$$H \subseteq \bigcup_{i \in I} H_i \implies \exists i \in I : H \subseteq H_i$$
 (2)

holds for all $H \in \mathcal{H}, H_i \in \mathcal{H} (i \in I)$.

If \mathcal{H} is both CD-independent and weakly independent, then we say that \mathcal{H} is CDW-independent.

Admissible systems in island domains

$$U \in \mathcal{C} \subseteq \mathcal{K} \subseteq \mathcal{P}(U)$$

Definition

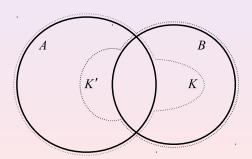
Let $\mathcal{H} \subseteq \mathcal{C} \setminus \{\emptyset\}$ be a family of sets such that $U \in \mathcal{H}$. We say that \mathcal{H} is admissible, if for every nonempty antichain $\mathcal{A} \subseteq \mathcal{H}$

$$\exists H \in \mathcal{A} \ \forall K \in \mathcal{K}: \ H \subset K \implies K \nsubseteq \bigcup \mathcal{A}. \tag{3}$$

Definition

A pair $(\mathcal{C}, \mathcal{K})$ is an connective island domain if

 $\forall A, B \in \mathcal{C} : (A \cap B \neq \emptyset \text{ and } B \nsubseteq A) \implies \exists K \in \mathcal{K} : A \subset K \subseteq A \cup B.$



Theorem

The following three conditions are equivalent for any pair $(\mathcal{C}, \mathcal{K})$:

- (i) (C, K) is a connective island domain.
- (ii) Every system of pre-islands corresponding to (C, K) is CD-independent.
- (iii) Every system of pre-islands corresponding to (C, K) is CDW-independent.

Theorem

The following three conditions are equivalent for any pair $(\mathcal{C}, \mathcal{K})$:

- (i) (C, K) is a connective island domain.
- (ii) Every system of pre-islands corresponding to $(\mathcal{C}, \mathcal{K})$ is CD-independent.
- (iii) Every system of pre-islands corresponding to (C, K) is CDW-independent.

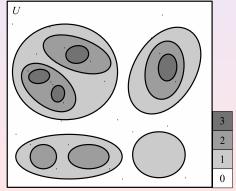
Theorem

The following three conditions are equivalent for any pair $(\mathcal{C}, \mathcal{K})$:

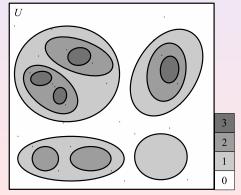
- (i) (C, K) is a connective island domain.
- (ii) Every system of pre-islands corresponding to (C, K) is CD-independent.
- (iii) Every system of pre-islands corresponding to (C, K) is CDW-independent.

Let us consider a CD-independent family \mathcal{H} .

Clearly, for every $u \in U$, the set of members of \mathcal{H} containing u is a finite chain.

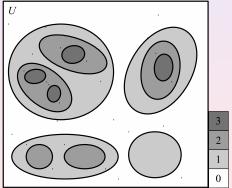


Let us consider a CD-independent family \mathcal{H} . Clearly, for every $u \in U$, the set of members of \mathcal{H} containing u is a finite chain.



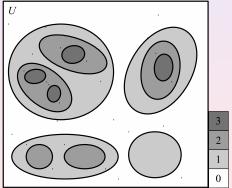
Let us consider a CD-independent family \mathcal{H} .

Clearly, for every $u \in U$, the set of members of \mathcal{H} containing u is a finite chain.



Let us consider a CD-independent family \mathcal{H} .

Clearly, for every $u \in U$, the set of members of \mathcal{H} containing u is a finite chain.



Distant families in connective island domains

Theorem

Let (C, \mathcal{K}) be a connective island domain and let $\mathcal{H} \subseteq C \setminus \{\emptyset\}$ with $U \in \mathcal{H}$. If \mathcal{H} is a distant family, then \mathcal{H} is a system of islands; moreover, \mathcal{H} is the system of islands corresponding to its standard height function.

The island domain $(\mathcal{C},\mathcal{K})$ is called a *proximity domain*, if it is a connective island domain and the relation δ is symmetric for nonempty sets, that is

$$\forall A, B \in \mathcal{C} \setminus \{\emptyset\} : A\delta B \Leftrightarrow B\delta A. \tag{4}$$

If a relation δ defined on $\mathcal{P}(U)$ satisfies the mentioned three properties and δ is symmetric for nonempty sets, then (U, δ) is called a *proximity space*.

 δ satisfies the following properties for all $A,B,C\in\mathcal{C}$ whenever $B\cup C\in\mathcal{C}$

$$A \delta B \Rightarrow B \neq \emptyset;$$

 $A \cap B \neq \emptyset \Rightarrow A \delta B;$
 $A \delta (B \cup C) \Leftrightarrow (A \delta B \text{ or } A \delta C).$

The notion goes back to Frigyes Riesz (1908), however this axiomatization s due to Vadim A. Efremovich

The island domain $(\mathcal{C},\mathcal{K})$ is called a *proximity domain*, if it is a connective island domain and the relation δ is symmetric for nonempty sets, that is

$$\forall A, B \in \mathcal{C} \setminus \{\emptyset\} : A\delta B \Leftrightarrow B\delta A. \tag{4}$$

If a relation δ defined on $\mathcal{P}\left(U\right)$ satisfies the mentioned three properties and δ is symmetric for nonempty sets, then $\left(U,\delta\right)$ is called a *proximity space*.

 δ satisfies the following properties for all $A,B,C\in\mathcal{C}$ whenever $B\cup C\in\mathcal{C}$

$$A\delta B \Rightarrow B \neq \emptyset;$$

 $A \cap B \neq \emptyset \Rightarrow A\delta B;$
 $A\delta(B \cup C) \Leftrightarrow (A\delta B \text{ or } A\delta C).$

The notion goes back to Frigyes Riesz (1908), however this axiomatization is due to Vadim A. Efremovich

The island domain $(\mathcal{C},\mathcal{K})$ is called a *proximity domain*, if it is a connective island domain and the relation δ is symmetric for nonempty sets, that is

$$\forall A, B \in \mathcal{C} \setminus \{\emptyset\} : A\delta B \Leftrightarrow B\delta A. \tag{4}$$

If a relation δ defined on $\mathcal{P}(U)$ satisfies the mentioned three properties and δ is symmetric for nonempty sets, then (U, δ) is called a *proximity space*.

 δ satisfies the following properties for all $A,B,C\in\mathcal{C}$ whenever $B\cup C\in\mathcal{C}$:

$$A\delta B \Rightarrow B \neq \emptyset;$$

 $A \cap B \neq \emptyset \Rightarrow A\delta B;$
 $A\delta(B \cup C) \Leftrightarrow (A\delta B \text{ or } A\delta C).$

The notion goes back to Frigyes Riesz (1908), however this axiomatization is due to Vadim A. Efremovich.

The island domain $(\mathcal{C},\mathcal{K})$ is called a *proximity domain*, if it is a connective island domain and the relation δ is symmetric for nonempty sets, that is

$$\forall A, B \in \mathcal{C} \setminus \{\emptyset\} : A\delta B \Leftrightarrow B\delta A. \tag{4}$$

If a relation δ defined on $\mathcal{P}\left(U\right)$ satisfies the mentioned three properties and δ is symmetric for nonempty sets, then $\left(U,\delta\right)$ is called a *proximity space*.

 δ satisfies the following properties for all $A,B,C\in\mathcal{C}$ whenever $B\cup C\in\mathcal{C}$:

$$A\delta B \Rightarrow B \neq \emptyset;$$

 $A \cap B \neq \emptyset \Rightarrow A\delta B;$
 $A\delta(B \cup C) \Leftrightarrow (A\delta B \text{ or } A\delta C).$

The notion goes back to Frigyes Riesz (1908), however this axiomatization is due to Vadim A. Efremovich.

Proposition

If (C, K) is a proximity domain, then any system of islands corresponding to (C, K) is a distant system.

Proof

$$h(b) < \min h(A) \le h(a)$$

$$h(a) < \min h(B) \le h(b)$$

Proposition

If (C, K) is a proximity domain, then any system of islands corresponding to (C, K) is a distant system.

Proof

$$h(b) < \min h(A) \le h(a)$$

$$h(a) < \min h(B) \le h(b)$$

Characterization for system of islands for proximity domains

Corollary

If (C, K) is a proximity domain, and $\mathcal{H} \subseteq C \setminus \{\emptyset\}$ with $U \in \mathcal{H}$, then \mathcal{H} is a system of islands if and only if \mathcal{H} is a distant family. Moreover, in this case \mathcal{H} is the system of islands corresponding to its standard height function.

Pre-island

$$U \in \mathcal{C} \subseteq \mathcal{K} \subseteq \mathcal{P}(U)$$

Let $h: U \to \mathbb{R}$ be a height function and let $S \in \mathcal{C}$ be a nonempty set.

We say that S is an *pre-island* with respect to the triple (C, K, h), if every $K \in K$ with $S \prec K$ satisfies

$$\min h(K) < \min h(S)$$
.

We say that S is a *island* with respect to the triple (C, K, h), if every $K \in K$ with $S \prec K$ satisfies

$$h(u) < \min h(S)$$
 for all $u \in K \setminus S$.

Pre-island

$$U \in \mathcal{C} \subseteq \mathcal{K} \subseteq \mathcal{P}(U)$$

Let $h \colon U \to \mathbb{R}$ be a height function and let $S \in \mathcal{C}$ be a nonempty set.

We say that S is an *pre-island* with respect to the triple (C, K, h), if every $K \in K$ with $S \prec K$ satisfies

$$\min h(K) < \min h(S)$$
.

We say that S is a *island* with respect to the triple (C, K, h), if every $K \in K$ with $S \prec K$ satisfies

$$h(u) < \min h(S)$$
 for all $u \in K \setminus S$.

Example

Let A_1, \ldots, A_n be nonempty sets, and let $\mathcal{I} \subseteq A_1 \times \cdots \times A_n$. Let us define

$$U = A_1 \times \cdots \times A_n,$$

$$\mathcal{K} = \{B_1 \times \cdots \times B_n \colon \emptyset \neq B_i \subseteq A_i, \ 1 \le i \le n\}$$

$$\mathcal{C} = \{C \in \mathcal{K} \colon C \subseteq \mathcal{I}\} \cup \{U\},$$

and let $h: U \longrightarrow \{0,1\}$ be the height function given by

$$h\left(a_1,\ldots,a_n
ight):=egin{cases} 1, & ext{if } (a_1,\ldots,a_n)\in\mathcal{I}; \ 0, & ext{if } (a_1,\ldots,a_n)\in\mathcal{U}\setminus\mathcal{I}; \end{cases}$$
 for all $(a_1,\ldots,a_n)\in\mathcal{U}$.

It is easy to see that the pre-islands corresponding to the triple $(\mathcal{C}, \mathcal{K}, h)$ are exactly U and the maximal elements of the poset $(\mathcal{C} \setminus \{U\}, \subseteq)$.

formal concepts

prime implicants of a Boolean function

Example

Let A_1, \ldots, A_n be nonempty sets, and let $\mathcal{I} \subseteq A_1 \times \cdots \times A_n$. Let us define

$$U = A_1 \times \cdots \times A_n,$$

$$\mathcal{K} = \{B_1 \times \cdots \times B_n \colon \emptyset \neq B_i \subseteq A_i, \ 1 \le i \le n\}$$

$$\mathcal{C} = \{C \in \mathcal{K} \colon C \subseteq \mathcal{I}\} \cup \{U\},$$

and let $h: U \longrightarrow \{0,1\}$ be the height function given by

$$h(a_1,\ldots,a_n):=egin{cases} 1, & ext{if } (a_1,\ldots,a_n)\in\mathcal{I}; \ 0, & ext{if } (a_1,\ldots,a_n)\in U\setminus\mathcal{I}; \end{cases}$$
 for all $(a_1,\ldots,a_n)\in U$.

It is easy to see that the pre-islands corresponding to the triple $(\mathcal{C}, \mathcal{K}, h)$ are exactly U and the maximal elements of the poset $(\mathcal{C} \setminus \{U\}, \subseteq)$.

formal concepts

prime implicants of a Boolean function

Admissible systems in island domains

$$U \in \mathcal{C} \subseteq \mathcal{K} \subseteq \mathcal{P}(U)$$

Definition

Let $\mathcal{H} \subseteq \mathcal{C} \setminus \{\emptyset\}$ be a family of sets such that $U \in \mathcal{H}$. We say that \mathcal{H} is admissible, if for every nonempty antichain $\mathcal{A} \subseteq \mathcal{H}$

$$\exists H \in \mathcal{A} \ \forall K \in \mathcal{K} : \ H \subset K \implies K \nsubseteq \bigcup \mathcal{A}. \tag{5}$$

Proposition

Every system of pre-islands is admissible.

Admissible systems in island domains

$$U \in \mathcal{C} \subseteq \mathcal{K} \subseteq \mathcal{P}(U)$$

Definition

Let $\mathcal{H} \subseteq \mathcal{C} \setminus \{\emptyset\}$ be a family of sets such that $U \in \mathcal{H}$. We say that \mathcal{H} is admissible, if for every nonempty antichain $\mathcal{A} \subseteq \mathcal{H}$

$$\exists H \in \mathcal{A} \ \forall K \in \mathcal{K} : \ H \subset K \implies K \nsubseteq \bigcup \mathcal{A}. \tag{5}$$

Proposition

Every system of pre-islands is admissible.

Let $\mathcal{H}\subseteq\mathcal{C}$ be an admissible family of sets.

We define subfamilies $\mathcal{H}^{(i)} \subseteq \mathcal{H}$ (i = 0, 1, 2, ...) recursively as follows. Let $\mathcal{H}^{(0)} = \{U\}$.

For i > 0, if $\mathcal{H} \neq \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)}$, then let $\mathcal{H}^{(i)}$ consist of all those sets $H \in \mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)})$ that have the following property:

$$\forall K \in \mathcal{K}: \ H \subset K \implies K \nsubseteq \bigcup \left(\mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \dots \cup \mathcal{H}^{(i-1)})\right). \tag{6}$$

Since \mathcal{H} is finite and admissible, after finitely many steps we obtain a partition $\mathcal{H} = \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(r)}$.

$$h_{\mathcal{H}}(x) := \max \left\{ i \in \{1, \dots, r\} : x \in \bigcup \mathcal{H}^{(i)} \right\} \text{ for all } x \in U.$$
 (7)

Let $\mathcal{H}\subseteq\mathcal{C}$ be an admissible family of sets.

We define subfamilies $\mathcal{H}^{(i)}\subseteq\mathcal{H}$ $(i=0,1,2,\ldots)$ recursively as follows.

Let
$$\mathcal{H}^{(0)} = \{U\}$$

For i > 0, if $\mathcal{H} \neq \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)}$, then let $\mathcal{H}^{(i)}$ consist of all those sets $H \in \mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)})$ that have the following property:

$$\forall K \in \mathcal{K}: \ H \subset K \implies K \nsubseteq \bigcup \left(\mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \dots \cup \mathcal{H}^{(i-1)})\right). \tag{6}$$

Since \mathcal{H} is finite and admissible, after finitely many steps we obtain a partition $\mathcal{H} = \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(r)}$.

$$h_{\mathcal{H}}(x) := \max \left\{ i \in \{1, \dots, r\} : x \in \bigcup \mathcal{H}^{(i)} \right\} \text{ for all } x \in U.$$
 (7)

Let $\mathcal{H}\subseteq\mathcal{C}$ be an admissible family of sets.

We define subfamilies $\mathcal{H}^{(i)}\subseteq\mathcal{H}$ $(i=0,1,2,\ldots)$ recursively as follows. Let $\mathcal{H}^{(0)}=\{U\}$.

For i > 0, if $\mathcal{H} \neq \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)}$, then let $\mathcal{H}^{(i)}$ consist of all those sets $H \in \mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)})$ that have the following property:

$$\forall K \in \mathcal{K}: \ H \subset K \implies K \nsubseteq \bigcup \left(\mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \dots \cup \mathcal{H}^{(i-1)})\right). \tag{6}$$

Since \mathcal{H} is finite and admissible, after finitely many steps we obtain a partition $\mathcal{H} = \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(r)}$.

$$h_{\mathcal{H}}(x) := \max \left\{ i \in \{1, \dots, r\} : x \in \bigcup \mathcal{H}^{(i)} \right\} \text{ for all } x \in U.$$
 (7)

Let $\mathcal{H}\subseteq\mathcal{C}$ be an admissible family of sets.

We define subfamilies $\mathcal{H}^{(i)}\subseteq\mathcal{H}$ $(i=0,1,2,\ldots)$ recursively as follows. Let $\mathcal{H}^{(0)}=\{U\}$.

For i > 0, if $\mathcal{H} \neq \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)}$, then let $\mathcal{H}^{(i)}$ consist of all those sets $H \in \mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)})$ that have the following property:

$$\forall K \in \mathcal{K}: \ H \subset K \implies K \nsubseteq \bigcup (\mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \dots \cup \mathcal{H}^{(i-1)})). \tag{6}$$

Since \mathcal{H} is finite and admissible, after finitely many steps we obtain a partition $\mathcal{H} = \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(r)}$.

$$h_{\mathcal{H}}(x) := \max \left\{ i \in \{1, \dots, r\} : x \in \bigcup \mathcal{H}^{(i)} \right\} \text{ for all } x \in U.$$
 (7)

Let $\mathcal{H}\subseteq\mathcal{C}$ be an admissible family of sets.

We define subfamilies $\mathcal{H}^{(i)}\subseteq\mathcal{H}$ $(i=0,1,2,\ldots)$ recursively as follows. Let $\mathcal{H}^{(0)}=\{U\}$.

For i > 0, if $\mathcal{H} \neq \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)}$, then let $\mathcal{H}^{(i)}$ consist of all those sets $H \in \mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)})$ that have the following property:

$$\forall K \in \mathcal{K}: \ H \subset K \implies K \nsubseteq \bigcup (\mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \dots \cup \mathcal{H}^{(i-1)})). \tag{6}$$

Since \mathcal{H} is finite and admissible, after finitely many steps we obtain a partition $\mathcal{H} = \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(r)}$.

$$h_{\mathcal{H}}(x) := \max \left\{ i \in \{1, \dots, r\} : x \in \bigcup \mathcal{H}^{(i)} \right\} \text{ for all } x \in U.$$
 (7)

Let $\mathcal{H} \subseteq \mathcal{C}$ be an admissible family of sets.

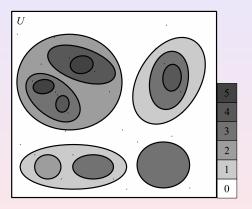
We define subfamilies $\mathcal{H}^{(i)} \subseteq \mathcal{H}$ (i = 0, 1, 2, ...) recursively as follows. Let $\mathcal{H}^{(0)} = \{U\}$.

For i > 0, if $\mathcal{H} \neq \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)}$, then let $\mathcal{H}^{(i)}$ consist of all those sets $H \in \mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)})$ that have the following property:

$$\forall K \in \mathcal{K}: \ H \subset K \implies K \nsubseteq \bigcup \left(\mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \dots \cup \mathcal{H}^{(i-1)})\right). \tag{6}$$

Since \mathcal{H} is finite and admissible, after finitely many steps we obtain a partition $\mathcal{H}=\mathcal{H}^{(0)}\cup\cdots\cup\mathcal{H}^{(r)}$.

$$h_{\mathcal{H}}(x) := \max \left\{ i \in \{1, \dots, r\} : x \in \bigcup \mathcal{H}^{(i)} \right\} \text{ for all } x \in U.$$
 (7)



Pre-islands and admissible systems

Proposition

If $\mathcal{H} \subseteq \mathcal{C}$ is an admissible family of sets and $h_{\mathcal{H}}$ is the corresponding canonical height function, then every member of \mathcal{H} is a pre-island with respect to $(\mathcal{C}, \mathcal{K}, h_{\mathcal{H}})$.

Theorem

A subfamily of C is a maximal system of pre-islands if and only if it is a maximal admissible family.

Pre-islands and admissible systems

Proposition

If $\mathcal{H} \subseteq \mathcal{C}$ is an admissible family of sets and $h_{\mathcal{H}}$ is the corresponding canonical height function, then every member of \mathcal{H} is a pre-island with respect to $(\mathcal{C}, \mathcal{K}, h_{\mathcal{H}})$.

Theorem

A subfamily of $\mathcal C$ is a maximal system of pre-islands if and only if it is a maximal admissible family.

Subsets of pre-island systems

The following two conditions are equivalent for any pair (C, K):

Any subset of a system of pre-islands corresponding to (C, K) is also a system of pre-islands.

The systems of pre-islands corresponding to (C, K) are exactly the admissible families.

Subsets of pre-island systems

The following two conditions are equivalent for any pair (C, K):

Any subset of a system of pre-islands corresponding to (C, K) is also a system of pre-islands.

The systems of pre-islands corresponding to (C, K) are exactly the admissible families.

Islands and proximity domains

Finally, let us consider the following condition on (C, K), which is stronger than that of being a connective island domain:

$$\forall K_1, K_2 \in \mathcal{K}: K_1 \cap K_2 \neq \emptyset \implies K_1 \cup K_2 \in \mathcal{K}. \tag{8}$$

Theorem

Suppose that $(\mathcal{C}, \mathcal{K})$ satisfies the above condition, and assume that for all $C \in \mathcal{C}$, $K \in \mathcal{K}$ with $C \prec K$ we have $|K \setminus C| = 1$. Then $(\mathcal{C}, \mathcal{K})$ is a proximity domain; pre-islands and islands corresponding to $(\mathcal{C}, \mathcal{K})$ coincide. Therefore, if $\mathcal{H} \subseteq \mathcal{C} \setminus \{\emptyset\}$ and $U \in \mathcal{H}$, then \mathcal{H} is a system of (pre-) islands if and only if \mathcal{H} is a distant family. Moreover, in this case \mathcal{H} is the system of (pre-) islands corresponding to its standard height function.

Example

Let G = (U, E) be a connected simple graph with vertex set U and edge set E; let \mathcal{K} consist of the connected subsets of U, and let $\mathcal{C} \subseteq \mathcal{K}$ such that $U \in \mathcal{C}$. Let \mathcal{C} consist of the connected convex sets of vertices.

Islands and proximity domains

Corollary

Let G be a graph with vertex set U; let (C, K) be a connective island domain corresponding to (C, K), and let $\mathcal{H} \subseteq C \setminus \{\emptyset\}$ with $U \in \mathcal{H}$. Then \mathcal{H} is a system of (pre-) islands if and only if \mathcal{H} is distant; moreover, in this case \mathcal{H} is the system of (pre-) islands corresponding to its standard height function.

Islands and proximity domains

THANK YOU FOR YOUR ATTENTION

Supported by the project "Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical sciences" of project number TÁMOP-4.2.2.A-11/1/KONV-2012-0073. Thank you for the support!

A projekt az Európai Unió támogatásával az Európai Szociális Alap társfinanszírozásával valósul meg.

SZÉCHENYI TERV