Islands, lattices and trees, Mersenne numbers

Eszter K. Horváth, Szeged

Coauthors: János Barát, Péter Hajnal, Zoltán Németh

SSAOS 2008, Třešt'

Definition

Grid, neighbourhood relation

Definition

We call a rectangle/triangle an island, if for the cell t, if we denote its height by a_{t}, then for each cell \hat{t} neighbouring with a cell of the rectange/triangle T, the inequality $a_{\hat{t}}<\min \left\{a_{t}: t \in T\right\}$ holds.

1	2	1	2	1
1	5	7	2	2
1	7	5	1	1
2	5	7	2	2
1	2	1	1	2
1	1	1	1	1

Preliminaries/1

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of

Preliminaries/1

Coding theory
S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

Preliminaries/2

Islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics., to appear.

The maximum number of rectangular islands in a $m \times n$ rectangular board on sđuare orid.

Preliminaries/2

Islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics., to appear.

Preliminaries/2

Islands
G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics., to appear.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$
f(m, n)=\left[\frac{m n+m+n-1}{2}\right] .
$$

Preliminaries/3

Islands

G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

Preliminaries/3

Islands
G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

Preliminaries/4

Islands

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, to appear. Available at http://www.math.u-szeged.hu/horvath

n

Preliminaries/4

Islands

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, to appear. Available at http://www.math.u-szeged.hu/~horvath

7

Preliminaries/4

Islands
E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, to appear. Available at http://www.math.u-szeged.hu/~horvath

For the maximum number of triangular islands in an equilateral rectangle of side length $n, \frac{n^{2}+3 n}{5} \leq f(n) \leq \frac{3 n^{2}+9 n+2}{14}$ holds.

t

Characterization of systems of islands without heights

Lemma 1 (G. Czédi). Let \mathcal{C} be the set of cells. Let \mathcal{I} be a subset of $P(\mathcal{C})$. Then the following two conditions are equivalent:
(i) There exists mapping $A: \mathcal{C} \rightarrow \mathbb{R}, c \mapsto a_{c}$ such that $\mathcal{I}=\mathcal{I}_{\text {rect } / \text { tri }}(A)$.

Characterization of systems of islands without heights

Lemma 1 (G. Czédi). Let \mathcal{C} be the set of cells. Let \mathcal{I} be a subset of $P(\mathcal{C})$. Then the following two conditions are equivalent:
(i) There exists mapping $A: \mathcal{C} \rightarrow \mathbb{R}, c \mapsto a_{c}$ such that $\mathcal{I}=\mathcal{I}_{\text {rect } / \text { tri }}(A)$.
(ii) $\mathcal{C} \in \mathcal{I}$, and for any $I_{1}, I_{2} \in \mathcal{I}$ either $I_{1} \subseteq I_{2}$, or $I_{2} \subseteq I_{1}$, or I_{1} and I_{2} are far from each other.

Characterization of systems of islands without heights

Lemma 1 (G. Czédi). Let \mathcal{C} be the set of cells. Let \mathcal{I} be a subset of $P(\mathcal{C})$. Then the following two conditions are equivalent:
(i) There exists mapping $A: \mathcal{C} \rightarrow \mathbb{R}, c \mapsto a_{c}$ such that
$\mathcal{I}=\mathcal{I}_{\text {rect } / \text { tri }}(A)$.
(ii) $\mathcal{C} \in \mathcal{I}$, and for any $I_{1}, I_{2} \in \mathcal{I}$ either $I_{1} \subseteq I_{2}$, or $I_{2} \subseteq I_{1}$, or I_{1} and I_{2} are far from each other.

Subsets of \mathcal{I} satisfying the equivalent conditions of Lemma 1 will be called sytems of rectangular/triangular islands.

Proving methods/1

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Proving methods/1

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Proving methods/1

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements.

Proving methods/2

GRAPH THEORETICAL METHOD

Proving methods/2

GRAPH THEORETICAL METHOD

Proving methods/2

GRAPH THEORETICAL METHOD

Lemma 2 (folklore)

Proving methods/2

GRAPH THEORETICAL METHOD

Lemma 2 (folklore)
(i) Let T be a binary tree with ℓ leaves. Then the number of vertices of T depends only on ℓ, moreover $|V|=2 \ell-1$.
(ii) Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then

Proving methods/2

GRAPH THEORETICAL METHOD

Lemma 2 (folklore)
(i) Let T be a binary tree with ℓ leaves. Then the number of vertices of T depends only on ℓ, moreover $|V|=2 \ell-1$.
(ii) Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then

$$
|V| \leq 2 \ell-1
$$

Proving methods/2

GRAPH THEORETICAL METHOD

Lemma 2 (folklore)
(i) Let T be a binary tree with ℓ leaves. Then the number of vertices of T depends only on ℓ, moreover $|V|=2 \ell-1$.
(ii) Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \leq 2 \ell-1$.

We have $4 s+2 d \leq(n+1)(m+1)$.
The number of leaves of $T(\mathcal{I})$ is $\ell=s+d$. Hence by Lemma 2 the number of islands is

$$
|V|-d \leq(2 \ell-1)-d=2 s+d-1 \leq \frac{1}{2}(n+1)(m+1)-1
$$

Proving methods/3

ELEMENTARY METHOD

Proving methods/3

ELEMENTARY METHOD

We define

$$
\mu(R)=\mu(u, v):=(u+1)(v+1) .
$$

Proving methods/3

ELEMENTARY METHOD

We define

$$
\mu(R)=\mu(u, v):=(u+1)(v+1) .
$$

Now

$$
f(m, n)=1+\sum_{R \in \max \mathcal{I}} f(R)=1+\sum_{R \in \max \mathcal{I}}\left(\left[\frac{(u+1)(v+1)}{2}\right]-1\right)
$$

Proving methods/3

ELEMENTARY METHOD

We define

$$
\mu(R)=\mu(u, v):=(u+1)(v+1)
$$

Now

$$
\begin{gathered}
f(m, n)=1+\sum_{R \in \max \mathcal{I}} f(R)=1+\sum_{R \in \max \mathcal{I}}\left(\left[\frac{(u+1)(v+1)}{2}\right]-1\right) \\
=1+\sum_{R \in \max \mathcal{I}}\left(\left[\frac{\mu(u, v)}{2}\right]-1\right) \leq 1-|\max \mathcal{I}|+\left[\frac{\mu(\mathrm{C})}{2}\right] .
\end{gathered}
$$

If $|\max \mathcal{I}| \geq 2$, then the proof is ready. Case $|\max \mathcal{I}|=1$ is an easy excersise.

Examples / Exact results

> Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): $p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

Examples / Exact results

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
$p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Examples / Exact results

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
$p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If $n \geq 2$, then $h_{2}(m, n)=\left[\frac{(m+1) n}{2}\right]+\left[\frac{(m-1)}{2}\right]$.

Examples / Exact results

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
$p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If $n \geq 2$, then $h_{2}(m, n)=\left[\frac{(m+1) n}{2}\right]+\left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \geq 2$, then $t(m, n)=\left[\frac{m n}{2}\right]$.

Examples / Exact results

Changing the neigbourhood relation of cells (J. Barát, P. Hajnal, E.K. Horváth $): f^{*}(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

Examples / Exact results

Changing the neigbourhood relation of cells (J. Barát, P. Hajnal, E.K. Horváth $): f^{*}(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

Examples / Square islands and Mersenne numbers

Square islands (E.K. Horváth, Z. Németh):
$\frac{2}{11} n^{2}+n+\frac{2}{3} \leq f(n) \leq \frac{n^{2}+2 n}{3}$. If n is a Mersenne number, i. e. $n=2^{k}-1$ for some $k \in \mathbb{N}$, then $f(n)=\frac{n^{2}+2 n}{3}$.

Examples / Square islands and Mersenne numbers

$$
f(2 k+2) \geq f(k+1)+3 f(k)+1 ; f(2 k+1) \geq 4 f(k)+1 ;
$$

or in unified form:
$f(n) \geq f\left[\frac{n}{2}\right]+3 f\left[\frac{n-1}{2}\right]+1$.

Examples / Square islands and Mersenne numbers

If n is a Mersenne number, i. e. $n=2^{k}-1$ for some $k \in \mathbb{N}$, then $f(n)=\frac{n^{2}+2 n}{3}$.

Open problems

Globe

Horváth - Németh conjecture

Open problems

Globe

Horváth - Németh conjecture

$$
n+1=2^{\kappa_{1}}+2^{\kappa_{2}}+\cdots+2^{\kappa_{k}}, \quad \kappa_{1}>\kappa_{2}>\ldots \kappa_{k} \geq 0 .
$$

